
BYV28-6

SINTERED GLASS JUNCTION ULTRAFAST AVALANCHE RECTIFIER VOLTAGE: 600V CURRENT: 3.1A

FEATURE

Glass passivated High maximum operating temperature Low leakage current Excellent stability Guaranteed avalanche energy absorption capability

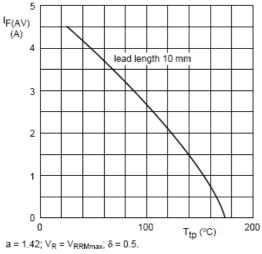
MECHANICAL DATA

Case: SOD-64 sintered glass case Terminal: Plated axial leads solderable per MIL-STD 202E, method 208C Polarity: color band denotes cathode end Mounting position: any

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

(single-phase, half-wave, 60HZ, resistive or inductive load rating at 25°C, unless otherwise stated)

	SYMBOL	BYV28-6	units
Maximum Recurrent Peak Reverse Voltage	V _{RRM}	600	V
Maximum RMS Voltage	V _{RMS}	420	V
Maximum DC blocking Voltage	V _{DC}	600	V
Maximum Average Forward Rectified Current 3/8"lead length at I =10mm	I _{FAV}	3.1	А
Peak Forward Surge Current at tp=10ms,half sinewave	I _{FSM}	90	А
Maximum Forward Voltage at Forward Current IF=3.5A and $25^{\circ}C$	VF	1.25	V
Non-repetitive peak reverse avalanche energy (Note 1)	E _{RSM}	20	mJ
Maximum DC Reverse CurrentTa = 25° Cat rated DC blocking voltageTa = 150° C	I _R	5.0 150.0	μA
Maximum Reverse Recovery Time (Note 2)	Trr	50	nS
Typical Thermal Resistance (Note 3)	Rth(ja)	75	K/W
Storage and Operating Junction Temperature	Tstg, Tj	-65 to +175	°C


Note

1. L=120Mh,Tj-Tjmax prior to surge; inductive load switched off

2. Reverse Recovery Condition If =0.5A, Ir =1.0A, Irr =0.25A

3. Device mounted on an epoxy-glass printed-circuit board, 1.5mm thick; thickness of Cu-layer ${\geq}40\,\mu$ m

RATINGS AND CHARACTERISTIC CURVES BYV28-6

Switched mode application.

Fig.1 Maximum permissible average forward current as a function of tie-point temperature (including losses due to reverse leakage).

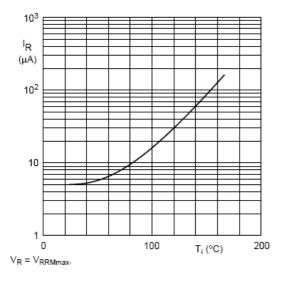


Fig. 3 Reverse current as a function of junction temperature; maximum values.

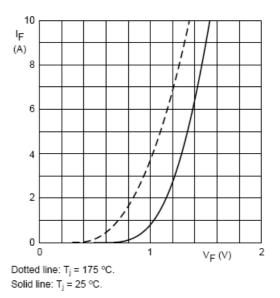


Fig. 2 Forward current as a function of forward voltage; maximum values.

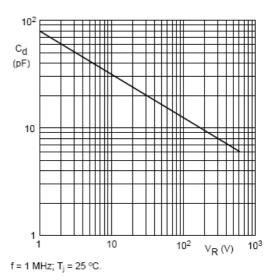


Fig. 4 Diode capacitance as a function of reverse voltage; typical values.