256K (32K x 8) Static RAM

Features

- Temperature Ranges
- Industrial: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Automotive-A: $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
- Single 3.3V power supply
- Ideal for low-voltage cache memory applications
- High speed: 12 ns
- Low active power
- 180 mW (max.)
- Low-power alpha immune 6T cell
- Available in Pb-free and non Pb-free Plastic SOJ and TSOP I packages

Functional Description ${ }^{[1]}$

The CY7C1399BN is a high-performance 3.3V CMOS Static RAM organized as 32,768 words by 8 bits. Easy memory
expansion is provided by an active LOW Chip Enable ($\overline{\mathrm{CE}}$) and active LOW Output Enable ($\overline{\mathrm{OE}}$) and tri-state drivers. The device has an automatic power-down feature, reducing the power consumption by more than 95% when deselected.
An active LOW Write Enable signal ($\overline{\mathrm{WE}}$) controls the writing/reading operation of the memory. When $\overline{\mathrm{CE}}$ and $\overline{\mathrm{WE}}$ inputs are both LOW, data on the eight data input/output pins ($\mathrm{I} / \mathrm{O}_{0}$ through $\mathrm{I} / \mathrm{O}_{7}$) is written into the memory location addressed by the address present on the address pins (A_{0} through A_{14}). Reading the device is accomplished by selecting the device and enabling the outputs, $\overline{\mathrm{CE}}$ and $\overline{\mathrm{OE}}$ active LOW, while $\overline{\mathrm{WE}}$ remains inactive or HIGH. Under these conditions, the contents of the location addressed by the information on address pins is present on the eight data input/output pins.
The input/output pins remain in a high-impedance state unless the chip is selected, outputs are enabled, and Write Enable (WE) is HIGH. The CY7C1399BN is available in 28-pin standard 300 -mil-wide SOJ and TSOP Type I packages.

Logic Block Diagram

Pin Configurations

Selection Guide

		$\mathbf{- 1 2}$	$\mathbf{- 1 5}$	$\mathbf{- 2 0}$
Maximum Access Time (ns)		12	15	20
Maximum Operating Current (mA)		55	50	45
Maximum CMOS Standby Current $(\mu \mathrm{A})$	Commercial	500	500	500
	Commercial (L)	50	50	50
	Industrial	500	500	
	Automotive-A		500	

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines’ Cypress application note, available on the internet at www.cypress.com

Pin Configuration

$\begin{gathered} \text { TSOP } \\ \text { Top View } \end{gathered}$	
$\overline{\mathrm{OE}} \sqrt{22}$	${ }^{21} \mathrm{P}^{\text {A }}$
$\mathrm{A}_{1} \mathrm{C}_{23}$	20.
$\mathrm{A}_{2}{ }^{24}$	${ }_{19}{ }^{1 / 17} \mathrm{O}_{7}$
A_{3} $\mathrm{~A}_{4}{ }^{\text {c }}$ 25	${ }_{18}^{18} 1 / \mathrm{O}_{6}$
$\mathrm{A}_{4} \mathrm{~A}_{\text {WE }}{ }^{26}$	${ }^{17}{ }_{16}^{17} \mathrm{I} / \mathrm{O}_{5}$
$\mathrm{VCC} \mathrm{Cl}^{28}$	${ }_{15}{ }^{\text {d }} \mathrm{I} / \mathrm{O}_{3}$
$A_{5} C_{1}$	${ }_{14}{ }^{\text {G GND }}$
A_{6} 2 $\mathrm{~A}_{7}$	${ }_{13}^{13} \mathrm{I} / \mathrm{O}_{2}$
$\mathrm{A}_{7}{ }_{\text {c }}$	${ }_{12}^{12} \mathrm{I} / \mathrm{O}_{1}$
	${ }_{10}^{11} \mathrm{~B}^{1 / \mathrm{I}} \mathrm{A}_{14}$
	${ }_{9}{ }^{\text {a }} \mathrm{A}_{13}$
$\mathrm{A}_{11}{ }^{\text {¢ }}$	8 - A_{12}

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.)
Storage Temperature $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Ambient Temperature with
Power Applied \qquad $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Supply Voltage on V_{CC} to Relative $\mathrm{GND}^{[2]} \ldots .-0.5 \mathrm{~V}$ to +4.6 V
DC Voltage Applied to Outputs
in High Z State ${ }^{[2]}$. \qquad -0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$
DC Input Voltage ${ }^{[2]}$ \qquad

Output Current into Outputs (LOW)............................. 20 mA
Static Discharge Voltage... >2001V (per MIL-STD-883, Method 3015)
Latch-Up Current
>200 mA
Operating Range

Range	Ambient Temperature	$\mathbf{V}_{\text {CC }}$
Commercial	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$	
Industrial	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Automotive-A	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	

Electrical Characteristics Over the Operating Range ${ }^{[1]}$

Parameter	Description	Test Conditions		-12		-15		-20		Unit
				Min.	Max.	Min.	Max.	Min.	Max.	
V_{OH}	Output HIGH Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OH}}=-2.0 \mathrm{~mA}$		2.4		2.4		2.4		V
V_{OL}	Output LOW Voltage	$\mathrm{V}_{\mathrm{CC}}=\mathrm{Min} ., \mathrm{I}_{\mathrm{OL}}=4.0 \mathrm{~mA}$			0.4		0.4		0.4	V
V_{IH}	Input HIGH Voltage			2.2	$\begin{gathered} \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \mathrm{~V} \end{gathered}$	2.2	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}+ \\ 0.3 \mathrm{~V} \end{gathered}$	V
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage ${ }^{[2]}$			-0.3	0.8	-0.3	0.8	-0.3	0.8	V
$\mathrm{I}_{1 \times}$	Input Leakage Current			-1	+1	-1	+1	-1	+1	$\mu \mathrm{A}$
l_{Oz}	Output Leakage Current	$\mathrm{GND} \leq \mathrm{V}_{\mathrm{I}} \leq \mathrm{V}_{\mathrm{CC}}$, Output Disabled		-5	+5	-5	+5	-5	+5	$\mu \mathrm{A}$
${ }^{\text {CCC }}$	$\mathrm{V}_{\text {cc }}$ Operating Supply Current	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}}=\mathrm{Max} ., \mathrm{l}_{\text {OUT }}=0 \mathrm{~mA}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}}=1 / \mathrm{t}_{\mathrm{RC}} \end{aligned}$			55		50		45	mA
$\mathrm{I}_{\text {SB1 }}$	Automatic CE Power-Down CurrentTTL Inputs	$\begin{aligned} & \text { Max. } V_{\mathrm{CC}}, \overline{\mathrm{CE}} \geq \mathrm{V}_{\mathrm{IH}}, \\ & \mathrm{~V}_{\mathrm{IN}} \geq \mathrm{V}_{\mathrm{IH}}, \text { or } \mathrm{V}_{\mathrm{IN}} \leq \mathrm{V}_{\mathrm{IL}}, \\ & \mathrm{f}=\mathrm{f}_{\mathrm{MAX}} \end{aligned}$	Comm'l		5		5		5	mA
			Comm'l (L)		4		4			mA
			Ind'l		5		5			
			Auto-A				5			
$\mathrm{I}_{\text {SB2 }}$	Automatic CE Power-Down Current- CMOS Inputs ${ }^{[3]}$	$\begin{aligned} & \text { Max. } V_{C C}, \overline{C E} \geq V_{C C}-0.3 V, \\ & V_{\mathbb{I N}} \geq V_{C C}-0.3 V, \text { or } V_{\mathbb{N}} \leq 0.3 V, \\ & W E \geq V_{C C}-0.3 V \text { or } W E \leq 0.3 V, \\ & f=f_{M A X} \end{aligned}$	Comm'l		500		500		500	$\mu \mathrm{A}$
			Comm'l (L)		50		50			$\mu \mathrm{A}$
			Ind'I		500		500			$\mu \mathrm{A}$
			Auto-A				500			$\mu \mathrm{A}$

Notes:

2. Minimum voltage is equal to -2.0 V for pulse durations of less than 20 ns .
3. Device draws low standby current regardless of switching on the addresses.

CY7C1399BN
Capacitance ${ }^{[4]}$

Parameter	Description	Test Conditions	Max.	Unit
$\mathrm{C}_{\text {IN }}$: Addresses	Input Capacitance	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}, \mathrm{f}=1 \mathrm{MHz}, \\ & \mathrm{~V}_{\mathrm{CC}}=3.3 \mathrm{~V} \end{aligned}$	5	pF
C_{IN} : Controls			6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance		6	pF

AC Test Loads and Waveforms ${ }^{[5]}$

Equivalent to: THÉVENINEQUIVALENT

Switching Characteristics Over the Operating Range ${ }^{[5]}$

Parameter	Description	-12		-15		-20		Unit
		Min.	Max.	Min.	Max.	Min.	Max.	
Read Cycle								
t_{RC}	Read Cycle Time	12		15		20		ns
t_{AA}	Address to Data Valid		12		15		20	ns
$\mathrm{t}_{\mathrm{OHA}}$	Data Hold from Address Change	3		3		3		ns
$\mathrm{t}_{\text {ACE }}$	$\overline{C E}$ LOW to Data Valid		12		15		20	ns
$\mathrm{t}_{\text {doe }}$	$\overline{\mathrm{OE}}$ LOW to Data Valid		5		6		7	ns
tlzoe	$\overline{\mathrm{OE}}$ LOW to Low $\mathrm{Z}^{[6]}$	0		0		0		ns
$\mathrm{t}_{\text {HZOE }}$	$\overline{\mathrm{OE}}$ HIGH to High $\mathrm{Z}^{[6,7]}$		5		6		6	ns
tızCE	$\overline{\mathrm{CE}}$ LOW to Low $\mathrm{Z}^{[6]}$	3		3		3		ns
$\mathrm{t}_{\text {HzCE }}$	$\overline{\text { CE }}$ HIGH to High ${ }^{[6,7]}$		6		7		7	ns
tPu	$\overline{\text { CE LOW }}$ to Power-Up	0		0		0		ns
$\mathrm{t}_{\text {PD }}$	$\overline{\mathrm{CE}}$ HIGH to Power-Down		12		15		20	ns
Write Cycle ${ }^{[8,9]}$								
t_{wc}	Write Cycle Time	12		15		20		ns
$\mathrm{t}_{\text {SCE }}$	$\overline{\text { CE }}$ LOW to Write End	8		10		12		ns
$\mathrm{t}_{\text {AW }}$	Address Set-Up to Write End	8		10		12		ns
t_{HA}	Address Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {SA }}$	Address Set-Up to Write Start	0		0		0		ns
trwe	$\overline{\text { WE Pulse Width }}$	8		10		12		ns
$\mathrm{t}_{\text {SD }}$	Data Set-Up to Write End	7		8		10		ns
t_{HD}	Data Hold from Write End	0		0		0		ns
$\mathrm{t}_{\text {HZWE }}$	$\overline{\mathrm{WE}}$ LOW to High $\mathrm{Z}^{[8]}$		7		7		7	ns
tıZWE	$\overline{\text { WE }}$ HIGH to Low ${ }^{[6]}$	3		3		3		ns

Notes:
4. Tested initially and after any design or process changes that may affect these parameters.
5. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5 V , input pulse levels of 0 to 3.0 V , and output loading of the specified $\mathrm{I}_{\mathrm{OL}} / \mathrm{I}_{\mathrm{OH}}$ and capacitance $\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$.
6. At any given temperature and voltage condition, $t_{\text {HZCE }}$ is less than $t_{\text {LZCE }}, t_{\text {HZOE }}$ is less than $t_{\text {LZOE }}$, and $t_{\text {HZWE }}$ is less than $t_{\text {LZWE }}$ for any given device.
7. $t_{\text {HZOE }}, t_{\text {HZCE }}, t_{\text {HZWE }}$ are specified with $C_{L}=5 \mathrm{pF}$ as in AC Test Loads. Transition is measured $\pm 500 \mathrm{mV}$ from steady state voltage.
8. The internal write time of the memory is defined by the overlap of $\overline{C E}$ LOW and WE LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
9. The minimum write cycle time for write cycle \#3 (WE controlled, OE LOW) is the sum of $t_{\text {HZWE }}$ and t_{SD}.

Data Retention Characteristics (Over the Operating Range - L version only)

Parameter	Description	Conditions	Min.	Max.	Unit
V_{DR}	V_{CC} for Data Retention		2.0		V
$\mathrm{I}_{\text {CCDR }}$	Data Retention Current	$\begin{aligned} & V_{C C}=V_{D R}=2.0 V, \\ & C E \geq V_{C C}-0.3 V, \\ & V_{I N} \geq V_{C C}-0.3 V \text { or } \\ & V_{I N} \leq 0.3 V \end{aligned}$	0	20	$\mu \mathrm{A}$
${ }^{\text {t }}$ CDR	Chip Deselect to Data Retention Time		0		ns
t_{R}	Operation Recovery Time		t_{RC}		ns

Data Retention Waveform

Switching Waveforms

Read Cycle No. $1^{[10,11]}$

Read Cycle No. $2^{[11,12]}$

Notes:
10. Device is continuously selected. $\overline{\mathrm{OE}}, \overline{\mathrm{CE}}=\mathrm{V}_{\text {IL }}$
11. WE is HIGH for read cycle.
12. Address valid prior to or coincident with $\overline{\mathrm{CE}}$ transition LOW.

CY7C1399BN

Switching Waveforms (continued)

Write Cycle No. 1 ($\overline{\text { WE Controlled) })^{[8,13, ~ 14] ~}}$

Write Cycle No. 2 ($\overline{\text { CE }}$ Controlled) $)^{[8,13,14]}$

Write Cycle No. 3 ($\overline{\mathrm{WE}}$ Controlled, $\overline{\mathrm{OE}}$ LOW) $)^{[9,14]}$

Notes:
13. Data I / O is high impedance if $\overline{\mathrm{OE}}=\mathrm{V}_{\mathrm{IU}}$.
14. If $\overline{\text { CE }}$ goes HIGH simultaneously with WE HIGH, the output remains in a high-impedance state.
15. During this period, the I/Os are in the output state and input signals should not be applied.

CY7C1399BN

Truth Table

$\overline{\mathbf{C E}}$	$\overline{\mathbf{W E}}$	$\overline{\mathbf{O E}}$	Input/Output	Mode	Power
H	X	X	High Z	Deselect/Power-Down	Standby (I $\left.\mathrm{I}_{\mathrm{SB}}\right)$
L	H	L	Data Out	Read	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	L	X	Data In	Write	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$
L	H	H	High Z	Deselect, Output Disabled	Active (I $\left.\mathrm{I}_{\mathrm{CC}}\right)$

Ordering Information

$\begin{gathered} \text { Speed } \\ \text { (ns) } \end{gathered}$	Ordering Code	Package Diagram	Package Type	$\begin{aligned} & \hline \text { Operating } \\ & \text { Range } \end{aligned}$
12	CY7C1399BN-12VC	51-85031	28-Lead Molded SOJ	Commercial
	CY7C1399BN-12VXC		28-Lead Molded SOJ (Pb-free)	
	CY7C1399BN-12ZC	51-85071	28-Lead TSOP I	
	CY7C1399BN-12ZXC		28-Lead TSOP I (Pb-free)	
	CY7C1399BNL-12ZC		28-Lead TSOP I	
	CY7C1399BNL-12ZXC		28-Lead TSOP I (Pb-free)	
	CY7C1399BN-12VXI	51-85031	28-Lead Molded SOJ (Pb-free)	Industrial
15	CY7C1399BN-15VC		28-Lead Molded SOJ	Commercial
	CY7C1399BN-15VXC		28-Lead Molded SOJ (Pb-free)	
	CY7C1399BN-15ZC	51-85071	28-Lead TSOP I	
	CY7C1399BN-15ZXC		28-Lead TSOP I (Pb-free)	
	CY7C1399BNL-15ZXC		28-Lead TSOP I (Pb-free)	
	CY7C1399BNL-15VXC	51-85031	28-Lead Molded SOJ (Pb-free)	
	CY7C1399BN-15VI		28-Lead Molded SOJ	Industrial
	CY7C1399BN-15VXI		28-Lead Molded SOJ (Pb-free)	
	CY7C1399BN-15ZI	51-85071	28-Lead TSOP I	
	CY7C1399BN-15ZXI		28-Lead TSOP I (Pb-free)	
	CY7C1399BN-15VXA	51-85031	28-Lead Molded SOJ (Pb-free)	Automotive-A
20	CY7C1399BN-20ZXC	51-85071	28-Lead TSOP I (Pb-free)	Commercial

Please contact local sales representative regarding availability of these parts.

Package Diagrams

All products and company names mentioned in this document may be the trademarks of their respective holders.

CY7C1399BN

Document History Page

Document Title: CY7C1399BN 256K (32K x 8) Static RAM Document Number: 001-06490				
REV.	ECN NO.	ISSUE DATE	ORIG. OF CHANGE	DESCRIPTION OF CHANGE
${ }^{* *}$	423877	See ECN	NXR	New Data Sheet
${ }^{*} A$	498575	See ECN	NXR	Added Automotive-A range Removed IOS parameter from DC Electrical Characteristics table Updated Ordering Information table.

