Regarding the change of names mentioned in the document, such as Mitsubishi Electric and Mitsubishi XX, to Renesas Technology Corp.

The semiconductor operations of Hitachi and Mitsubishi Electric were transferred to Renesas Technology Corporation on April 1st 2003. These operations include microcomputer, logic, analog and discrete devices, and memory chips other than DRAMs (flash memory, SRAMs etc.) Accordingly, although Mitsubishi Electric, Mitsubishi Electric Corporation, Mitsubishi Semiconductors, and other Mitsubishi brand names are mentioned in the document, these names have in fact all been changed to Renesas Technology Corp. Thank you for your understanding. Except for our corporate trademark, logo and corporate statement, no changes whatsoever have been made to the contents of the document, and these changes do not constitute any alteration to the contents of the document itself.

Note: Mitsubishi Electric will continue the business operations of high frequency & optical devices and power devices.

Renesas Technology Corp. Customer Support Dept. April 1, 2003

3850 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

DESCRIPTION

The 3850 group is the 8-bit microcomputer based on the 740 family core technology.

The 3850 group is designed for the household products and office automation equipment and includes serial I/O functions, 8-bit timer, and A-D converter.

FEATURES

ILAIONLO	
● Basic machine-language instructions	71
●Minimum instruction execution time	0.5 μs
(at 8 MHz oscillation frequency)	
Memory size	
ROM	8K to 24K bytes
RAM	512 to 640 byte
● Programmable input/output ports	34
●Interrupts	. 14 sources, 14 vectors
●Timers	8-bit X 4
● Serial I/O 8-bit X 1(UART	or Clock-synchronized)
●PWM	8-bit X 1
●A-D converter	10-bit X 5 channels
Watchdog timer	16-bit X 1
Clock generating circuit	Built-in 2 circuits
(connect to external ceramic resonator or o	quartz-crystal oscillator)

●Power source voltage
In high-speed mode 4.0 to 5.5 V
(at 8 MHz oscillation frequency)
In high-speed mode
(at 4 MHz oscillation frequency)
In middle-speed mode 2.7 to 5.5 V
(at 8 MHz oscillation frequency)
In low-speed mode 2.7 to 5.5 V
(at 32 kHz oscillation frequency)
●Power dissipation
In high-speed mode34 mW
(at 8 MHz oscillation frequency, at 5 V power source voltage)
In low-speed mode
(at 32 kHz oscillation frequency, at 3 V power source voltage)
●Operating temperature range20 to 85°C

APPLICATION

Office automation equipment, FA equipment, Household products, Consumer electronics, etc.

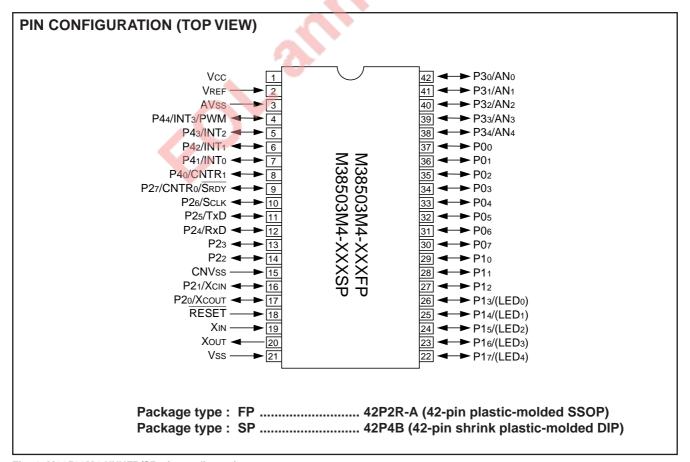


Fig. 1 M38503M4-XXXFP/SP pin configuration

FUNCTIONAL BLOCK I/O port P0 Timer X(8) Timer 1(8) Timer 2(8) Timer Y(8) 1/O port P1 Prescaler 12(8) Prescaler X(8) Y(8) I/O port P2 Prescaler CNTR1 CNVss CNTR₀ Reset input RESET PCL PS တ SI/O(8) CPU \$ ⊕ PCH Vss (§) ROM ₽ E F RAM FUNCTIONAL BLOCK DIAGRAM Clock generating circuit Main-clock output Xour Watchdog timer Main-clock input ×

Fig. 2 Functional block diagram

PIN DESCRIPTION

Table 1 Pin description

Pin	Name	Functions	For all the second and the second for all the
			Function except a port function
Vcc, Vss	Power source	•Apply voltage of 2.7 V – 5.5 V to Vcc, and 0 V to Vss.	
CNVss	CNVss input	•This pin controls the operation mode of the chip.	
	G. 1700put	Normally connected to VSS.	
RESET	Reset input	•Reset input pin for active "L."	
XIN	Clock input	•Input and output pins for the clock generating circuit.	
XIII	Clock Input	Connect a ceramic resonator or quartz-crystal oscillator the oscillation frequency.	between the XIN and XOUT pins to se
Хоит	Clock output	•When an external clock is used, connect the clock sour pin open.	rce to the XIN pin and leave the XOU
		•8-bit CMOS I/O port.	
P00-P07	I/O port P0	•I/O direction register allows each pin to be individually p	rogrammed as either input or output.
		CMOS compatible input level.	
P10-P17	I/O port P1	CMOS 3-state output structure.	
	"о ролг.	•P13 to P17 (5 bits) are enabled to output large current fo	r LED drive.
P20/XCOUT		•8-bit CMOS I/O port.	Sub-clock generating circuit I/O
P21/XCIN		•I/O direction register allows each pin to be individually	pins (connect a resonator)
P22		programmed as either input or output.	
P23		•CMOS compatible input level.	
P24/RxD	I/O port P2	•P20, P21, P24 to P27: CMOS3-state output structure.	Serial I/O function pin
P25/TxD	1/O port P2	•P22, P23: N-channel open-drain structure.	
P26/SCLK			
P27/CNTR ₀ / SRDY			Serial I/O function pin/ Timer X function pin
P30/AN0-	I/O port P3	•8-bit CMOS I/O port with the same function as port P0.	A-D converter input pin
P34/AN4		•CMOS compatible input level.	
		•CMOS 3-state output structure.	
P40/CNTR1	I/O port P4	•8-bit CMOS I/O port with the same function as port P0.	Timer Y function pin
P41/INT0-		•CMOS compatible input level.	Interrupt input pins
P43/INT2		•CMOS 3-state output structure.	
			Interrupt input pin
P44/INT3/PWM			PWM output pin

PART NUMBERING

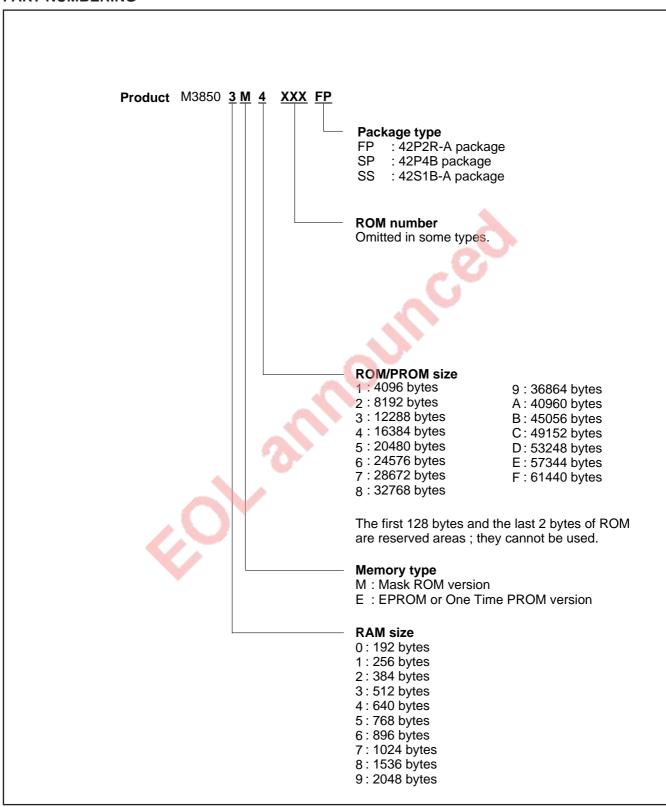


Fig. 3 Part numbering

GROUP EXPANSION

Mitsubishi plans to expand the 3850 group as follows:

Memory Type

Support for mask ROM, One Time PROM, and EPROM versions.

Memory Size

ROM/PROM size	8K	to 24K	bytes
RAM size	512	to 640	bytes

Packages

42P4B	42-pin shrink plastic molded DIP
42P2R-A	42-pin plastic molded SSOP
42S1B-A	42-pin shrink ceramic DIP(EPROM version)

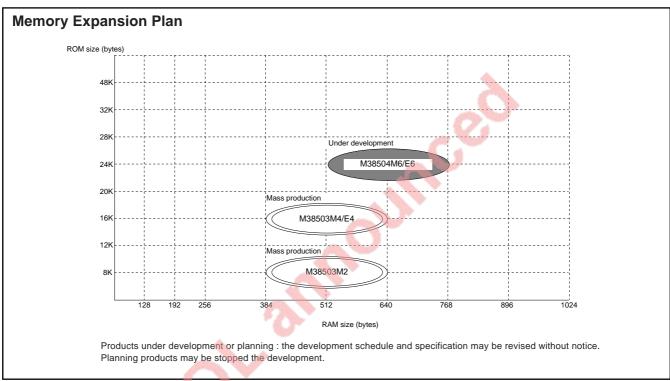


Fig. 4 Memory expansion plan

Currently planning products are listed below.

As of August 1998

Table 2 Support prod	ucts			As of August 1990	
Product name	(P) ROM size (bytes) ROM size for User in ()	RAM size (bytes)	Package	Remarks	
M38503M2-XXXSP	8192		42P4B	Mask ROM version	
M38503M2-XXXFP	(8062)	512	42P2R-A	Mask ROM version	
M38503M4-XXXSP		42P4B		Mask ROM version	
M38503E4-XXXSP				One Time PROM version	
M38503E4SP	1			One Time PROM version (blank)	
M38503E4SS	16384 (16254) 512	1 519 1	42S1B-A	EPROM version (stock only replaced by M38504E6SS)	
M38503M4-XXXFP	(10204)		(10201)		Mask ROM version
M38503E4-XXXFP			42P2R-A	One Time PROM version	
M38503E4FP				One Time PROM version (blank)	
M38504M6-XXXSP				Mask ROM version	
M38504E6-XXXSP			42P4B	One Time PROM version	
M38504E6SP	20700			One Time PROM version (blank)	
M38504E6SS	32768 (32638)	640	42S1B-A	EPROM version	
M38504M6-XXXFP	(8288)			Mask ROM version	
M38504E6-XXXFP			42P2R-A	One Time PROM version	
M38504E6FP				One Time PROM version (blank)	

FUNCTIONAL DESCRIPTION CENTRAL PROCESSING UNIT (CPU)

The 3850 group uses the standard 740 Family instruction set. Refer to the table of 740 Family addressing modes and machine instructions or the 740 Family Software Manual for details on the instruction set.

Machine-resident 740 Family instructions are as follows:

The FST and SLW instructions cannot be used.

The STP, WIT, MUL, and DIV instructions can be used.

[CPU Mode Register (CPUM)] 003B16

The CPU mode register contains the stack page selection bit, etc.

The CPU mode register is allocated at address 003B16.

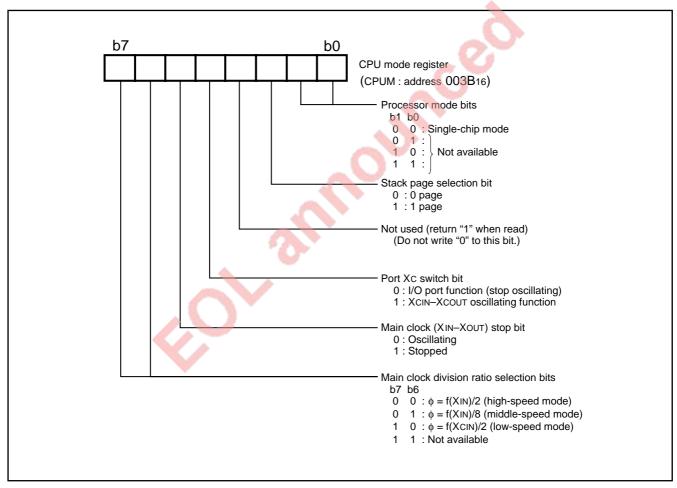


Fig. 5 Structure of CPU mode register

MEMORY Special Function Register (SFR) Area

The Special Function Register area in the zero page contains con-

trol registers such as I/O ports and timers.

RAM

RAM is used for data storage and for stack area of subroutine calls and interrupts.

ROM

The first 128 bytes and the last 2 bytes of ROM are reserved for device testing and the rest is user area for storing programs.

Interrupt Vector Area

The interrupt vector area contains reset and interrupt vectors.

Zero Page

Access to this area with only 2 bytes is possible in the zero page addressing mode.

Special Page

Access to this area with only 2 bytes is possible in the special page addressing mode.

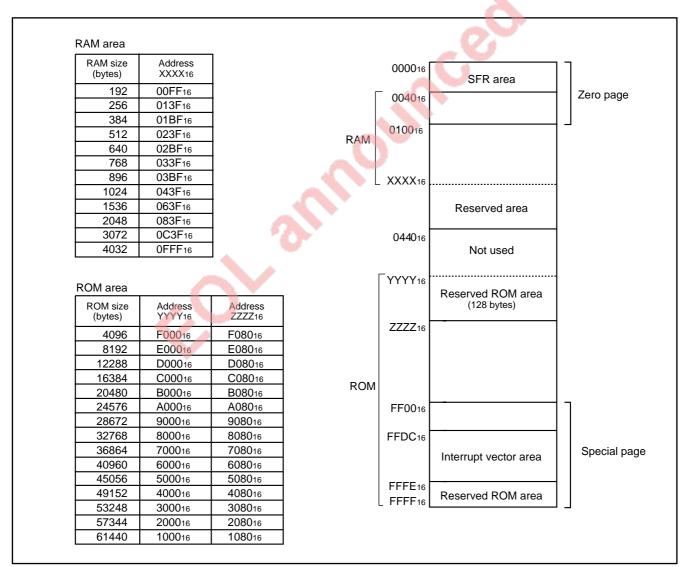


Fig. 6 Memory map diagram

000016	Port P0 (P0)	002016	Prescaler 12 (PRE12)
000116	Port P0 direction register (P0D)	002116	Timer 1 (T1)
000216	Port P1 (P1)	002216	Timer 2 (T2)
000316	Port P1 direction register (P1D)	002316	Timer XY mode register (TM)
000416	Port P2 (P2)	002416	Prescaler X (PREX)
000516	Port P2 direction register (P2D)	002516	Timer X (TX)
000616	Port P3 (P3)	002616	Prescaler Y (PREY)
000716	Port P3 direction register (P3D)	002716	Timer Y (TY)
000816	Port P4 (P4)	002816	Timer count source selection register (TCSS)
000916	Port P4 direction register (P4D)	002916	
000A16		002A ₁₆	
000B16		002B ₁₆	Reserved *
000C16		002C ₁₆	Reserved *
000D16		002D16	Reserved *
000E16		002E ₁₆	Reserved *
000F16		002F16	Reserved *
001016		003016	Reserved *
001116		003116	
001216		003216	
001316		003316	
001416		003416	A-D control register (ADCON)
001516	Reserved *	003516	A-D conversion low-order register (ADL)
001616	Reserved *	003616	A-D conversion high-order register (ADH)
001716	Reserved *	003716	
001816	Transmit/Receive buffer register (TB/RB)	003816	MISRG
001916	Serial I/O status register (SIOSTS)	003916	Watchdog timer control register (WDTCON)
001A ₁₆	Serial I/O control register (SIOCON)	003A ₁₆	Interrupt edge selection register (INTEDGE)
001B ₁₆	UART control register (UARTCON)	003B ₁₆	CPU mode register (CPUM)
001C ₁₆	Baud rate generator (BRG)	003C ₁₆	Interrupt request register 1 (IREQ1)
001D ₁₆	PWM control register (PWMCON)	003D16	Interrupt request register 2 (IREQ2)
001E ₁₆	PWM prescaler (PREPWM)	003E ₁₆	Interrupt control register 1 (ICON1)
001F ₁₆	PWM register (PWM)	003F16	Interrupt control register 2 (ICON2)

Fig. 7 Memory map of special function register (SFR)

I/O PORTS

The I/O ports have direction registers which determine the input/output direction of each individual pin. Each bit in a direction register corresponds to one pin, and each pin can be set to be input port or output port.

When "0" is written to the bit corresponding to a pin, that pin becomes an input pin. When "1" is written to that bit, that pin becomes an output pin.

If data is read from a pin which is set to output, the value of the port output latch is read, not the value of the pin itself. Pins set to input are floating. If a pin set to input is written to, only the port output latch is written to and the pin remains floating.

Table 3 I/O port function

Pin	Name	Input/Output	I/O Structure	Non-Port Function	Related SFRs	Ref.No.	
P00-P07	Port P0					(4)	
P10-P17	Port P1		CMOS compatible input level			(1)	
P20/XCOUT			CMOS 3-state output	Sub-clock generating	OPIL I	(2)	
P21/XCIN				circuit	CPU mode register	(3)	
P22 P23			CMOS compatible input level N-channel open-drain output			(4)	
P24/RxD P25/TxD	Port P2	Input/output,	Input/output, individual bits Serial I/O function I/O Serial I/O function I/O	Serial I/O function I/O	Serial I/O control register	(5) (6)	
P26/SCLK		bits		Serial I/O function I/O	Serial I/O control register	(7)	
P27/CNTR0/SRDY					CMOS compatible input level	Serial I/O function I/O Timer X function I/O	Serial I/O control register Timer XY mode register
P30/AN0- P34/AN4	Port P3		CMOS 3-state output	A-D conversion input	A-D control register	(9)	
P40/CNTR1				Timer Y function I/O	Timer XY mode register	(10)	
P41/INT0- P43/INT2	Port P4	t P4		External interrupt input	Interrupt edge selection register	(11)	
P44/INT3/PWM				External interrupt input PWM output	Interrupt edge selection register PWM control register	(12)	

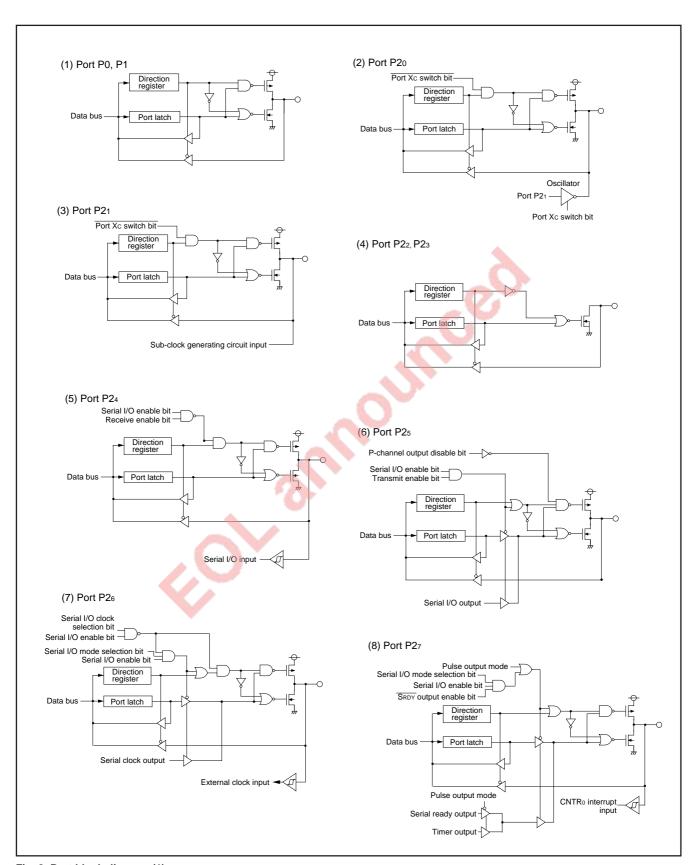


Fig. 8 Port block diagram (1)

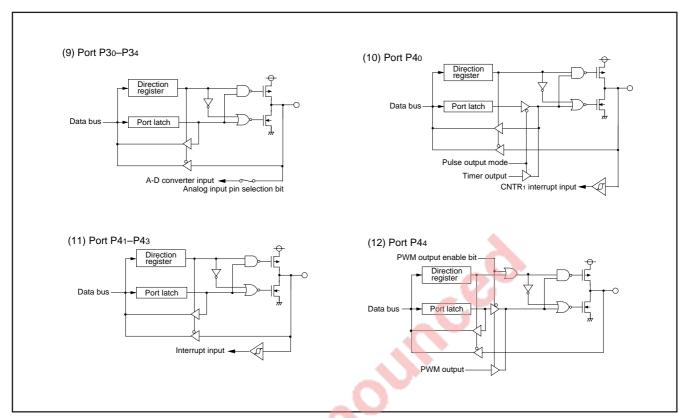


Fig. 9 Port block diagram (2)

INTERRUPTS

Interrupts occur by 14 sources among 14 sources: six external, seven internal, and one software.

Interrupt Control

Each interrupt is controlled by an interrupt request bit, an interrupt enable bit, and the interrupt disable flag except for the software interrupt set by the BRK instruction. An interrupt occurs if the corresponding interrupt request and enable bits are "1" and the interrupt disable flag is "0".

Interrupt enable bits can be set or cleared by software.

Interrupt request bits can be cleared by software, but cannot be set by software.

The BRK instruction cannot be disabled with any flag or bit. The I (interrupt disable) flag disables all interrupts except the BRK instruction interrupt.

When several interrupts occur at the same time, the interrupts are received according to priority.

Interrupt Operation

By acceptance of an interrupt, the following operations are automatically performed:

- 1. The contents of the program counter and the processor status register are automatically pushed onto the stack.
- 2. The interrupt disable flag is set and the corresponding interrupt request bit is cleared.
- 3. The interrupt jump destination address is read from the vector table into the program counter.

■Notes

When the active edge of an external interrupt (INTo–INT3, CNTR0, CNTR1) is set, the corresponding interrupt request bit may also be set. Therefore, take the following sequence:

- 1. Disable the interrupt
- 2. Change the interrupt edge selection register (the timer XY mode register for CNTR₀ and CNTR₁)
- 3. Clear the interrupt request bit to "0"
- 4. Accept the interrupt.

Table 4 Interrupt vector addresses and priority

Intonocont Cocces	Duianitu	Vector Addre	sses (Note 1)	Interrupt Request	Remarks
Interrupt Source	Priority	High	Low	Generating Conditions	Remarks
Reset (Note 2)	1	FFFD16	FFFC16	At reset	Non-maskable
INT ₀	2	FFFB16	FFFA16	At detection of either rising or falling edge of INTo input	External interrupt (active edge selectable)
Reserved	3	FFF916	FFF816	Reserved	
INT1	4	FFF716	FFF616	At detection of either rising or falling edge of INT1 input	External interrupt (active edge selectable)
INT2	5	FFF516	FFF416	At detection of either rising or falling edge of INT2 input	External interrupt (active edge selectable)
INT3	6	FFF316	FFF216	At detection of either rising or falling edge of INT3 input	External interrupt (active edge selectable)
Reserved	7	FFF116	FFF016	Reserved	
Timer X	8	FFEF16	FFEE16	At timer X underflow	
Timer Y	9	FFED16	FFEC16	At timer Y underflow	
Timer 1	10	FFEB16	FFEA16	At timer 1 underflow	STP release timer underflow
Timer 2	11	FFE916	FFE816	At timer 2 underflow	
Serial I/O reception	12	FFE716	FFE616	At completion of serial I/O data reception	Valid when serial I/O is selected
Serial I/O Transmission	13	FFE516	FFE416	At completion of serial I/O trans- fer shift or when transmission buffer is empty	Valid when serial I/O is selected
CNTR ₀	14	FFE316	FFE216	At detection of either rising or falling edge of CNTRo input	External interrupt (active edge selectable)
CNTR1	15	FFE116	FFE016	At detection of either rising or falling edge of CNTR1 input	External interrupt (active edge selectable)
A-D converter	16	FFDF16	FFDE ₁₆	At completion of A-D conversion	
BRK instruction	17	FFDD16	FFDC16	At BRK instruction execution	Non-maskable software interrupt

Notes 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest priority.

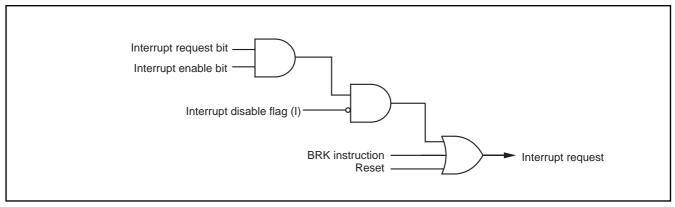


Fig. 10 Interrupt control

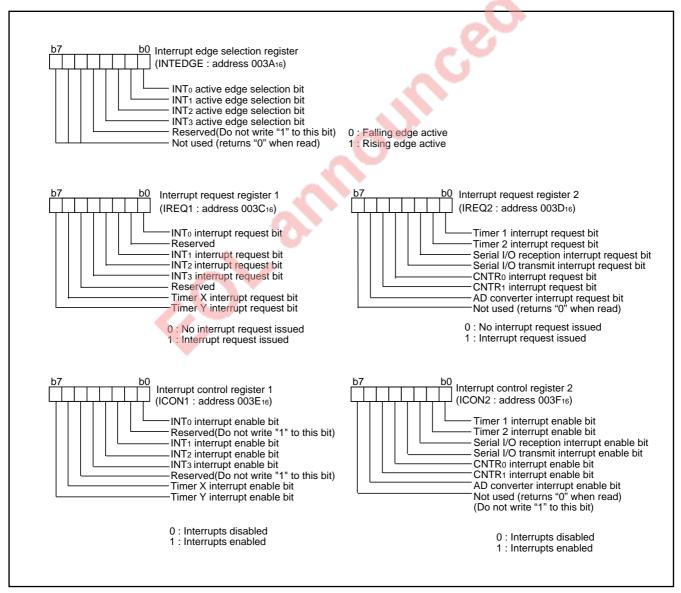


Fig. 11 Structure of interrupt-related registers (1)

TIMERS

The 3850 group has four timers: timer X, timer Y, timer 1, and timer 2.

The division ratio of each timer or prescaler is given by 1/(n+1), where n is the value in the corresponding timer or prescaler latch. All timers are count down. When the timer reaches "0016", an underflow occurs at the next count pulse and the corresponding timer latch is reloaded into the timer and the count is continued. When a timer underflows, the interrupt request bit corresponding to that timer is set to "1".

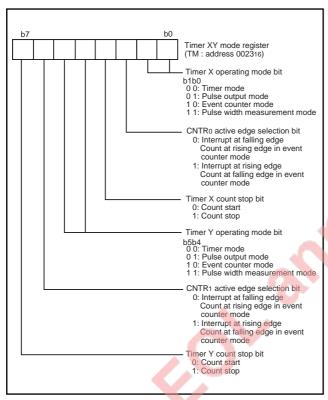


Fig. 12 Structure of timer XY mode register

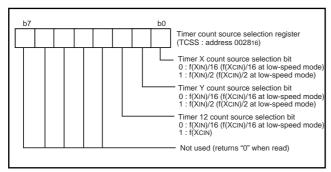


Fig. 13 Structure of timer count source selection register

Timer 1 and Timer 2

The count source of prescaler 12 is the oscillation frequency which is selected by timer 12 count source selection bit. The output of prescaler 12 is counted by timer 1 and timer 2, and a timer underflow sets the interrupt request bit.

Timer X and Timer Y

Timer X and Timer Y can each select in one of four operating modes by setting the timer XY mode register.

(1) Timer Mode

The timer counts the count source selected by Timer count source selection bit

(2) Pulse Output Mode

The timer counts the count source selected by Timer count source selection bit. Whenever the contents of the timer reach "0016", the signal output from the CNTR0 (or CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge selection bit is "0", output begins at "H".

If it is "1", output starts at "L". When using a timer in this mode, set the corresponding port P27 (or port P40) direction register to output mode.

(3) Event Counter Mode

Operation in event counter mode is the same as in timer mode, except that the timer counts signals input through the CNTR0 or CNTR1 pin.

When the CNTR0 (or CNTR1) active edge selection bit is "0", the rising edge of the CNTR0 (or CNTR1) pin is counted.

When the CNTR0 (or CNTR1) active edge selection bit is "1", the falling edge of the CNTR0 (or CNTR1) pin is counted.

(4) Pulse Width Measurement Mode

If the CNTR0 (or CNTR1) active edge selection bit is "0", the timer counts the selected signals by the count source selection bit while the CNTR0 (or CNTR1) pin is at "H". If the CNTR0 (or CNTR1) active edge selection bit is "1", the timer counts it while the CNTR0 (or CNTR1) pin is at "L".

The count can be stopped by setting "1" to the timer X (or timer Y) count stop bit in any mode. The corresponding interrupt request bit is set each time a timer underflows.

■Note

When switching the count source by the timer 12, X and Y count source bit, the value of timer count is altered in unconsiderable amount owing to generating of a thin pulses in the count input signals.

Therefore, select the timer count source before set the value to the prescaler and the timer.

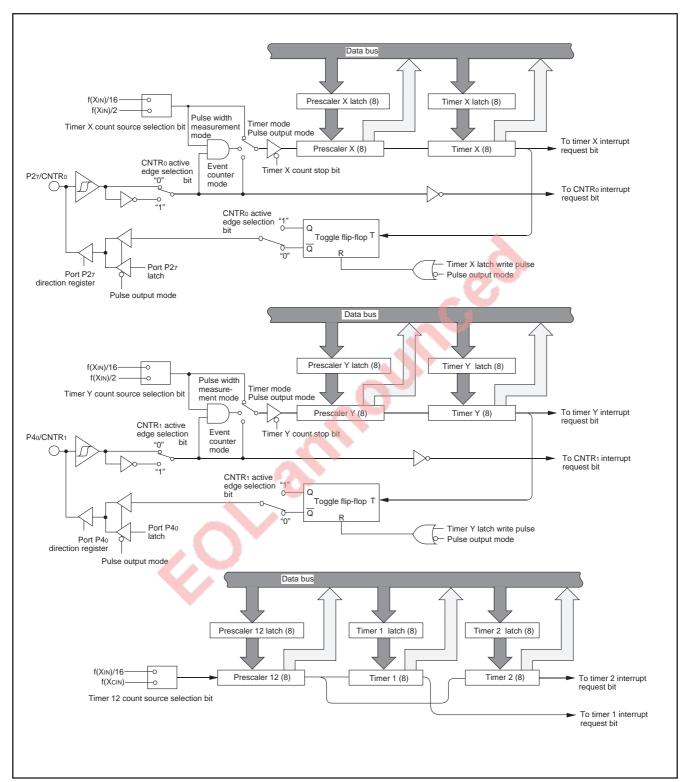


Fig. 14 Block diagram of timer X, timer Y, timer 1, and timer 2

SERIAL I/O

Serial I/O can be used as either clock synchronous or asynchronous (UART) serial I/O. A dedicated timer is also provided for baud rate generation.

(1) Clock Synchronous Serial I/O Mode

Clock synchronous serial I/O mode can be selected by setting the serial I/O mode selection bit of the serial I/O control register (bit 6 of address 001A16) to "1".

For clock synchronous serial I/O, the transmitter and the receiver must use the same clock. If an internal clock is used, transfer is started by a write signal to the TB/RB.

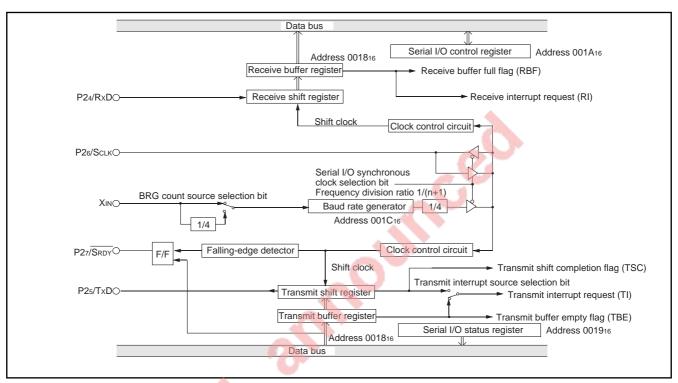


Fig. 15 Block diagram of clock synchronous serial I/O

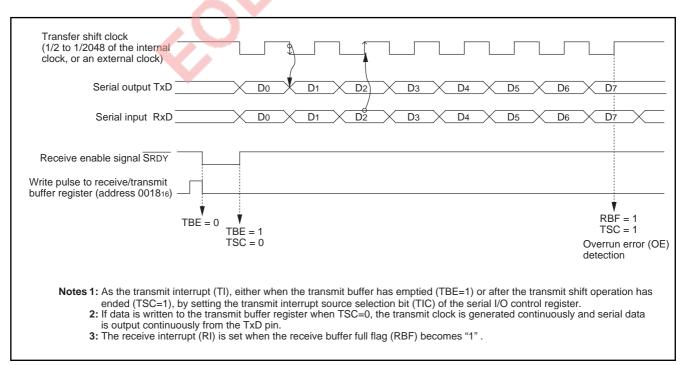


Fig. 16 Operation of clock synchronous serial I/O function

(2) Asynchronous Serial I/O (UART) Mode

Clock asynchronous serial I/O mode (UART) can be selected by clearing the serial I/O mode selection bit (b6) of the serial I/O control register to "0".

Eight serial data transfer formats can be selected, and the transfer formats used by a transmitter and receiver must be identical.

The transmit and receive shift registers each have a buffer, but the

two buffers have the same address in memory. Since the shift register cannot be written to or read from directly, transmit data is written to the transmit buffer register, and receive data is read from the receive buffer register.

The transmit buffer register can also hold the next data to be transmitted, and the receive buffer register can hold a character while the next character is being received.

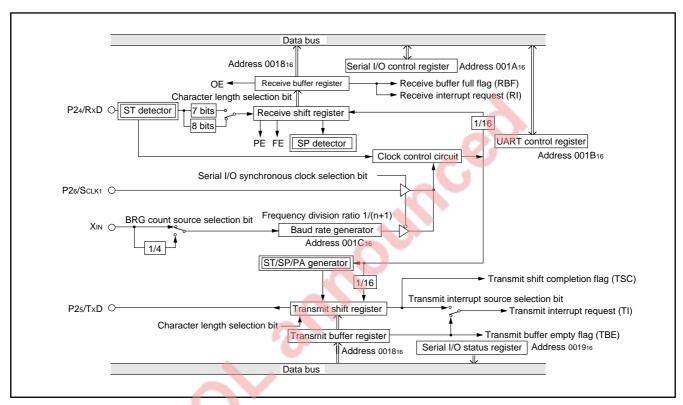


Fig.17 Block diagram of UART serial I/O

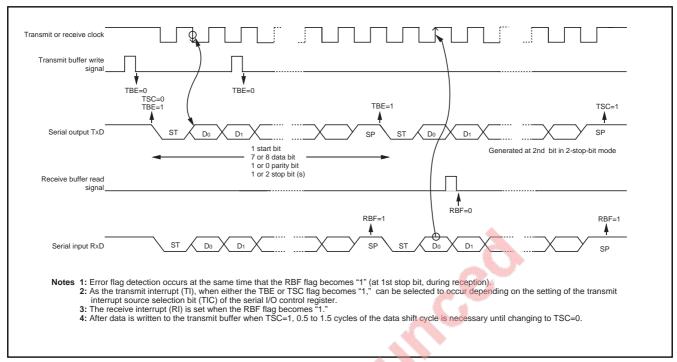


Fig. 18 Operation of UART serial I/O function

[Transmit Buffer Register/Receive Buffer Register (TB/RB)] 001816

The transmit buffer register and the receive buffer register are located at the same address. The transmit buffer is write-only and the receive buffer is read-only. If a character bit length is 7 bits, the MSB of data stored in the receive buffer is "0".

[Serial I/O Status Register (SIOSTS)] 001916

The read-only serial I/O status register consists of seven flags (bits 0 to 6) which indicate the operating status of the serial I/O function and various errors.

Three of the flags (bits 4 to 6) are valid only in UART mode.

The receive buffer full flag (bit 1) is cleared to "0" when the receive buffer register is read.

If there is an error, it is detected at the same time that data is transferred from the receive shift register to the receive buffer register, and the receive buffer full flag is set. A write to the serial I/O status register clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, respectively). Writing "0" to the serial I/O enable bit SIOE (bit 7 of the serial I/O control register) also clears all the status flags, including the error flags.

Bits 0 to 6 of the serial I/O status register are initialized to "0" at reset, but if the transmit enable bit (bit 4) of the serial I/O control register has been set to "1", the transmit shift completion flag (bit 2) and the transmit buffer empty flag (bit 0) become "1".

Serial I/O Control Register (SIOCON)] 001A16

The serial I/O control register consists of eight control bits for the serial I/O function.

[UART Control Register (UARTCON)] 001B16

The UART control register consists of four control bits (bits 0 to 3) which are valid when asynchronous serial I/O is selected and set the data format of an data transfer and one bit (bit 4) which is always valid and sets the output structure of the P25/TxD pin.

[Baud Rate Generator (BRG)] 001C16

The baud rate generator determines the baud rate for serial transfer

The baud rate generator divides the frequency of the count source by 1/(n + 1), where n is the value written to the baud rate generator.

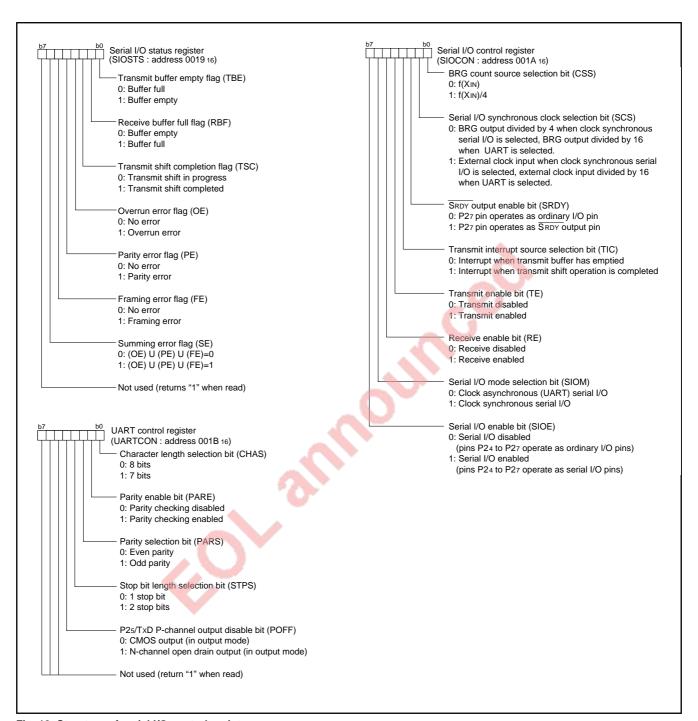


Fig. 19 Structure of serial I/O control registers

PULSE WIDTH MODULATION (PWM)

The 3850 group has a PWM function with an 8-bit resolution, based on a signal that is the clock input XIN or that clock input divided by 2.

Data Setting

The PWM output pin also functions as port P44. Set the PWM period by the PWM prescaler, and set the "H" term of output pulse by the PWM register.

If the value in the PWM prescaler is n and the value in the PWM register is m (where n = 0 to 255 and m = 0 to 255):

PWM period = $255 \times (n+1) / f(XIN)$

= 31.875 \times (n+1) μ s (when f(XIN) = 8 MHz)

Output pulse "H" term = PWM period X m / 255

= 0.125 \times (n+1) \times m μ s (when f(XIN) = 8 MHz)

PWM Operation

When bit 0 (PWM enable bit) of the PWM control register is set to "1", operation starts by initializing the PWM output circuit, and pulses are output starting at an "H".

If the PWM register or PWM prescaler is updated during PWM output, the pulses will change in the cycle after the one in which the change was made.

Fig. 20 Timing of PWM period

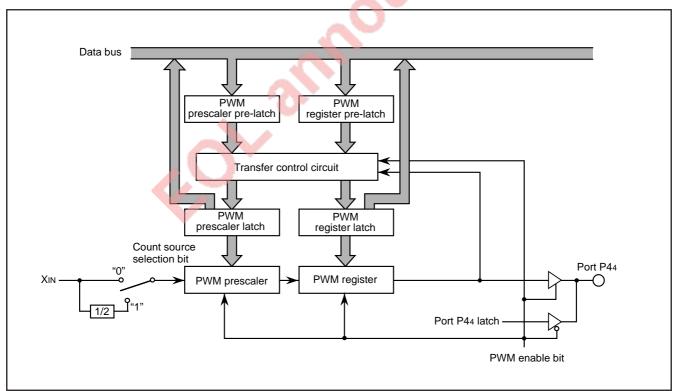


Fig. 21 Block diagram of PWM function

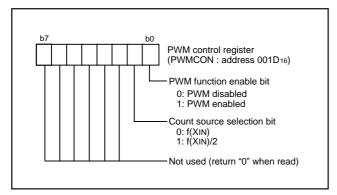


Fig. 22 Structure of PWM control register

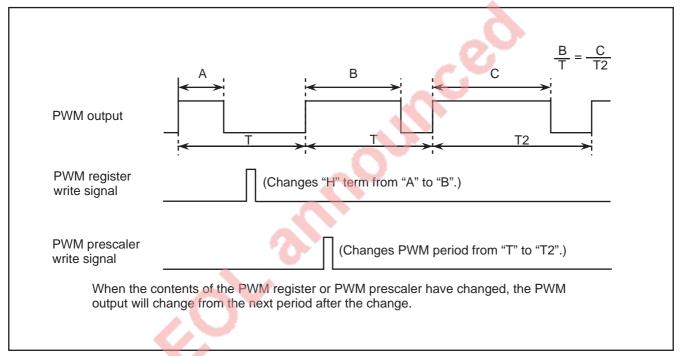


Fig. 23 PWM output timing when PWM register or PWM prescaler is changed

■Note

The PWM starts after the PWM enable bit is set to enable and "L" level is output from the PWM pin. The length of this "L" level output is as follows:

$$\frac{n+1}{2 \cdot f(X_{IN})} \quad \text{sec} \quad \text{(Count source selection bit = 0, where n is the value set in the prescaler)}$$

$$\frac{n+1}{f(X_{IN})} \quad \text{sec} \quad \text{(Count source selection bit = 1, where n is the value set in the prescaler)}$$

A-D CONVERTER [A-D Conversion Registers (ADL, ADH)] 003516, 003616

The A-D conversion registers are read-only registers that store the result of an A-D conversion. Do not read these registers during an A-D conversion

[AD Control Register (ADCON)] 003416

The AD control register controls the A-D conversion process. Bits 0 to 2 select a specific analog input pin. Bit 4 indicates the completion of an A-D conversion. The value of this bit remains at "0" during an A-D conversion and changes to "1" when an A-D conversion ends. Writing "0" to this bit starts the A-D conversion.

Comparison Voltage Generator

The comparison voltage generator divides the voltage between AVss and VREF into 1024 and outputs the divided voltages.

Channel Selector

The channel selector selects one of ports P30/AN0 to P34/AN4 and inputs the voltage to the comparator.

Comparator and Control Circuit

The comparator and control circuit compare an analog input voltage with the comparison voltage, and the result is stored in the A-D conversion registers. When an A-D conversion is completed, the control circuit sets the A-D conversion completion bit and the A-D interrupt request bit to "1".

Note that because the comparator consists of a capacitor coupling, set f(XIN) to 500 kHz or more during an A-D conversion.

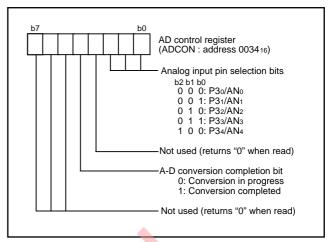


Fig. 24 Structure of AD control register

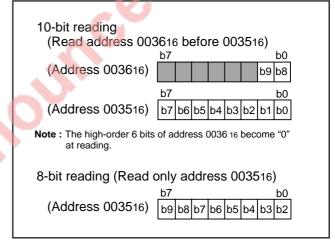


Fig. 25 Structure of A-D conversion registers

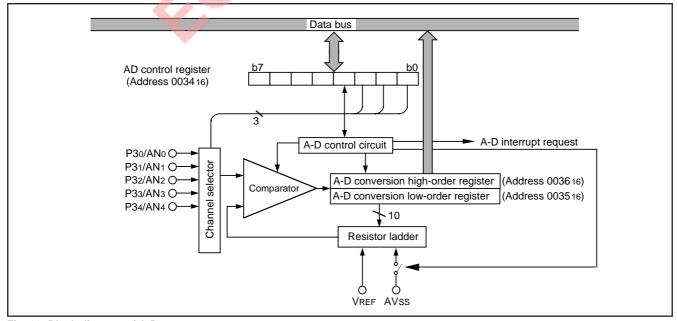


Fig. 26 Block diagram of A-D converter

WATCHDOG TIMER

The watchdog timer gives a mean of returning to the reset status when a program cannot run on a normal loop (for example, because of a software run-away). The watchdog timer consists of an 8-bit watchdog timer L and an 8-bit watchdog timer H.

Standard Operation of Watchdog Timer

When any data is not written into the watchdog timer control register (address 003916) after resetting, the watchdog timer is in the stop state. The watchdog timer starts to count down by writing an optional value into the watchdog timer control register (address 003916) and an internal reset occurs at an underflow of the watchdog timer H.

Accordingly, programming is usually performed so that writing to the watchdog timer control register (address 003916) may be started before an underflow. When the watchdog timer control register (address 003916) is read, the values of the high-order 6 bits of the watchdog timer H, STP instruction disable bit, and watchdog timer H count source selection bit are read.

Initial value of watchdog timer

At reset or writing to the watchdog timer control register (address 003916), each watchdog timer H and L is set to "FF16."

•Watchdog timer H count source selection bit operation

Bit 7 of the watchdog timer control register (address 003916) permits selecting a watchdog timer H count source. When this bit is set to "0", the count source becomes the underflow signal of watchdog timer L. The detection time is set to 131.072 ms at f(XIN) = 8 MHz frequency and 32.768 s at f(XCIN) = 32 kHz frequency. When this bit is set to "1", the count source becomes the signal divided by 16 for f(XIN) (or f(XCIN)). The detection time in this case is set to 512 μ s at f(XIN) = 8 MHz frequency and 128 ms at f(XCIN) = 32 kHz frequency. This bit is cleared to "0" after resetting.

Operation of STP instruction disable bit

Bit 6 of the watchdog timer control register (address 003916) permits disabling the STP instruction when the watchdog timer is in operation

When this bit is "0", the STP instruction is enabled.

When this bit is "1", the STP instruction is disabled, once the STP instruction is executed, an internal reset occurs. When this bit is set to "1", it cannot be rewritten to "0" by program. This bit is cleared to "0" after resetting.

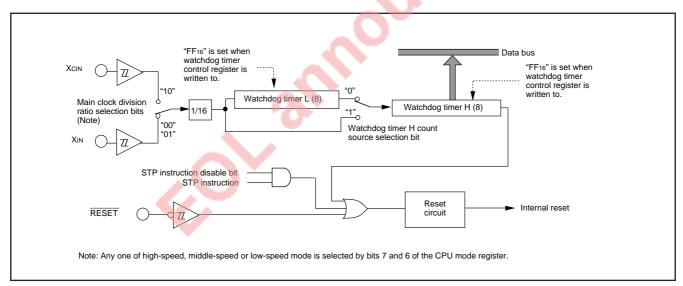


Fig. 27 Block diagram of Watchdog timer

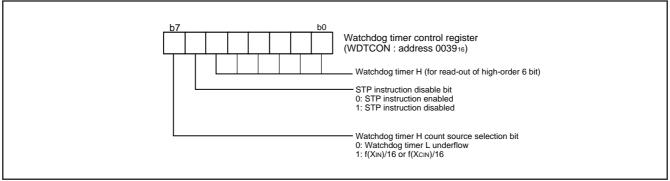


Fig. 28 Structure of Watchdog timer control register

RESET CIRCUIT

To reset the microcomputer, \overline{RESET} pin must be held at an "L" level for 2 μs or more. Then the \overline{RESET} pin is returned to an "H" level (the power source voltage must be between 2.7 V and 5.5 V, and the oscillation must be stable), reset is released. After the reset is completed, the program starts from the address contained in address FFFD16 (high-order byte) and address FFFC16 (low-order byte). Make sure that the reset input voltage is less than 0.54 V for Vcc of 2.7 V.

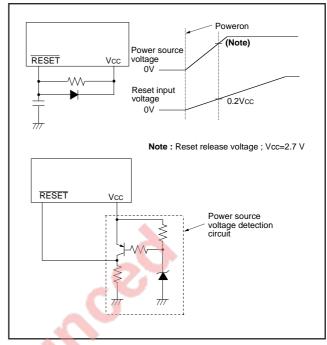


Fig. 29 Reset circuit example

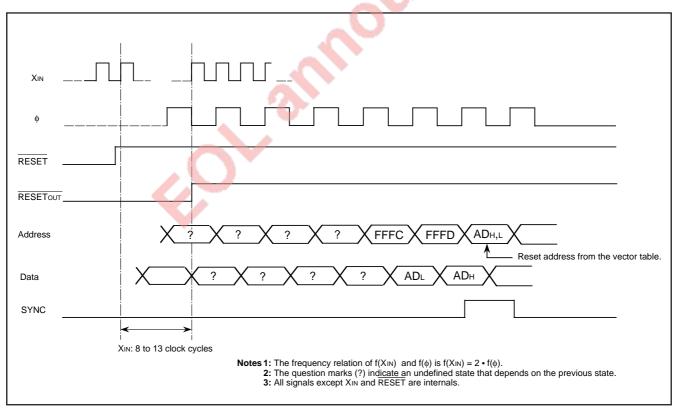


Fig. 30 Reset sequence

3850 Group

SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER

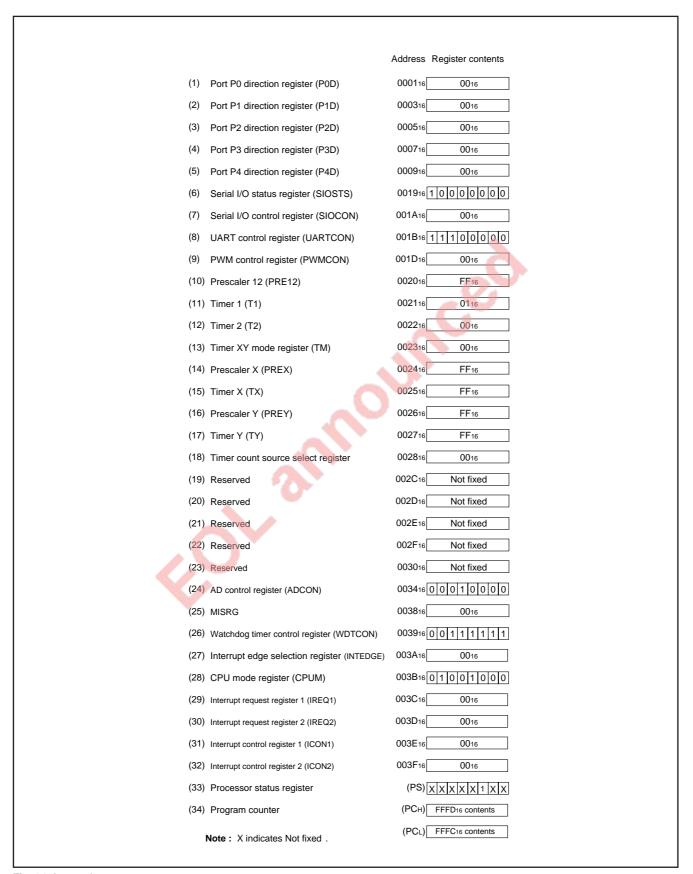


Fig. 31 Internal status at reset

CLOCK GENERATING CIRCUIT

The 3850 group has two built-in oscillation circuits. An oscillation circuit can be formed by connecting a resonator between XIN and XOUT (XCIN and XCOUT). Use the circuit constants in accordance with the resonator manufacturer's recommended values. No external resistor is needed between XIN and XOUT since a feed-back resistor exists on-chip. However, an external feed-back resistor is needed between XCIN and XCOUT.

Immediately after power on, only the XIN oscillation circuit starts oscillating, and XCIN and XCOUT pins function as I/O ports.

Frequency Control (1) Middle-speed mode

The internal clock ϕ is the frequency of XIN divided by 8. After reset, this mode is selected.

(2) High-speed mode

The internal clock ϕ is half the frequency of XIN.

(3) Low-speed mode

The internal clock ϕ is half the frequency of XCIN.

■Note

If you switch the mode between middle/high-speed and low-speed, stabilize both XIN and XCIN oscillations. The sufficient time is required for the sub-clock to stabilize, especially immediately after power on and at returning from the stop mode. When switching the mode between middle/high-speed and low-speed, set the frequency on condition that f(XIN) > 3•f(XCIN).

(4) Low power dissipation mode

The low power consumption operation can be realized by stopping the main clock XIN in low-speed mode. To stop the main clock, set bit 5 of the CPU mode register to "1." When the main clock XIN is restarted (by setting the main clock stop bit to "0"), set sufficient time for oscillation to stabilize.

The sub-clock XCIN-XCOUT oscillating circuit can not directly input clocks that are generated externally. Accordingly, make sure to cause an external resonator to oscillate.

Oscillation Control (1) Stop mode

If the STP instruction is executed, the internal clock ϕ stops at an "H" level, and XIN and XCIN oscillation stops. When the oscillation stabilizing time set after STP instruction released bit is "0," the prescaler 12 is set to "FF16" and timer 1 is set to "0116." When the oscillation stabilizing time set after STP instruction released bit is "1," set the sufficient time for oscillation of used oscillator to stabilize since nothing is set to the prescaler 12 and timer 1.

Either XIN or XCIN divided by 16 is input to the prescaler 12 as count source. Oscillator restarts when an external interrupt is received, but the internal clock ϕ is not supplied to the CPU (remains at "H") until timer 1 underflows. The internal clock ϕ is supplied for the first time, when timer 1 underflows. This ensures time for the clock oscillation using the ceramic resonators to be stabilized. When the oscillator is restarted by reset, apply "L" level to the RESET pin until the oscillation is stable since a wait time will not

be generated.

(2) Wait mode

If the WIT instruction is executed, the internal clock ϕ stops at an "H" level, but the oscillator does not stop. The internal clock ϕ restarts at reset or when an interrupt is received. Since the oscillator does not stop, normal operation can be started immediately after the clock is restarted.

To ensure that the interrupts will be received to release the STP or WIT state, their interrupt enable bits must be set to "1" before executing of the STP or WIT instruction.

When releasing the STP state, the prescaler 12 and timer 1 will start counting the clock XIN divided by 16. Accordingly, set the timer 1 interrupt enable bit to "0" before executing the STP instruction.

■Note

When using the oscillation stabilizing time set after STP instruction released bit set to "1", evaluate time to stabilize oscillation of the used oscillator and set the value to the timer 1 and prescaler 12.

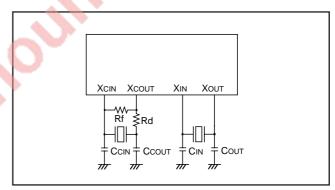


Fig. 32 Ceramic resonator circuit

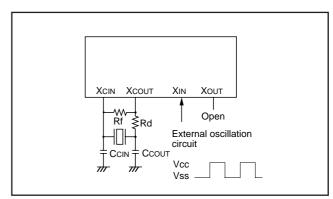


Fig. 33 External clock input circuit

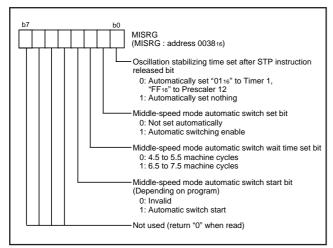


Fig. 34 Structure of MISRG

Middle-speed mode automatic switch set bit

By setting the middle-speed mode automatic switch set bit to "1" while operating in the low-speed mode, XIN oscillation automatically starts and the mode is automatically switched to the middle-speed mode when defecting a rising/falling edge of the SCL or SDA pin. The middle-speed automatic switch wait time set bit can select the switch timing from the low-speed to the middle-speed mode; either 4.5 to 5.5 machine cycles or 6.5 to 7.5 machine cycles in the low-speed mode. Select it according to oscillation start characteristics of used XIN oscillator.

The middle-speed mode automatic switch start bit is used to automatically make to XIN oscillation start and switch to the middle-speed mode by setting this bit to "1" while operating in the low-speed mode.

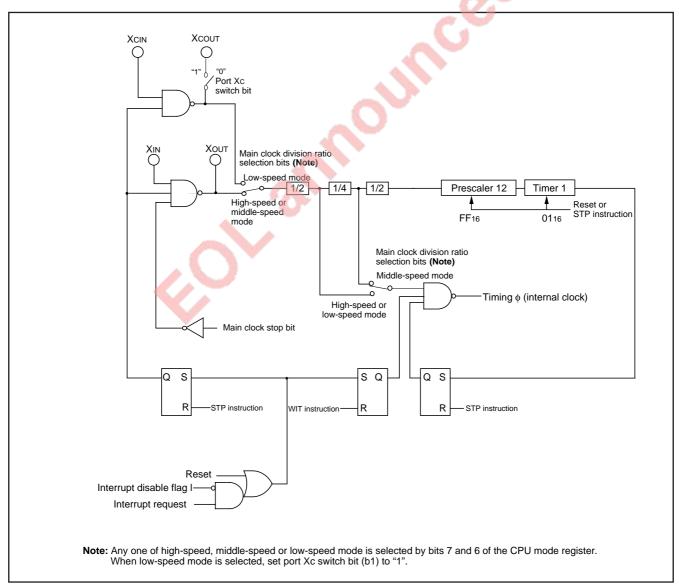


Fig. 35 System clock generating circuit block diagram (Single-chip mode)

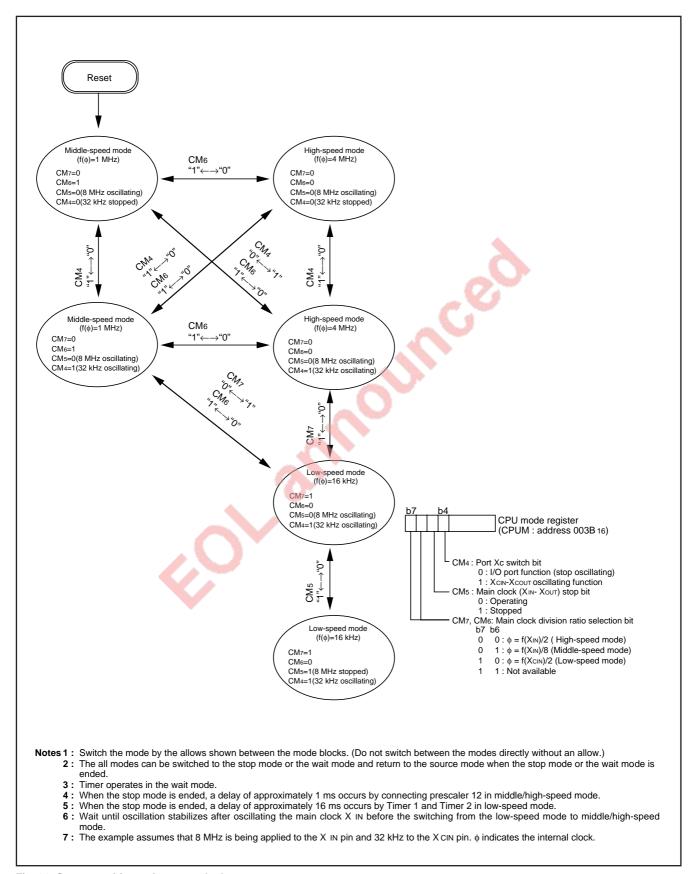


Fig. 36 State transitions of system clock

NOTES ON PROGRAMMING Processor Status Register

The contents of the processor status register (PS) after a reset are undefined, except for the interrupt disable flag (I) which is "1." After a reset, initialize flags which affect program execution. In particular, it is essential to initialize the index X mode (T) and the decimal mode (D) flags because of their effect on calculations.

Interrupts

The contents of the interrupt request bits do not change immediately after they have been written. After writing to an interrupt request register, execute at least one instruction before performing a BBC or BBS instruction.

Decimal Calculations

- To calculate in decimal notation, set the decimal mode flag (D) to "1", then execute an ADC or SBC instruction. After executing an ADC or SBC instruction, execute at least one instruction before executing a SEC, CLC, or CLD instruction.
- In decimal mode, the values of the negative (N), overflow (V), and zero (Z) flags are invalid.

Timers

If a value n (between 0 and 255) is written to a timer latch, the frequency division ratio is 1/(n+1).

Multiplication and Division Instructions

- The index X mode (T) and the decimal mode (D) flags do not affect the MUL and DIV instruction.
- The execution of these instructions does not change the contents of the processor status register.

Ports

The contents of the port direction registers cannot be read. The following cannot be used:

- The data transfer instruction (LDA, etc.)
- The operation instruction when the index X mode flag (T) is "1"
- The addressing mode which uses the value of a direction register as an index
- The bit-test instruction (BBC or BBS, etc.) to a direction register
- The read-modify-write instructions (ROR, CLB, or SEB, etc.) to a direction register.

Serial I/O

In clock synchronous serial I/O, if the receive side is using an external clock and it is to output the \overline{SRDY} signal, set the transmit enable bit, the receive enable bit, and the \overline{SRDY} output enable bit to "1."

Serial I/O continues to output the final bit from the TxD pin after transmission is completed.

When an external clock is used as synchronous clock in serial I/O, write transmission data to the transmit buffer register while the transfer clock is "H."

A-D Converter

The comparator uses capacitive coupling amplifier whose charge will be lost if the clock frequency is too low.

Therefore, make sure that f(XIN) is at least on 500 kHz during an A-D conversion.

Do not execute the STP or WIT instruction during an A-D conversion.

Instruction Execution Time

The instruction execution time is obtained by multiplying the frequency of the internal clock ϕ by the number of cycles needed to execute an instruction.

The number of cycles required to execute an instruction is shown in the list of machine instructions.

The frequency of the internal clock ϕ is half of the XIN frequency in high-speed mode.

DATA REQUIRED FOR MASK ORDERS

The following are necessary when ordering a mask ROM production:

- 1. Mask ROM Order Confirmation Form
- 2.Mark Specification Form
- Data to be written to ROM, in EPROM form (three identical copies)

DATA REQUIRED FOR ROM WRITING ORDERS

The following are necessary when ordering a ROM writing:

- 1.ROM Writing Confirmation Form
- 2.Mark Specification Form
- 3.Data to be written to ROM, in EPROM form (three identical copies)

ROM PROGRAMMING METHOD

The built-in PROM of the blank One Time PROM version and built-in EPROM version can be read or programmed with a general-purpose PROM programmer using a special programming adapter. Set the address of PROM programmer in the user ROM area.

Table 5 Programming adapter

Package	Name of Programming Adapter	
42P2R-A	PCA4738F-42A	
42P4B	PCA4738S-42A	

The PROM of the blank One Time PROM version is not tested or screened in the assembly process and following processes. To ensure proper operation after programming, the procedure shown in Figure 49 is recommended to verify programming.

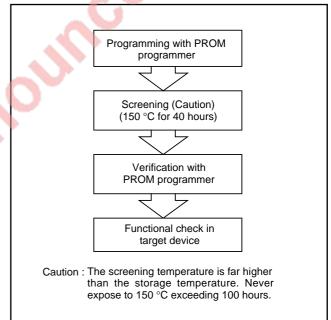


Fig. 37 Programming and testing of One Time PROM version

ELECTRICAL CHARACTERISTICS

Table 6 Absolute maximum ratings

Symbol	Parameter	Conditions	Ratings	Unit
Vcc	Power source voltage		-0.3 to 7.0	V
VI	Input voltage P00–P07, P10–P17, P20, P21, P24–P27, P30–P34, P40–P44, VREF		-0.3 to Vcc +0.3	V
Vı	Input voltage P22, P23	All voltages are based on Voc	-0.3 to 5.8	V
Vı	Input voltage RESET, XIN	All voltages are based on Vss. Output transistors are cut off.	-0.3 to Vcc +0.3	V
Vı	Input voltage CNVss		-0.3 to 13	V
Vo	Output voltage P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44, XOUT		-0.3 to Vcc +0.3	V
Vo	Output voltage P22, P23		-0.3 to 5.8	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature		-20 to 85	°C
Tstg	Storage temperature	(C	-40 to 125	°C

Table 7 Recommended operating conditions (1)

(Vcc = 2.7 to 5.5 V, Ta = -20 to 85 °C, unless otherwise noted)

Cumbal	Parameter	Limits			Unit	
Symbol		Parameter	Min.	Тур.	Max.	Unit
Vcc	Power source voltage (At 8 MHz	2)	4.0	5.0	5.5	V
VCC	Power source voltage (At 4 MHz	2)	2.7	5.0	5.5	V
Vss	Power source voltage			0		V
VREF	A-D convert reference voltage		2.0		Vcc	V
AVss	Analog power source voltage			0		V
VIA	Analog input voltage	AN0-AN4	AVss		Vcc	V
VIH	"H" input voltage	P00-P07, P10-P17, P20-P27, P30-P34, P40-P44	0.8Vcc		Vcc	V
VIH	"H" input voltage	RESET, XIN, CNVss	0.8Vcc		Vcc	V
VIL	"L" input voltage	P00-P07, P10-P17, P20-P27, P30-P34, P40-P44	0		0.2Vcc	V
VIL	"L" input voltage	RESET, CNVss	0		0.2Vcc	V
VIL	"L" input voltage	XIN	0		0.16Vcc	V
Σ IOH(peak)	"H" total peak output current	P00-P07, P10-P17, P30-P34 (Note)			-80	mA
ΣIOH(peak)	"H" total peak output current	P20, P21, P24-P27, P40-P44 (Note)			-80	mA
Σ IOL(peak)	"L" total peak output current	P00-P07, P10-P12, P30-P34 (Note)			80	mA
Σ IOL(peak)	"L" total peak output current	P13-P17 (Note)			80	mA
Σ IOL(peak)	"L" total peak output current	P20-P27,P40-P44 (Note)			80	mA
Σ IOH(avg)	"H" total average output current	P00-P07, P10-P17, P30-P34 (Note)			-40	mA
Σ IOH(avg)	"H" total average output current	P20, P21, P24-P27, P40-P44 (Note)			-40	mA
Σ IOL(avg)	"L" total average output current	P00-P07, P10-P12, P30-P34 (Note)			40	mA
Σ IOL(avg)	"L" total average output current	P13-P17 (Note)			40	mA
Σ IOL(avg)	"L" total average output current	P20-P27,P40-P44 (Note)			40	mA

Note: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an average value measured over 100 ms. The total peak current is the peak value of all the currents.

Table 8 Recommended operating conditions (2)

(Vcc = 2.7 to 5.5 V, T_a = -20 to 85 °C, unless otherwise noted)

Symbol	Parameter		Limits			I Incid
			Min.	Тур.	Max.	Unit
IOH(peak)	"H" peak output current	P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44 (Note 1)			-10	mA
IOL(peak)	"L" peak output current	P00-P07, P10-P12, P20-P27, P30-P34, P40-P44 (Note 1)			10	mA
IOL(peak)	"L" peak output current	P13-P17 (Note 1)			20	mA
IOH(avg)	"H" average output current	P00-P07, P10-P17, P20, P21, P24-P27, P30-P34, P40-P44 (Note 2)			-5	mA
IOL(avg)	"L" average output current	P00-P07, P10-P12, P20-P27, P30-P34, P40-P44 (Note 2)			5	mA
IOL(avg)	"L" peak output current	P13-P17 (Note 2)			15	mA
f(XIN)	Internal clock oscillation frequency (Vcc = 4.0 to 5.5V) (Note 3)				8	MHz
f(XIN)	Internal clock oscillation frequency (Vcc = 2.7 to 5.5V) (Note 3)				4	kHz

Notes 1: The peak output current is the peak current flowing in each port.

2: The average output current IOL(avg), IOH(avg) are average value measured over 100 ms.

3: When the oscillation frequency has a duty cycle of 50%.

Table 9 Electrical characteristics

(Vcc = 2.7 to 5.5 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted)

	_		Limits				
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit	
Vон	"H" output voltage P00–P07, P10–P17, P20, P21,	IOH = -10 mA VCC = 4.0-5.5 V	Vcc-2.0			V	
	P24–P27, P30–P34, P40–P44 (Note)	IOH = -1.0 mA VCC = 2.7-5.5 V	Vcc-1.0			V	
Vol	"L" output voltage P00–P07, P10–P12, P20–P27	IOL = 10 mA VCC = 4.0-5.5 V			2.0	V	
VOL	P30-P34, P40-P44	IOL = 1.0 mA VCC = 2.7-5.5 V			1.0	V	
Vol	"L" output voltage P13–P17	IOL = 20 mA VCC = 4.0-5.5 V			2.0	V	
VOL		IOL = 10 mA VCC = 2.7-5.5 V			1.0	V	
VT+-VT-	Hysteresis CNTR ₀ , CNTR ₁ , INT ₀ –INT ₃		2	0.4		V	
VT+-VT-	Hysteresis RxD, Sclk			0.5		V	
VT+-VT-	Hysteresis RESET		3/_ 4	0.5		V	
Іін	"H" input current P00–P07, P10–P17, P20, P21, P24–P27, P30–P34, P40–P44	VI = VCC	C		5.0	μΑ	
IIн	"H" input current RESET, CNVss	VI = VCC			5.0	μΑ	
IIн	"H" input current XIN	VI = VCC		4		μΑ	
lıL	"L" input current P00-P07, P10-P17, P20-P27 P30-P34, P40-P44	VI = VSS			-5.0	μА	
liL	"L" input current RESET, CNVss	VI = VSS			-5.0	μΑ	
IIL	"L" input current XIN	VI = VSS		-4		μΑ	
VRAM	RAM hold voltage	When clock stopped	2.0		5.5	V	

Note: P25 is measured when the P25/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

Table 10 Electrical characteristics (Vcc = 2.7 to 5.5 V, Vss = 0 V, T_a = -20 to 85 °C, unless otherwise noted)

O made al	Parameter	Test conditions	Limits			11.5
Symbol			Min.	Тур.	Max.	Unit
	Power source current	High-speed mode f(Xin) = 8 MHz f(Xcin) = 32.768 kHz Output transistors "off"		6.8	13	mA
		High-speed mode f(Xin) = 8 MHz (in WIT state) f(XCIN) = 32.768 kHz Output transistors "off"		1.6		mA
		Low-speed mode f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"		60	200	μА
		Low-speed mode f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off"		20	40	μΑ
Icc		Low-speed mode (Vcc = 3 V) f(XIN) = stopped f(XCIN) = 32.768 kHz Output transistors "off"	C	20	55	μА
		Low-speed mode (VCC = 3 V) f(XIN) = stopped f(XCIN) = 32.768 kHz (in WIT state) Output transistors "off"		5.0	10.0	μА
		Middle-speed mode f(XIN) = 8 MHz f(XCIN) = stopped Output transistors "off"		4.0	7.0	mA
		Middle-speed mode f(XIN) = 8 MHz (in WIT state) f(XCIN) = stopped Output transistors "off"		1.5		mA
		Increment when A-D conversion is executed f(XIN) = 8 MHz		800		μА
		All oscillation stopped Ta = 25 °C		0.1	1.0	μА
		(in STP state) Output transistors "off" Ta = 85 °C			10	μА

Table 11 A-D converter characteristics

(Vcc = 2.7 to 5.5 V, Vss = AVss = 0 V, Ta = -20 to 85 °C, f(XIN) = 8 MHz, unless otherwise noted)

Coursells all	Double to the second se	Took oondiking		l lait		
Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
_	Resolution				10	bit
_	Absolute accuracy (excluding quantization error)				±4	LSB
tconv	Conversion time				61	tc(φ)
RLADDER	Ladder resistor			35		kΩ
IVREF	Reference power source input current	VREF = 5.0 V	50	150	200	μА
II(AD)	A-D port input current			0.5	5.0	μΑ

TIMING REQUIREMENTS

Table 12 Timing requirements (1)

(VCC = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted)

Symbol	Parameter		Limits		
		Min.	Тур.	Max.	Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	External clock input cycle time	125			ns
twh(XIN)	External clock input "H" pulse width	50			ns
twL(XIN)	External clock input "L" pulse width	50			ns
tc(CNTR)	CNTR ₀ , CNTR ₁ input cycle time	200			ns
twn(CNTR)	CNTRo, CNTR1, INTo-INT3 input "H" pulse width	80			ns
twL(CNTR)	CNTRo, CNTR1, INTo-INT3 input "L" pulse width	80			ns
tc(Sclk)	Serial I/O clock input cycle time (Note)	800			ns
twh(Sclk)	Serial I/O clock input "H" pulse width (Note)	370			ns
tWL(SCLK)	Serial I/O clock input "L" pulse width (Note)	370			ns
tsu(RxD-SCLK)	Serial I/O input setup time	220			ns
th(SCLK-RxD)	Serial I/O input hold time	100			ns

Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is "0" (UART).

Table 13 Timing requirements (2)

(Vcc = 2.7 to 4.0 V, Vss = 0 V, T_a = -20 to 85 °C, unless otherwise noted)

Symbol	Parameter	Limits			
Symbol	Falametei	Min.	Тур.	Max.	Unit
tw(RESET)	Reset input "L" pulse width	2			μs
tc(XIN)	External clock input cycle time	250			ns
twh(XIN)	External clock input "H" pulse width	100			ns
tWL(XIN)	External clock input "L" pulse width	100			ns
tc(CNTR)	CNTRo, CNTR1 input cycle time	500			ns
twh(CNTR)	CNTR ₀ , CNTR ₁ , INT ₀ –INT ₃ input "H" pulse width				ns
twL(CNTR)	CNTRo, CNTR1, INTo-INT3 input "L" pulse width				ns
tc(Sclk)	Serial I/O clock input cycle time (Note)				ns
tWH(SCLK)	Serial I/O clock input "H" pulse width (Note)				ns
twL(Sclk)	Serial I/O clock input "L" pulse width (Note)				ns
tsu(RxD-SCLK)	Serial I/O input setup time	400			ns
th(SCLK-RxD)	Serial I/O input hold time	200			ns

Note: When f(XIN) = 8 MHz and bit 6 of address 001A16 is "1" (clock synchronous).

Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is "0" (UART).

Table 14 Switching characteristics 1

(VCC = 4.0 to 5.5 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted)

Cumbal	Parameter	Limit	Unit		
Symbol	Faiametei	Min.	Тур.	Max.	Offic
twh (Sclk)	Serial I/O clock output "H" pulse width	tc(Sclk)/2-30			ns
tWL (SCLK)	Serial I/O clock output "L" pulse width	tc(Sclk)/2-30			ns
td (SCLK-TXD)	Serial I/O output delay time (Note 1)			140	ns
tv (SCLK-TXD)	Serial I/O output valid time (Note 1)	-30			ns
tr (SCLK)	Serial I/O clock output rising time			30	ns
tf (SCLK)	Serial I/O clock output falling time			30	ns
tr (CMOS)	CMOS output rising time (Note 2)		10	30	ns
tf (CMOS)	CMOS output falling time (Note 2)		10	30	ns

Notes 1: For twH(SCLK), twL(SCLK), when the P51/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

2: The Xout pin is excluded.

Table 15 Switching characteristics 2

(VCC = 2.7 to 4.0 V, Vss = 0 V, Ta = -20 to 85 °C, unless otherwise noted)

Comple of	Downwarten.	Limits			Llasia
Symbol	Parameter	Min.	Тур.	Max.	Unit
twh (Sclk)	Serial I/O clock output "H" pulse width	tc(Sclk)/2-50			ns
twl (Sclk)	Serial I/O clock output "L" pulse width	tc(Sclk)/2-50			ns
td (SCLK-TXD)	Serial I/O output delay time (Note 1)			350	ns
tv (SCLK-TXD)	Serial I/O output valid time (Note 1)	-30			ns
tr (SCLK)	Serial I/O clock output rising time			50	ns
tf (SCLK)	Serial I/O clock output falling time			50	ns
tr (CMOS)	CMOS output rising time (Note 2)		20	50	ns
tf (CMOS)	CMOS output falling time (Note 2)		20	50	ns

Notes 1: For twH(SCLK), twL(SCLK), when the P51/TxD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is "0".

2: The Xout pin is excluded.

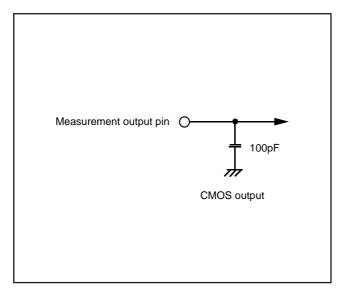


Fig. 38 Circuit for measuring output switching characteristics (1)

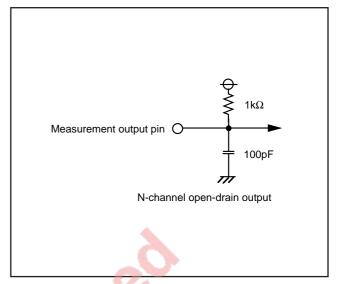


Fig. 39 Circuit for measuring output switching characteristics (2)

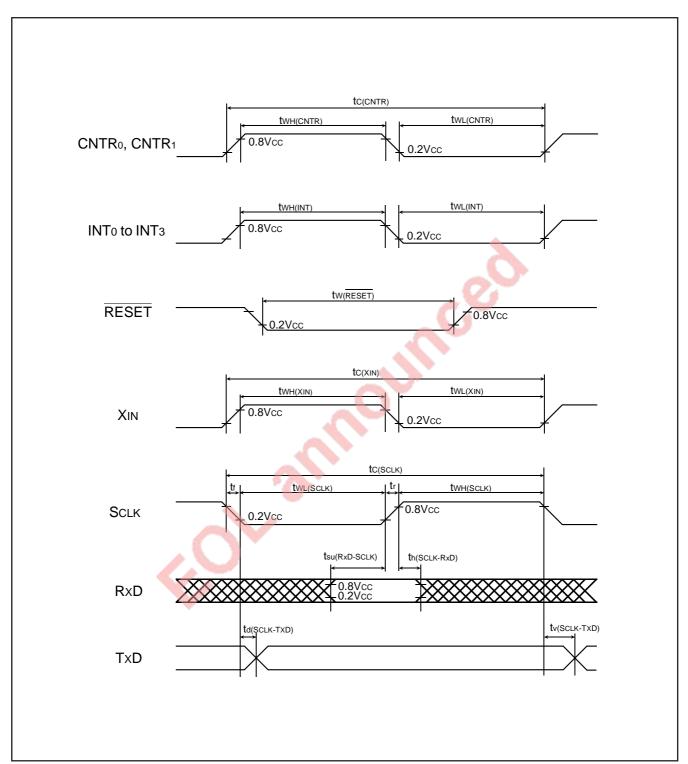


Fig. 40 Timing diagram

MASK ROM CONFIRMATION FORM

GZZ-SH53-11B<86A0>

Mask ROM number

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38503M2-XXXSP/FP MITSUBISHI ELECTRIC

	Date:	
eipt	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked *.

		Company		TEL	Φ Φ	Submitted by	Supervisor
*	Customer	name		()	Janc		
		Date issued	Date:		Issu		

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer	name:	☐ M38503M2-XXXSP	M38503M2-XXXFP

Checksum code for entire EPROM			(hexadecimal notation)

EPROM type (indicate the type used)

	27256		27512
EPROM ac	ldress	EPROM ad	ldress
000016	Product name ASCII code :	000016	Product name ASCII code :
000F16	'M38503M2-'	000F16	'M38503M2-'
001016		001016	
607F16		E07F16	
608016	data	E08016	data
7FFD16	ROM (8K-130) bytes	FFFD16	ROM (8K-130) bytes
7FFE16 7FFF16		FFFE16 FFFF16	

In the address space of the microcomputer, the internal ROM area is from address 608016 to FFFD16. The reset vector is stored in addresses FFFC16 and FFFD16.

- (1) Set the data in the unused area (the shaded area of the diagram) to "FF16".
- (2) The ASCII codes of the product name "M38503M2-" must be entered in addresses 000016 to 000816. And set the data "FF16" in addresses 000916 to 000F16. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address		Address	
000016	'M' = 4D16	000816	'–' = 2D16
000116	'3' = 3316	000916	FF16
000216	'8' = 3816	000A16	FF16
000316	'5' = 3516	000B16	FF16
000416	'0' = 3016	000C16	FF16
000516	'3' = 3316	000D16	FF16
000616	'M' = 4D16	000E16	FF16
000716	'2' = 3216	000F16	FF16

(1/2)

SINGLE-CHIP 8-B	IT CMOS	MICROC	COMPUTER
-----------------	---------	--------	----------

GZZ-SH53-11B<86A0>

Mask ROM number	
-----------------	--

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38503M2-XXXSP/FP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program because ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.

EPROM type	27256	27512
The pseudo-command	*= △\$8000 .BYTE △'M38503M2–'	*= △\$0000 .BYTE △'M38503M2–'

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.

* 2. Mark specification
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form (42P4B for M38503M2-XXXSP, 42P2R-A for M38503M2-XXXFP) and attach it to the mask ROM confirmation form.
* 3. Usage conditions
Please answer the following questions about usage for use in our product inspection :
(1) How will you use the XIN-XOUT oscillator?
☐ Ceramic resonator ☐ Quartz crystal
☐ External clock input ☐ Other ()
At what frequency? $f(XIN) = $
(2) Which function will you use the pins P21/XcIN and P20/XCOUT as P21 and P20, or XCIN and XCOUT?
☐ Ports P21 and P20 function ☐ XCIN and XCOUT function (external resonator)
* 4. Comments

(2/2)

	SINGLE-CHIP	8-BIT	CMOS	MICROC	OMP	JTER
--	-------------	-------	------	--------	-----	------

MASK ROM CONFIRMATION FORM

GZZ-SH11-40A<6YA0>

Mask ROM number

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38503M4-XXXSP/FP MITSUBISHI ELECTRIC

	Date:	
eipt	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked *.

		Company		TEL		O O	Submitted by	Supervisor
*	Customer	name		()	lanc		
		Date issued	Date:		100	Issusign		

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce masks based on this data. We shall assume the responsibility for errors only if the mask ROM data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer n	name:	☐ M38503M4-XXXSP	☐ M38503M4-XXXFP
·			

Checksum code for entire EPROM (hexadecimal notation)

EPROM type (indicate the type used)

EFROM type (malcate the type used)					
	27256		27512		
EPROM ac	ldress	EPROM ad	ldress		
000016	Product name ASCII code :	000016	Product name ASCII code :		
000F16 001016	'M38503M4-'	000F16 001016	'M38503M4-'		
407F16 408016	data	C07F16 C08016	data		
7FFD16 7FFE16 7FFF16	ROM (16K-130) bytes	FFFD16 FFFE16 FFFF16	ROM (16K-130) bytes		

In the address space of the microcomputer, the internal ROM area is from address C08016 to FFFD16. The reset vector is stored in addresses FFFC16 and FFFD16.

- (1) Set the data in the unused area (the shaded area of the diagram) to "FF16".
- (2) The ASCII codes of the product name "M38503M4-" must be entered in addresses 000016 to 000816. And set the data "FF16" in addresses 000916 to 000F16. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address	
000016	'M' = 4D16
000116	'3' = 3316
000216	'8' = 3816
000316	'5' = 3516
000416	'0' = 3016
000516	'3' = 3316
000616	'M' = 4D16
000716	'4' = 3416

Address	
000816	'–' = 2D16
000916	FF16
000A16	FF16
000B16	FF16
000C16	FF16
000D16	FF16
000E16	FF16
000F16	FF16

(1/2)

GZZ-SH11-40A<6YA0>

|--|

740 FAMILY MASK ROM CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38503M4-XXXSP/FP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program because ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.

EPROM type	27256	27512		
The pseudo-command	*=	*=		

Note: If the name of the product written to the EPROMs does not match the name of the mask confirmation form, the ROM will not be processed.

•	using the correct form for the package being ordered. Fill out the appropriate 38503M4-XXXSP, 42P2R-A for M38503M4-XXXFP) and attach it to the mask
* 3. Usage conditions	
Please answer the following questions	about usage for use in our product inspection:
(1) How will you use the XIN-XOUT oscillator	?
☐ Ceramic resonator	☐ Quartz crystal
☐ External clock input	Other ()
At what frequency?	f(XIN) = MHz
(2) Which function will you use the pins P21	/XCIN and P20/XCOUT as P21 and P20, or XCIN and XCOUT?
Ports P21 and P20 function	☐ XCIN and XCOUT function (external resonator)
* 4. Comments	

(2/2)

	SINGLE-CHIP	8-BIT	CMOS	MICROC	OMP	JTER
--	-------------	-------	------	--------	-----	------

ROM PROGRAMMING CONFIRMATION FORM

GZZ-SH11-41A<6YA0>

ROM number

740 FAMILY ROM PROGRAMMING CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38503E4-XXXSP/FP MITSUBISHI ELECTRIC

	Date:	
eipt	Section head signature	Supervisor signature
Receipt		

Note: Please fill in all items marked *

		Company		TEL		ФФ	Submitted by	Supervisor
*	Customer	name		()	Janco Jatur		
		Date issued	Date:		ALL PARTY	Issu		

* 1. Confirmation

Specify the name of the product being ordered and the type of EPROMs submitted.

Three EPROMs are required for each pattern.

If at least two of the three sets of EPROMs submitted contain identical data, we will produce ROM programming based on this data. We shall assume the responsibility for errors only if the programming data on the products we produce differs from this data. Thus, extreme care must be taken to verify the data in the submitted EPROMs.

Microcomputer name:	☐ M38503E4-XXXSP 《	☐ M38503E4-XXXF

Checksum code for entire EPROM (hexadecimal notation)

EPROM type (indicate the type used)

	27256		27512
EPROM ac	ldress	EPROM ad	ldress
000016	Product name ASCII code :	000016	Product name ASCII code :
000F16 001016	'M38503E4-'	000F16 001016	'M38503E4-'
407F16 408016	data	C07F16 C08016	data
7FFD16 7FFE16 7FFF16	ROM (16K-130) bytes	FFFD16 FFFE16 FFFF16	ROM (16K-130) bytes

In the address space of the microcomputer, the internal ROM area is from address C08016 to FFFD16. The reset vector is stored in addresses FFFC16 and FFFD16.

- (1) Set the data in the unused area (the shaded area of the diagram) to "FF16".
- (2) The ASCII codes of the product name "M38503E4-" must be entered in addresses 000016 to 000816. And set the data "FF16" in addresses 000916 to 000F16. The ASCII codes and addresses are listed to the right in hexadecimal notation.

Address	
000016	'M' = 4D16
000116	'3' = 3316
000216	'8' = 3816
000316	'5' = 3516
000416	'0' = 3016
000516	'3' = 3316
000616	'E' = 4516
000716	'4' = 3416

Address	
000816	'–' = 2D16
000916	FF16
000A16	FF16
000B16	FF16
000C16	FF16
000D16	FF16
000E16	FF16
000F16	FF16

(1/2)

SINGLE-CHIP 8-BIT C	MOS	MICRO	COMP	ひした
---------------------	-----	-------	------	-----

GZZ-	SH1	1_/	11Δ	-61	/Δ ∩ ~
GZZ-	STI		+ 1 /-	(<0)	/AU>

740 FAMILY ROM PROGRAMMING CONFIRMATION FORM SINGLE-CHIP MICROCOMPUTER M38503E4-XXXSP/FP MITSUBISHI ELECTRIC

We recommend the use of the following pseudo-command to set the start address of the assembler source program because ASCII codes of the product name are written to addresses 000016 to 000816 of EPROM.

EPROM type	27256	27512
The pseudo-command	*= △\$8000 .BYTE △'M38503E4–'	*= △\$0000 .BYTE △'M38503E4–'

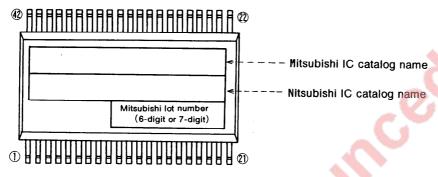
Note: If the name of the product written to the EPROMs does not match the name of the ROM programming confirmation form, the ROM will not be processed.

* 2. Mark specification

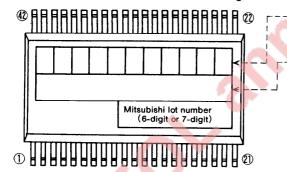
Mark specification must be submitted using the correct form for the package being ordered. Fill out the appropriate mark specification form; 42P2R-A for the M38503E4-XXXFP, the shrink DIP package Mark Specification Form (only for built-in One Time PROM microcomputer) for the M38503E4-XXXSP; and attach it to the ROM programming confirmation form.

# 3. Usage conditions Please answer the following questions a	about usage for use in our product inspection :
(1) How will you use the XIN-XOUT oscillator	?
☐ Ceramic resonator	☐ Quartz crystal
☐ External clock input	Other ()
At what frequency?	f(XIN) = MHz
(2) Which function will you use the pins P21/	XCIN and P20/XCOUT as P21 and P20, or XCIN and XCOUT?
☐ Ports P21 and P20 function	☐ XCIN and XCOUT function (external resonator)
* 4. Comments	

(2/2)


MARK SPECIFICATION FORM

42P2R-A (42-PIN SHRINK SOP) MARK SPECIFICATION FORM

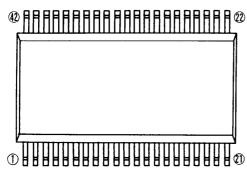

Mitsubishi ICcatalog name					
---------------------------	--	--	--	--	--

Please choose one of the marking types below (A, B, C), and enter the Mitsubishi catalog name and the special mark (if needed).

A. Standard Mitsubishi Mark

B. Customer's Parts Number + Mitsubishi catalog name

- customer's Parts Number


lote: The fonts and size of characters are standard Mitsubishi type.

Mitsubishi IC catalog name

Note1: The mark field should be written right aligned.

- 2: The fonts and size of characters are standard Mitsubishi type.
- 3: Customer's Parts Number can be up to 11 characters: Only 0~9, A~Z, +, -, /, (,), &, ©, (periods), , (commas) are usable.

C. Special Mark Required

Note1: If the Special Mark is to be printed, indicate the desired layout of the mark in the left figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and Mask ROM number (3-digit) are always marked.

2: If the customer's trade mark logo must be used in the Special Mark, check the box below. Please submit a clean original of the logo. For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

d

3: The standard Mitsubishi font is used for all characters except for a logo.

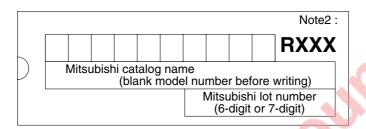
42P4B (42-PIN SHRINK DIP) MARK SPECIFICATION FORM

Mitsubishi IC catalog name
Please choose one of the marking types below (A, B, C), and enter the Mitsubishi IC catalog name and the special mark (if needed).
A. Standard Mitsubishi Mark
«Եսսսսսսսսսսսսսսան»
Mitsubishi lot number (6-digit or 7-digit)
B. Customer's Parts Number + Mitsubishi Catalog Name
Customer's parts number Note: The fonts and size of characters are standard Mitsubishi type. Mitsubishi IC catalog name
Mitsubishi lot number (6-digit or 7-digit)
Note1 : The mark field should be written right aligned. 2 : The fonts and size of characters are standard Mitsubishi type.
3 : Customer's parts number can be up to 15 characters :
Only $0\sim 9$, $A\sim Z$, $+$, $-$, $/$, $($, $)$, &, \bigcirc , . (period), and , (comma) are usable.
C. Special Mark Required
<u> </u>

- Note1: If the special mark is to be printed, indicate the desired layout of the mark in the upper figure. The layout will be duplicated as close as possible. Mitsubishi lot number (6-digit or 7-digit) and mask ROM number (3-digit) are always marked.
 - 2: If the customer's trade mark logo must be used in the special mark, check the box below. Please submit a clean original of the logo.

For the new special character fonts a clean font original (ideally logo drawing) must be submitted.

	Special logo required
The standard Mitsubishi font is used for all characters except for a logo.	


SHRINK DIP MARK SPECIFICATION FORM for One Time PROM version microcomputers

Enter the catalog number of the microcomputer for which this mark specification is intended. (If you do not know the ROM code number, enter XXX in its place.)

he catalog number of the microcomputer	M

A. Standard Mitsubishi Mark

Customer specified part number will be printed together with the ROM code number on the top line. Enter the desired part number left aligned in the box below. (up to 10 characters)

Note1: The following characters can be used in the part number:

Uppercase alphabet, numbers, ampersand, hyphen, period, comma, +, /, (,), ©

(© will be printed at 1.5 x character width)

2: XXX is the ROM code number.

B. Special Mark Required

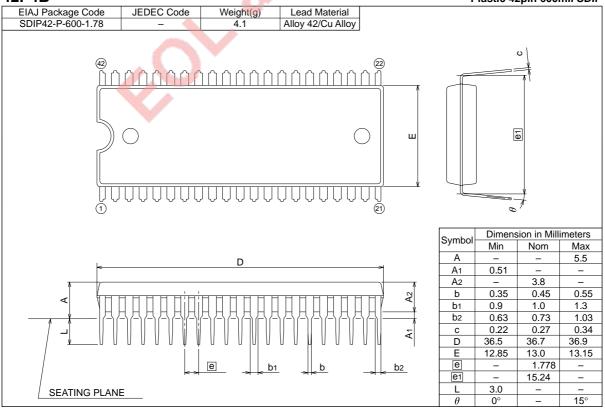
If you desire anything other than the standard Mitsubishi mark, it will be treated as a special mark.

Special marks will take longer to produce and should be avoided if possible.

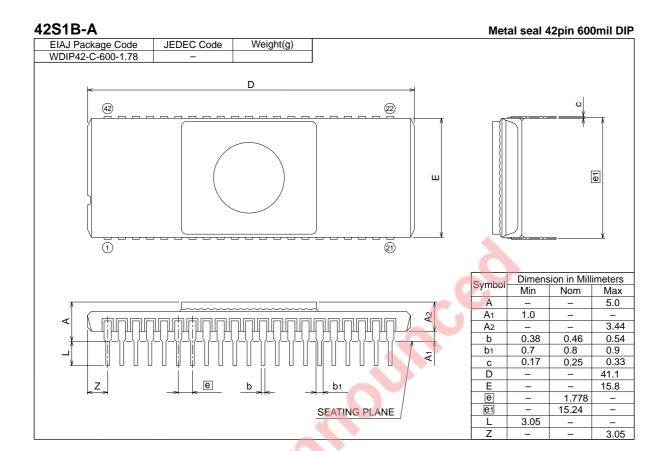
If a special mark is to be printed, indicate the desired layout of the mark in the figure below. The layout will be duplicated as closely as possible.


Note1: If the customer's trademark logo must be used in the Special Mark, please submit a clean original logo.

Note that special marks require extra cost and time to produce.



PACKAGE OUTLINE



42P4B Plastic 42pin 600mil SDIP

Renesas Technology Corp.

Nippon Bldg.,6-2,Otemachi 2-chome,Chiyoda-ku,Tokyo,100-0004 Japan

• Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.

- These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.

 Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts or circuit application examples contained in these materials.

 All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi

- Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for the latest product information before purchasing a product listed herein.

 Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.

 The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.

 If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the exposure of additional control of the cont
- approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein

REVISION DESCRIPTION LIST

3850 GROUP DATA SHEET

Rev.	Revision Description	Rev.
No.	Revision Description	date
1.0	First Edition	980817
	EOL announced	