Single N-channel MOSFET
 ELM2N7002K-S

General description

ELM2N7002K, a N -channel enhancement mode field effect transistor, is produced by using high cell density, DMOS technology; it is designed to minimize on-state resistance while providing rugged, reliable, and fast switching performance. It can be used in most applications requiring up to 200 mA DC and deliver pulsed current up to 800 mA . This product is particularly suitable for low voltage, low current applications, such as small servo motor controls, power MOSFET gate drivers, and other switching applications.

Features

- Vds $=60 \mathrm{~V}$
- Id $= \pm 200 \mathrm{~mA}$
- Rds(on) < 5.0Ω (Vgs=10V)
- Rds(on) < 5.0Ω (Vgs=5V)
- Rds(on) < 5.3Ω (Vgs=4.5V)
- ESD Rating : 2000V HBM

Maximum absolute ratings

Parameter		Symbol	Limit	Unit
Drain-source voltage		Vds	60	V
Drain-gate voltage (Rgs=1.0M Ω)		Vdgr	60	V
Gate-source voltage		Vgs	± 20	V
Continuous drain current	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	Id	± 200	mA
Pulsed drain current		Idm	± 800	mA
Repetitive avalanche energy ($\mathrm{L}=30 \mathrm{mH} \mathrm{)}$		Eav	9.6	mJ
Power dissipation	$\mathrm{Ta}=25^{\circ} \mathrm{C}$	Pd	200	mW
	Ta> $25^{\circ} \mathrm{C}$		1.6	$\mathrm{mW} /{ }^{\circ} \mathrm{C}$
Junction and storage temperature range		Tj, Tstg	-55 to 150	${ }^{\circ} \mathrm{C}$

Thermal characteristics

Parameter		Symbol	Value	Unit
Maximum junction-to-ambient	Steady-state	$\mathrm{R} \theta \mathrm{ja}$	625	${ }^{\circ} \mathrm{C} / \mathrm{W}$

\square Pin configuration

SOT-23 (TOP VIEW)

Pin No.	Pin name
1	GATE
2	SOURCE
3	DRAIN

Single N-channel MOSFET
 ELM2N7002K-S

Electrical characteristics
$\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Condition	Min.	Typ.	Max.	Unit
STATIC PARAMETERS						
Drain-source breakdown voltage	BVdss	$\mathrm{Id}=10 \mu \mathrm{~A}, \mathrm{Vgs}=0 \mathrm{~V}$	60			V
Zero gate voltage drain current	Idss	Vds=48V, Vgs $=0 \mathrm{~V}$			10	$\mu \mathrm{A}$
Gate-body leakage current	Igss	$\mathrm{Vgs}= \pm 20 \mathrm{~V}$			± 5	$\mu \mathrm{A}$
Gate threshold voltage *	Vgs(th)	Vds=Vgs, Id=250 $\mu \mathrm{A}$	1.0		2.0	V
On state drain current	Id(on)	$\mathrm{Vgs}=10 \mathrm{~V}, \mathrm{Vds} \geq 2 \mathrm{~V}$	500			mA
Static drain-source on-resistance *	Rds(on)	$\mathrm{Vgs}=10 \mathrm{~V}, \mathrm{Id}=0.5 \mathrm{~A}$		2.3	5.0	Ω
		Vgs=5V, Id=50mA		2.8	5.0	
		$\mathrm{Vgs}=4.5 \mathrm{~V}, \mathrm{Id}=75 \mathrm{~mA}$		3.3	5.3	
Drain-source on-voltage *	Vds(on)	Vgs=10V, Id=0.5A			3.750	V
		$\mathrm{Vgs}=5 \mathrm{~V}, \mathrm{Id}=50 \mathrm{~mA}$			0.375	
Forward transconductance	Gfs	Vds $\geq 2 \mathrm{~V}, \mathrm{Id}=200 \mathrm{~mA}$ *	80			S
DYNAMIC PARAMETERS						
Input capacitance	Ciss	$\mathrm{Vgs}=0 \mathrm{~V}, \mathrm{Vds}=25 \mathrm{~V}, \mathrm{f}=1 \mathrm{MHz}$		50		pF
Output capacitance	Coss			25		pF
Reverse transfer capacitance	Crss			5		pF
SWITCHING PARAMETERS						
Turn-on delay time	td(on)	$\mathrm{Vgs}=10 \mathrm{~V}, \mathrm{Vds}=50 \mathrm{~V}$			20	ns
Turn-off delay time	td(off)	$\mathrm{Rl}=250 \Omega$, Rgen $=50 \Omega *$			40	ns

*:1.The Power Dissipation of the package may result in a continuous drain current.
2.Pulse Width ≤ 300 us, Duty Cycle $\leq 2 \%$.

Single N-channel MOSFET
 ELM2N7002K-S

Typical electrical and thermal characteristics

Fig. 1 Static drain-source on-state resistance vs. drain current (I)

Fig. 3 Static drain-source on-state resistance vs. gate-source voltage

Fig. 5 Reverse drain current
vs. source-drain voltage (I)

Fig. 2 Static drain-source on-state resistance vs. drain current (II)

Fig. 4 Static drain-source on-state resistance vs. channel temperature

Fig. 6 Reverse drain current
vs. source-drain voltage (II)

Single N-channel MOSFET
 ELM2N7002K-S

Fig. 7 Forward transfer admittance vs. drain current

Fig. 9 Swïching characteristics
(See Figures 13 and 14 for the measurement circuit and resultant wavelorms)

Fig. 8 Typical capacitance
vs. drain-source voltage

