

Six Degrees of Freedom Inertial Sensor

Preliminary Technical Data

ADIS16385

FEATURES

Triaxis digital gyroscope with digital range scaling ±75°/sec, ±150°/sec, ±300°/sec settings

Orthogonal alignment: <0.05°

In-run bias stability: 6°/hour (yaw), 25°/hour (pitch/roll)

Triaxis digital accelerometer: ±5 q

Autonomous operation and data collection

No external configuration commands required

Startup time: 180 ms Sleep mode recovery: 4 ms

Factory-calibrated sensitivity, bias, and axial alignment

Calibration temperature range: -40°C to +85°C Single serial peripheral interface, SPI-compatible

Wide bandwidth: 330 Hz Embedded temperature sensor

Programmable operation and control

Automatic and manual bias correction controls Digital filters: Bartlett FIR. average/decimation

Digital I/O: data-ready, alarm indicator, general-purpose

Alarms for condition monitoring Sleep mode for power management DAC output voltage

Enable external sample clock input: up to 1.2 kHz

Single-supply operation: 4.85 V to 5.15 V

2000 g shock survivability

Operating temperature range: -40°C to +105°C

APPLICATIONS

Platform stabilization and control Navigation Robotics

FUNCTIONAL BLOCK DIAGRAM

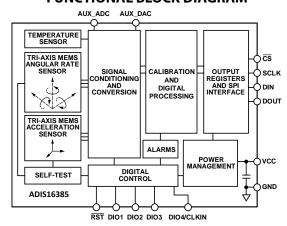


Figure 1.

GENERAL DESCRIPTION

The ADIS16385 *i*Sensor* devices are complete inertial systems that include a triaxis gyroscope and triaxis accelerometer. Each sensor in the ADIS16385 combines industry-leading *i*MEMS* technology with signal conditioning that optimizes dynamic performance. The factory calibration characterizes each sensor for sensitivity, bias, alignment, and linear acceleration (gyro bias). As a result, each sensor has its own dynamic compensation formulas that provide accurate sensor measurements. The yaw-axis gyroscope offers a 4× improvement in noise and in-run bias stability for applications that have greater requirements on one axis.

The ADIS16385 provide a simple, cost-effective method for integrating accurate, multiaxis inertial sensing into industrial systems, especially when compared with the complexity and investment associated with discrete designs. All necessary motion testing and calibration are part of the production process at the factory, greatly reducing system integration time. Tight orthogonal alignment simplifies inertial frame alignment in navigation systems. The SPI and register structure provide a simple interface for data collection and configuration control.

The ADIS16385 has a compatible pinout for systems that currently use ADIS1635x, ADIS1636x, and ADIS1640x IMU products. It comes in a module that is approximately $36 \text{ mm} \times 47 \text{ mm} \times 39 \text{ mm}$ and has a standard connector interface.

Preliminary Technical Data

ADIS16385

TABLE OF CONTENTS

reatures	1
Applications	1
Functional Block Diagram	1
General Description	1
Specifications	3
Timing Specifications	5
Timing Diagrams	5
Absolute Maximum Ratings	6
ESD Caution	6
Pin Configuration and Function Descriptions	7
Typical Performance Characteristics	8
Basic Operation	9
Reading Sensor Data	9
Output Data Registers	10
Device Configuration	10
User Registers	11
System Functions	12
Global Commands	12

rower management	12
Product Identification	12
Memory Management	12
Self-Test Function	13
Status	13
Input/Output Configuration	14
Data-Ready I/O Indicator	14
General-Purpose I/O	14
Auxiliary DAC	14
Digital Processing Configuration	15
Calibration	16
Alarms	17
Applications Information	18
Prototype Interface Board	18
Installation Tips	18
Outline Dimensions	19
Ordering Guide	19

SPECIFICATIONS

 T_A = 25°C, VCC = 5.0 V, angular rate = 0°/sec, dynamic range = ± 300 °/sec ± 1 g, unless otherwise noted.

Table 1.

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
GYROSCOPES					
Dynamic Range		±300	±350		°/sec
Initial Sensitivity	Dynamic range = ±300°/sec	0.012375	0.0125	0.12625	°/sec/LSB
	Dynamic range = ±150°/sec		0.00625		°/sec/LSB
	Dynamic range = ±75°/sec		0.003125		°/sec/LSB
Sensitivity Temperature Coefficient	$-40^{\circ}\text{C} \le \text{T}_{A} \le +85^{\circ}\text{C}$		±40		ppm/°C
Misalignment	Reference to z-axis accelerometer		±0.05		Degrees
3	Axis-to-frame (package)		±0.5		Degrees
Nonlinearity	Best fit straight line		±0.1		% of FS
Initial Bias Error	±1 σ		±3		°/sec
In-Run Bias Stability	1σ, +25°C, Z-axis		<0.002		°/sec
in numbias stability	1σ, +25°C, X-axis, Y-axis		0.007		°/sec
Angular Random Walk	Z-axis, 1 σ, +25°C		<1.0		°/√hr
Aligular Natidolli Walk	X-axis, Y-axis, 1 σ, +25°C		1.9		°/√hr
Dia a Taman ayatı ya Ca afficiant					-
Bias Temperature Coefficient	Z-axis, -40° C $\leq T_A \leq +85^{\circ}$ C		<0.01		°/sec/°C °/sec/°C
	X, Y -axes, $-40^{\circ}C \le T_A \le +85^{\circ}C$		±0.01		,
Linear Acceleration Effect on Bias	Z-axis, 1 σ (MSC_CTRL[7] = 1)		<0.05		°/sec/g
	X, Y-axes, 1 σ (MSC_CTRL[7] = 1)		0.1		°/sec/g
Bias Voltage Sensitivity	Z-axis, $VCC = +4.85 \text{ V to } +5.15 \text{ V}$		TBD		°/sec/V
	X, Y-axes, $VCC = +4.85 V$ to $+5.15V$		±0.3		°/sec/V
Output Noise	Z-axis, ±300°/sec range, no filtering		0.25		°/sec rms
	X, Y-axes, ±300°/sec range, no filtering		8.0		°/sec rms
Rate Noise Density	Z-axis, $f = 25 \text{ Hz}$, $\pm 300^{\circ}$ /sec range		0.013		°/sec/√Hz rms
	X, Y-axes, $f = 25 \text{ Hz}$, $\pm 300^{\circ}$ /sec range		0.044		°/sec/√Hz rms
3 dB Bandwidth			330		Hz
Sensor Resonant Frequency			14.5		kHz
Self-Test Change in Output Response	±300°/sec range setting	±696	±1400	±2449	LSB
ACCELEROMETERS	Each axis				
Dynamic Range		±5			g
Initial Sensitivity		0.2475	0.25	0.2525	mg/LSB
Sensitivity Temperature Coefficient	$-40^{\circ}\text{C} \le \text{T}_{A} \le +85^{\circ}\text{C}$		±50		ppm/°C
Misalignment	Axis-to-axis, $\Delta = 90^{\circ}$ ideal		0.2		Degrees
-	Axis-to-frame (package)		±0.5		Degrees
Nonlinearity	Best fit straight line		0.1		% of FS
Initial Bias Error	±1 σ		±8		m <i>g</i>
In-Run Bias Stability	1 σ		40		μ <i>g</i>
Velocity Random Walk	1 σ		0.2		m/sec/√hr
Bias Temperature Coefficient	-40°C ≤ T _A ≤ +85°C		±0.3		mg/°C
Bias Voltage Sensitivity	VCC = +4.85 V to +5.15V		2.5		mg/V
Output Noise			2.5 9		_
-	No filtering No filtering		-		mg rms
Noise Density	No filtering		0.5		m <i>g</i> /√Hz rms
3 dB Bandwidth			330		Hz
Sensor Resonant Frequency			5.5	4.54	kHz
Self-Test Change in Output Response	X-axis and y-axis	59		151	LSB
TEMPERATURE SENSOR					
Scale Factor	Output = $0x0000$ at 25° C ($\pm 5^{\circ}$ C)		0.0678		°C/LSB

Parameter	Test Conditions/Comments	Min	Тур	Max	Unit
ADC INPUT					
Resolution			12		Bits
Integral Nonlinearity			±2		LSB
Differential Nonlinearity			±1		LSB
Offset Error			±4		LSB
Gain Error			±2		LSB
Input Range		0		3.3	V
Input Capacitance	During acquisition		20		pF
DAC OUTPUT	5 kΩ/100 pF to GND				
Resolution			12		Bits
Relative Accuracy	101 LSB ≤ input code ≤ 4095 LSB		±4		LSB
Differential Nonlinearity			±1		LSB
Offset Error			±5		mV
Gain Error			±0.5		%
Output Range		0		3.3	V
Output Impedance			2		Ω
Output Settling Time			10		μs
LOGIC INPUTS ¹					
Input High Voltage, V⊪		2.0			V
Input Low Voltage, V _{IL}				0.8	V
	CS signal to wake up from sleep mode			0.55	V
CS Wake-Up Pulse Width		20			μs
Logic 1 Input Current, I _{IH}	$V_{IH} = 3.3 \text{ V}$		±0.2	±10	μA
Logic 0 Input Current, I _{IL}	$V_{IL} = 0 V$				
All Pins Except RST			40	60	μΑ
RST Pin			1		mA
Input Capacitance, C _{IN}			10		pF
DIGITAL OUTPUTS ¹					12.5
Output High Voltage, V _{OH}	I _{SOURCE} = 1.6 mA	2.4			V
Output Low Voltage, Vol	I _{SINK} = 1.6 mA			0.4	V
FLASH MEMORY	Endurance ²	10,000			Cycles
Data Retention ³	T _J = 85°C	20			Years
FUNCTIONAL TIMES ⁴	Time until data is available				10000
Power-On Startup Time	Time and a dramase		TBD		ms
Reset Recovery Time			TBD		ms
Sleep Mode Recovery Time			TBD		ms
Flash Memory Test Time			TBD		ms
Automatic Self-Test Time	SMPL_PRD = 0x0001		TBD		ms
CONVERSION RATE	SMPL_PRD = 0x0001		1024		SPS
Clock Accuracy	5 L_1 11D = 0X0001		1021	±3	%
Sync Input Clock		0.85		1.2	kHz
POWER SUPPLY	Operating voltage range, VCC	4.85	5.0	5.15	V
Power Supply Current	operating voltage range, vec	7.05	TBD	5.15	mA
Tower supply current	Sleep mode		TBD		μA

¹ The digital I/O signals are driven by an internal 3.3 V supply, and the inputs are 5 V tolerant.

² Endurance is qualified as per JEDEC Standard 22, Method A117, and measured at -40°C, +25°C, +85°C, and +125°C.

³ The data retention lifetime equivalent is at a junction temperature (T_J) of 85°C as per JEDEC Standard 22, Method A117. Data retention lifetime decreases with junction

⁴ These times do not include thermal settling and internal filter response times (330 Hz bandwidth), which may affect overall accuracy.

⁵ The sync input clock functions below the specified minimum value, at reduced performance levels.

TIMING SPECIFICATIONS

 $T_A = 25$ °C, VCC = 5 V, unless otherwise noted.

Table 2

		N	Iormal M	ode		Burst Rea	ıd	
Parameter	Description	Min ¹	Тур	Max	Min ¹	Тур	Max	Unit
f _{SCLK}	Serial clock	0.01		2.0	0.01		1.0	MHz
t _{STALL}	Stall period between data	9			1/f _{SCLK}			μs
t readrate	Read rate	40						μs
t≅	Chip select to clock edge	48.8			48.8			ns
t _{DAV}	DOUT valid after SCLK edge			100			100	ns
t _{DSU}	DIN setup time before SCLK rising edge	24.4			24.4			ns
t _{DHD}	DIN hold time after SCLK rising edge	48.8			48.8			ns
tsclkr, tsclkf	SCLK rise/fall times		5	12.5		5	12.5	ns
t _{DR} , t _{DF}	DOUT rise/fall times		5	12.5		5	12.5	ns
t _{SFS}	CS high after SCLK edge	5			5			ns
t_1	Input sync positive pulse width	5			5			μs
t _x	Input sync low time	100			100			μs
t_2	Input sync to data ready output		600			600		μs
t ₃	Input sync period	833			833			μs

¹ Guaranteed by design and characterization, but not tested in production.

TIMING DIAGRAMS

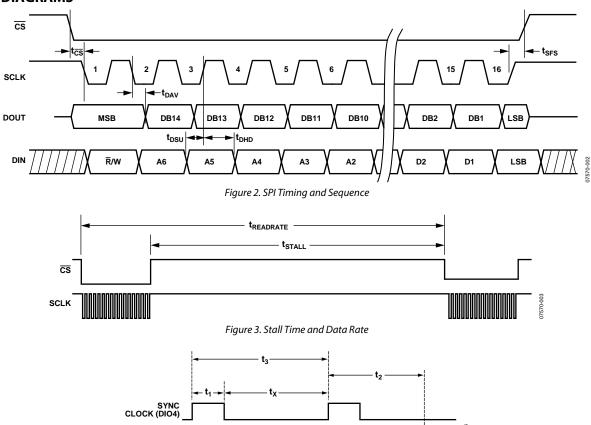


Figure 4. Input Clock Timing Diagram

ABSOLUTE MAXIMUM RATINGS

Table 3.

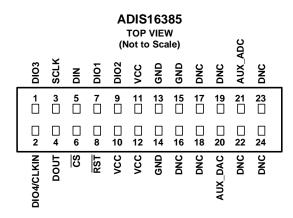
Parameter	Rating
Acceleration	
Any Axis, Unpowered	2000 g
Any Axis, Powered	2000 g
VCC to GND	−0.3 V to +7.0 V
Digital Input Voltage to GND	–0.3 V to +5.3 V
Digital Output Voltage to GND	-0.3 V to VCC + 0.3 V
Analog Input to GND	−0.3 V to +3.6 V
Operating Temperature Range	−40°C to +105°C
Storage Temperature Range	-65°C to +125°C ^{1,2}

¹ Extended exposure to temperatures outside the specified temperature range of -40° C to $+105^{\circ}$ C can adversely affect the accuracy of the factory calibration. For best accuracy, store the parts within the specified operating range of -40° C to $+105^{\circ}$ C.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Table 4. Package Characteristics

Package Type	θ _{JA}	θις	Device Weight
24-Lead Module (ML-24-5)			


ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietarry protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

² Although the device is capable of withstanding short-term exposure to 150°C, long-term exposure threatens internal mechanical integrity.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

NOTES

- 1. THIS REPRESENTATION DISPLAYS THE TOP VIEW PINOUT FOR THE MATING SOCKET CONNECTOR.
- 2. THE ACTUAL CONNECTOR PINS ARE NOT VISIBLE FROM THE TOP VIEW.
- 3. MATING CONNECTOR: SAMTEC CLM-112-02 OR EQUIVALENT.
- 4. DNC = DO NOT CONNECT.

Figure 5. Pin Configuration

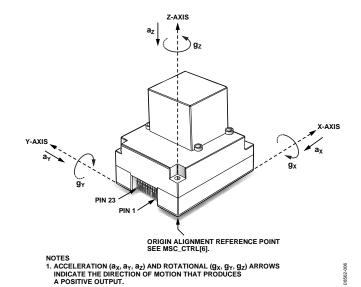


Figure 6. Axial Orientation

Table 5. Pin Function Descriptions

Pin No.	Mnemonic	Type ¹	Description
1	DIO3	I/O	Configurable Digital Input/Output.
2	DIO4/CLKIN	I/O	Configurable Digital Input/Output or Sync Clock Input.
3	SCLK	1	SPI Serial Clock.
4	DOUT	0	SPI Data Output. Clocks output on SCLK falling edge.
5	DIN	1	SPI Data Input. Clocks input on SCLK rising edge.
6	CS	1	SPI Chip Select.
7, 9	DIO1, DIO2	I/O	Configurable Digital Input/Output.
8	RST	1	Reset.
10, 11, 12	VCC	S	Power Supply.
13, 14, 15	GND	S	Power Ground.
16, 17, 18, 19, 22, 23, 24	DNC	N/A	Do Not Connect.
20	AUX_DAC	0	Auxiliary, 12-Bit DAC Output.
21	AUX_ADC	1	Auxiliary, 12-Bit ADC Input.

¹ I/O is input/output, I is input, O is output, S is supply, and N/A is not applicable.

TYPICAL PERFORMANCE CHARACTERISTICS

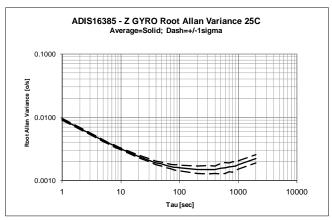


Figure 7. Gyroscope Allan Variance, Z Axis

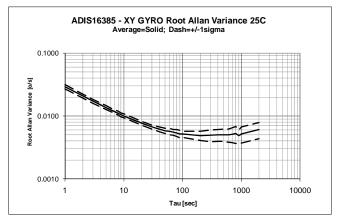


Figure 8. Gyroscope Allan Variance, X-Axis/Y-Axis

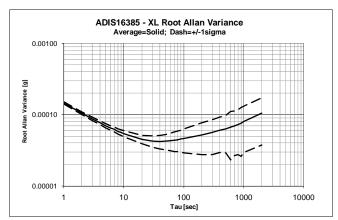


Figure 9. Accelerometer Allan Variance

BASIC OPERATION

The ADIS16385 is an autonomous system that requires no user initialization. When it has a valid power supply, it initializes itself and starts sampling, processing, and loading sensor data into the output registers at a sample rate of 1024 SPS. DIO1 pulses high after each sample cycle concludes. The SPI interface enables simple integration with many embedded processor platforms, as shown in Figure 10 (electrical connection) and Table 6 (pin descriptions).

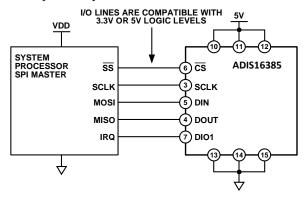
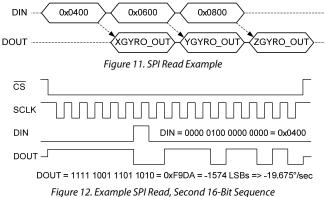


Figure 10. Electrical Connection Diagram

Table 6. Generic Master Processor Pin Names and Functions

Pin Name	Function
SS	Slave select
SCLK	Serial clock
MOSI	Master output, slave input
MISO	Master input, slave output
IRQ	Interrupt request

The ADIS16385 SPI interface supports full duplex serial communication (simultaneous transmit and receive) and uses the bit sequence shown in Figure 14. Table 7 provides a list of the most common settings that require attention to initialize a processor's serial port for the ADIS16385 SPI interface.


Table 7. Generic Master Processor SPI Settings

	8
Processor Setting	Description
Master	The ADIS16385 operates as a slave
SCLK Rate $\leq 2 \text{ MHz}^1$	Maximum serial clock rate
SPI Mode 3	CPOL = 1 (polarity), CPHA = 1 (phase)
MSB First Mode	Bit sequence
16-Bit Mode	Shift register/data length

¹ For burst read, SCLK rate \leq 1 MHz. For low power mode, SCLK rate \leq 300 kHz.

READING SENSOR DATA

The ADIS16385 provides two different options for acquiring sensor data: single register and burst register. A single register read requires two 16-bit SPI cycles. The first cycle requests the contents of a register using the bit assignments in Figure 14. Bit DC7 to Bit DC0 are don't care for a read, and then the output register contents follow on DOUT during the second sequence. Figure 11 includes three single register reads in succession. In this example, the process starts with DIN = 0x0400 to request the contents of XGYRO OUT, and follows with 0x0600 to request YGYRO OUT, and 0x0800 to request ZGYRO OUT. Full duplex operation enables processors to use the same 16-bit SPI cycle to read data from DOUT while requesting the next set of data on DIN. Figure 12 provides an example of the four SPI signals when reading XGYRO OUT in a repeating pattern.

Burst-Read Function

The burst-read function enables the user to read all output registers using one command on the DIN line and shortens the stall time between each 16-bit segment to 1 SCLK cycle (see Table 2). Figure 13 provides the burst-read sequence of data on each SPI signal. The sequence starts with writing 0x3E00 to DIN, followed by each output register clocking out on DOUT, in the order in which they appear in Table 8.

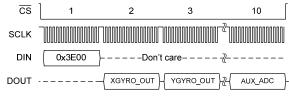


Figure 13. Burst-Read Sequence

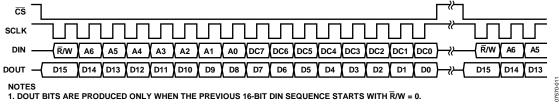


Figure 14. SPI Communication Bit Sequence

ADIS16385

OUTPUT DATA REGISTERS

The output registers in Table 8 provide the most recent sensor data produced by the ADIS16385. All of the inertial sensor outputs use a 16-bit, twos complement, data format. Figure 6 provides arrows that describe the direction of motion, which produces a positive output in each inertial sensor's output data register.

Table 8. Output Data Register Formats

Register	Address	Measurement	Format
XGYRO_OUT ¹	0x04	Gyroscope, x-axis	Table 9
YGYRO_OUT ¹	0x06	Gyroscope, y-axis	Table 9
ZGYRO_OUT ¹	0x08	Gyroscope, z-axis	Table 9
XACCL_OUT	0x0A	Accelerometer, x-axis	Table 10
YACCL_OUT	0x0C	Accelerometer, y-axis	Table 10
ZACCL_OUT	0x0E	Accelerometer, z-axis	Table 10
TEMP_OUT ²	0x10	Internal Temperature	Table 11
AUX_ADC	0x12	Auxiliary ADC	Table 12

 $^{^{1}}$ Assumes that the scaling is set to $\pm 300^{\circ}$ /sec. This factor scales with the range.

Table 9. Rotation Rate, Twos Complement Format

Rotation Rate	Decimal	Hex	Binary
+300°/sec	+24000	0x5DC0	0101 1101 1100 0000
+0.025°/sec	+2	0x0002	0000 0000 0000 0010
+0.0125°/sec	+1	0x0001	0000 0000 0000 0001
0°/sec	0	0x0000	0000 0000 0000 0000
-0.0125°/sec	-1	0xFFFF	1111 1111 1111 1111
-0.025°/sec	-2	0xFFFE	1111 1111 1111 1110
-300°/sec	-24000	0xA240	1010 0010 0100 0000

Table 10. Acceleration, Twos Complement Format

Acceleration	Decimal	Hex	Binary
+5 <i>g</i>	+20000	0x4E20	0100 1110 0010 0000
+0.5 m <i>g</i>	+2	0x0002	0000 0000 0000 0010
+0.25 m <i>g</i>	+1	0x0001	0000 0000 0000 0001
0 <i>g</i>	0	0x0000	0000 0000 0000 0000
–0.25 m <i>g</i>	-1	0xFFFF	1111 1111 1111 1111
–0.5 m <i>g</i>	-2	0xFFFE	1111 1111 1111 1110
–5 <i>g</i>	- 20000	0xB1E0	1011 0001 1110 0000

Table 11. Temperature, Twos Complement Format

Temperature	Decimal	Hex	Binary
+105°C	+1180	0x49C	XXXX 0100 1001 1100
+25.1356°C	+2	0x002	XXXX 0000 0000 0010
+25.0678°C	+1	0x001	XXXX 0000 0000 0001
+25°C	0	0x000	XXXX 0000 0000 0000
+24.9322°C	-1	0xFFF	XXXX 1111 1111 1111
+24. 8644°C	-2	0xFFE	XXXX 1111 1111 1110
–40°C	-959	0xC41	XXXX 1100 0100 0001

Table 12. Analog Input, Offset Binary Format

Input Voltage	Decimal	Hex	Binary
3.3 V	4095	0xFFF	XXXX 1111 1111 1111
1 V	1241	0x4D9	XXXX 0100 1101 1001
1.6116 mV	2	0x002	XXXX 0000 0000 0010
805.9 μV	1	0x001	XXXX 0000 0000 0001
0 V	0	0x000	XXXX 0000 0000 0000

DEVICE CONFIGURATION

The control registers in Table 13 provide users with a variety of configuration options. The SPI provides access to these registers, one byte at a time, using the bit assignments in Figure 14. Each register has 16-bits, where bits [7:0] represent the lower address and Bits[15:8] represent the upper address. Figure 15 provides an example of writing 0x03 to Address 0x36 (SMPL_PRD[15:8]), using DIN = 0xB703. This example reduces the sample rate by a factor of eight (see Table 28).

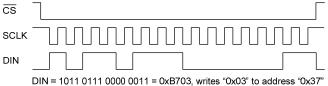


Figure 15. Example SPI Write Sequence

Dual Memory Structure

Writing configuration data to a control register updates its SRAM contents, which are volatile. After optimizing each relevant control register setting in a system, set GLOB[12] = 1 (DIN = 0xBF10) to back these settings up in nonvolatile flash memory. The flash back-up process requires a valid power supply level for the entire 75 ms process time. Table 13 provides a user register memory map that includes a flash back-up column. A yes in this column indicates that a register has a mirror location in flash, and when backed up properly, it automatically restores itself during start-up or after a reset. Figure 16 provides a diagram of the dual-memory structure used to manage operation and store critical user settings.

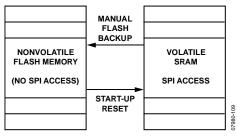


Figure 16. SRAM and Flash Memory Diagram

² This is most useful for monitoring relative changes in the temperature.

USER REGISTERS

Table 13. User Register Memory Map¹

Name	R/W	Flash Backup	Address ²	Default	Register Description	Reference
FLASH_CNT	R	Yes	0x00	N/A	Flash memory write count	Table 20
Reserved	N/A	N/A	0x02	N/A	Reserved	N/A
XGYRO_OUT	R	No	0x04	N/A	X-axis gyroscope output	Table 9
YGYRO_OUT	R	No	0x06	N/A	Y-axis gyroscope output	Table 9
ZGYRO_OUT	R	No	0x08	N/A	Z-axis gyroscope output	Table 9
XACCL_OUT	R	No	0x0A	N/A	X-axis accelerometer output	Table 10
YACCL_OUT	R	No	0x0C	N/A	Y-axis accelerometer output	Table 10
ZACCL_OUT	R	No	0x0E	N/A	Z-axis accelerometer output	Table 10
TEMP_OUT	R	No	0x10	N/A	Internal temperature output	Table 11
AUX_ADC	R	No	0x12	N/A	Auxiliary ADC output	Table 12
Reserved	N/A	N/A	0x014 to 0x19	N/A	Reserved	
XGYRO_OFF	R/W	Yes	0x1A	0x0000	X-axis gyroscope bias correction factor	Table 31
YGYRO_OFF	R/W	Yes	0x1C	0x0000	Y-axis gyroscope bias correction factor	Table 31
ZGYRO_OFF	R/W	Yes	0x1E	0x0000	Z-axis gyroscope bias correction factor	Table 31
XACCL_OFF	R/W	Yes	0x20	0x0000	X-axis acceleration bias correction factor	Table 32
YACCL_OFF	R/W	Yes	0x22	0x0000	Y-axis acceleration bias correction factor	Table 32
ZACCL_OFF	R/W	Yes	0x24	0x0000	Z-axis acceleration bias correction factor	Table 32
ALM_MAG1	R/W	Yes	0x26	0x0000	Alarm 1, amplitude threshold	Table 34
ALM_MAG2	R/W	Yes	0x28	0x0000	Alarm 2, amplitude threshold	Table 35
ALM_SMPL1	R/W	Yes	0x2A	0x0000	Alarm 1, dynamic time change	Table 36
ALM_SMPL2	R/W	Yes	0x2C	0x0000	Alarm 2, dynamic time change	Table 36
ALM_CTRL	R/W	Yes	0x2E	0x0000	Alarm control	Table 37
AUX_DAC	R/W	No	0x30	0x0000	Auxiliary DAC output level setting	Table 25
GPIO_CTRL	R/W	No	0x32	0x0000	Auxiliary digital input/output control	Table 24
MSC_CTRL	R/W	Yes	0x34	0x0006	Miscellaneous control: data ready, self-test	Table 21
SMPL_PRD	R/W	Yes	0x36	0x0001	Sample clock source, decimation rate	Table 28
SENS_AVG	R/W	Yes	0x38	0x0402	Dynamic range and digital filter control	Table 29
SLP_CTRL	W	No	0x3A	0x0000	Sleep mode control	Table 16
DIAG_STAT	R	No	0x3C	0x0000	System status (error flags)	Table 22
GLOB_CMD	R/W	No	0x3E	0x0000	System command (global)	Table 15
Reserved	N/A	N/A	0x40 to 0x51	N/A	Reserved	
LOT_ID1	R	Yes	0x52	N/A	Lot Identification Code 1	Table 17
LOT_ID2	R	Yes	0x54	N/A	Lot Identification Code 2	Table 17
PROD_ID	R	Yes	0x56	0x4001	Product identification, ADIS16385	Table 19
SERIAL_NUM	R	Yes	0x58	N/A	Serial number	Table 18

 $^{^{1}}$ N/A = not applicable.

² Each register contains two bytes. The address of the lower byte is displayed. The address of the upper byte is equal to the address of the lower byte plus 1.

SYSTEM FUNCTIONS

The ADIS16385 provides a number of system-level controls for managing its operation, using the registers in Table 14.

Table 14. System Tool Registers

Register Name	Address	Description
MSC_CTRL	0x34	Self-test, calibration, data-ready
SLP_CTRL	0x3A	Sleep mode control
DIAG_STAT	0x3C	Error flags
GLOB_CMD	0x3E	Single-command functions
LOT_ID1	0x52	Lot Identification Code 1
LOT_ID2	0x54	Lot Identification Code 2
PROD_ID	0x56	Product identification:
SERIAL_NUM	0x58	Serial number

GLOBAL COMMANDS

The GLOB_CMD register in Table 15 provides trigger bits for device reset, flash memory management, DAC control, and calibration control. Start each of these functions by writing a 1 to the assigned bit in GLOB_CMD. After completing the task, the bit automatically returns to zero. For example, set GLOB_CMD[7] = 1 (DIN = 0xBE80) to initiate a software reset, which stops the sensor operation and runs the device through its startup sequence. Set GLOB_CMD[3] = 1 (DIN = 0xBE04) to back up the user register contents in nonvolatile flash. This sequence includes loading the control registers with the data in their respective flash memory locations prior to producing new data.

Table 15. GLOB CMD Bit Descriptions

Bits	Description (Default = 0x0000)	Execution Time ¹
[15:8]	Not used	N/A
[7]	Software reset	4 ms
[6:4]	Not used	N/A
[3]	Flash update	75 ms
[2]	Auxiliary DAC data latch	75 ms
[1]	Factory calibration restore	75 ms
[0]	Automatic bias correction	N/A ²

 $^{^{1}}$ N/A = not applicable.

POWER MANAGEMENT

The SLP_CTRL register, in Table 16, provides two different sleep modes for system-level management: normal and timed. Set SLP_CTRL[8] = 1 (DIN = 0xBB01) to start normal sleep mode. When the device is in sleep mode, the following events can cause it to wake-up: assert $\overline{\text{CS}}$ from high to low, assert $\overline{\text{RST}}$ from high to low, or cycle the power. Use SLP_CTRL[7:0] to put the device into sleep mode for a specified period. For example, SLP_CNT[7:0] = 0x64 (DIN = 0xBA64) puts the ADIS16385 to sleep for 50 sec.

Table 16. SLP_CTRL Bit Descriptions

Bits Description (Default = 0x0000)	
[15:9]	Not used
[8]	Normal sleep mode, (1 = start sleep mode)
[7:0]	Timed sleep mode (write 0x01 to 0xFF to start). Sleep mode duration, binary, 0.5 sec/LSB

PRODUCT IDENTIFICATION

The PROD_ID register in Table 19 contains the binary equivalent of 16,385. It provides a product-specific variable for systems that need to track this in their system software. The LOT_ID1 and LOT_ID2 registers in Table 17 combine to provide a unique, 32-bit lot identification code. The SERIAL_NUM register in Table 18 contains a binary number that represents the serial number on the device label. The assigned serial numbers in SERIAL_NUM are lot specific.

Table 17. LOT_ID1, LOT_ID2 Bit Descriptions

Bits	Description (Default = 0x0000)
[15:0]	Lot identification, binary code

Table 18. SERIAL_NUM Bit Descriptions

Bits	Description (Default = 0x0000)
[15:14]	Reserved
[13:0]	Serial number, 1 to 9999 (0x270F)

Table 19. PROD_ID Bit Descriptions

Bits	Description (Default = 0x0000)
[15:0]	Product identification = 0x4001

MEMORY MANAGEMENT

The FLASH_CNT register in Table 20 provides a 16-bit counter that helps track the number of write cycles to the nonvolatile flash memory. The flash updates every time any of the following bits are set to 1: GLOB_CMD[3] and GLOB[1:0].

Table 20. FLASH CNT Bit Descriptions

	<u> </u>
Bits	Description
[15:0]	Binary counter

² Execution time is dependent on SMPL_PRD[12:8] setting.

Checksum Test

Set MSC_CTRL[6] = 1 (DIN = 0xB508) to perform a check-sum verification of the internal program memory. This takes a summation of the internal program memory and compares it with the original summation value for the same locations (from factory configuration). Check the results in the DIAG_STAT register, which is in Table 22. DIAG_STAT[6] equals 0 if the sum matches the correct value and 1 if it does not. Make sure that the power supply is within specification for the entire 20 ms that this function takes to complete.

SELF-TEST FUNCTION

The MSC_CTRL register in Table 21 provides a self-test function for all six MEMS inertial sensors. This function allows the user to verify the mechanical integrity of each MEMS sensor. When enabled, the self-test applies an electrostatic force to each internal sensor element, which causes them to move. The movement in each element simulates its response to actual rotation/acceleration and generates a predictable electrical response in the sensor outputs. Table 1 provides the expected response for both gyroscopes and accelerometers that can help establish pass/fail limits during system-level diagnostic testing.

Table 21. MSC_CTRL Bit Descriptions

Bits	Description (Default = 0x0006)
[15:12]	Not used
[11]	Memory test (cleared upon completion) ¹
	(1 = enabled, 0 = disabled)
[10]	Internal self-test (cleared upon completion)1
	(1 = enabled, 0 = disabled)
[9]	Not used
[8]	Manual self-test
	(1 = enabled, 0 = disabled)
[7]	Linear acceleration bias compensation for gyroscopes
	(1 = enabled, 0 = disabled)
[6]	Point of percussion, per Figure 6
	(1 = enabled, 0 = disabled)
[5:3]	Not used
[2]	Data-ready enable
	(1 = enabled, 0 = disabled)
[1]	Data-ready polarity
	(1 = active high, 0 = active low)
[0]	Data-ready line select
	(1 = DIO2, 0 = DIO1)

¹ The bit automatically restores to zero after finishing the test

There are two self-test options in the MSC-CTRL register: internal and manual. Set MSC_CTRL[10] = 1 (DIN = 0xB504) to run the internal self-test routine, which exercises all inertial sensors, measures each response, computes the response to the self-test stimulus, makes pass/fail decisions, and reports them to the error flags in DIAG_STAT[5] and DIAG_STAT[15:10]. While DIAG_STAT[15:10] provide individual error flags for each inertial sensor, DIAG_STAT[5] provides a single-bit for indicating a failure in any of the inertial sensors. MSC_CTRL[10] resets itself to 0 after completing the routine.

Set $MSC_CTRL[8] = 1$ (DIN = B501) to manually activate the self-test function on all six sensors. Set $MSC_CTRL[8] = 0$ (DIN = B500) to manually de-activate the self-test function on all six sensors. Measure the output bias for each $MSC_CTRL[8]$ setting (0 and 1), take the difference between them, and compare this difference with the expected self-test response in Table 1.

STATUS

The DIAG_STAT register in Table 22 provides error flags for a number of functions. Each flag uses 1 to indicate an error condition and 0 to indicate a normal condition. Reading this register provides access to each flag's status and resets all of the bits to 0 for monitoring future operation. If the error condition remains, the error flag will return to 1 at the conclusion of the next sample cycle. DIAG_STAT[0] does not require a read of this register to return to 0. If the power supply voltage goes back into range, this flag clears automatically. The SPI communication error flag in DIAG_STAT[3] indicates that the number of SCLKs in a SPI sequence did not equal a multiple of 16 SCLKs.

Table 22. DIAG_STAT Bit Descriptions

Table 22. DIAG_STAT Bit Descriptions			
Bits	Description (Default = 0x0000)		
[15]	Z-axis accelerometer self-test failure (1 = fail, 0 = pass)		
[14]	Y-axis accelerometer self-test failure (1 = fail, 0 = pass)		
[13]	X-axis accelerometer self-test failure (1 = fail, 0 = pass)		
[12]	Z-axis gyroscope self-test failure (1 = fail, 0 = pass)		
[11]	Y-axis gyroscope self-test failure (1 = fail, 0 = pass)		
[10]	X-axis gyroscope self-test failure (1 = fail, 0 = pass)		
[9]	Alarm 2 status (1 = active, 0 = inactive)		
[8]	Alarm 1 status (1 = active, 0 = inactive)		
[7]	Not used		
[6]	Flash test, checksum flag (1 = fail, 0 = pass)		
[5]	Self-test diagnostic error flag (1 = fail, 0 = pass)		
[4]	Sensor over-range (1 = over-range, 0 = normal)		
[3]	SPI communication failure (1 = fail, 0 = pass)		
[2]	Flash update failure (1 = fail, 0 = pass)		
[1]	Not used		
[0]	Power supply low, $(1 = VDD < 4.85V, 0 = VDD \ge 4.85V)$		

INPUT/OUTPUT CONFIGURATION

Table 23 provides a summary of registers that provide input/output configuration and control.

Table 23. Input/Output Registers

Register Name	Address	Description
AUX_DAC	0x30	Output voltage control, AUX_DAC
GPIO_CTRL	0x32	General-purpose I/O control
MSC_CTRL	0x34	Self-test, calibration, data-ready

DATA-READY I/O INDICATOR

The factory-default setting of MSC_CTRL[2:0] (110) establishes DIO1 as a positive-polarity data-ready signal. See Table 21 for additional data-ready configuration options. For example, set MSC_CTRL[2:0] = 100 (DIN = 0xB404) to change the polarity of the data-ready signal on DIO1 for interrupt inputs that require negative logic inputs for activation. The pulse width is between 100 μ s and 200 μ s over all conditions.

GENERAL-PURPOSE I/O

DIO1, DIO2, DIO3, and DIO4 are configurable, general-purpose I/O lines that serve multiple purposes. The data-ready controls in MSC_CTRL[2:0] have the highest priority for configuring DIO1 and DIO2. The alarm indicator controls in ALM_CTRL[2:0] have the second-highest priority for DIO1 and DIO2. GPIO_CTRL in Table 24 has the lowest priority for configuration DIO1, DIO2, and DIO4 and has absolute control over DIO3.

Table 24. GPIO_CTRL Bit Descriptions

Bits	Description (Default = 0x0000)		
[15:12]	Not used		
[11]	General-Purpose I/O Line 4 (DIO4) data level		
[10]	General-Purpose I/O Line 3 (DIO3) data level		
[9]	General-Purpose I/O Line 2 (DIO2) data level		
[8]	General-Purpose I/O Line 1 (DIO1) data level		
[7:4]	Not used		
[3]	General-Purpose I/O Line 4 (DIO4) direction control		
	(1 = output, 0 = input)		
[2]	General-Purpose I/O Line 3 (DIO3) direction control		
	(1 = output, 0 = input)		
[1]	General-Purpose I/O Line 2 (DIO2) direction control		
	(1 = output, 0 = input)		
[0]	General-Purpose I/O Line 1 (DIO1) direction control		
	(1 = output, 0 = input)		

Example I/O Configuration

For example, set GPIO_CTRL[3:0] = 0100 to set DIO3 as an output signal pin and DIO1, DIO2, and DIO4 as input signal pins. Set the output on DIO3 to 1 by setting GPIO_CTRL[10] = 1 (DIN = 0xB304). Then, read GPIO_CTRL (DIN = 0x3200) and mask off GPIO_CTRL[9:8] and GPIO_CTRL[11] to monitor the digital signal levels on DIO4, DIO2, and DIO1.

AUXILIARY DAC

The AUX_DAC register in Table 25 provides user controls for setting the output voltage on the AUX_DAC pin. The 12-bit AUX_DAC line can drive its output to within 5 mV of the ground reference when it is not sinking current. As the output approaches 0 V, the linearity begins to degrade (~100 LSB starting point). As the sink current increases, the nonlinear range increases. The DAC latch command in GLOB_CMD[2] (see Table 15) moves the values of the AUX_DAC register into the DAC input register, enabling both bytes to take effect at the same time. This prevents undesirable output levels, which reflect single-byte changes of the AUX_DAC register.

Table 25. AUX_DAC Bit Descriptions

Bits	Description (Default = 0x0000)	
[15:12]	Not used	
[11:0]	Data bits, scale factor = 0.8059 mV/LSB	
	Offset binary format, 0 V = 0 LSB	

Table 26. Setting AUX_DAC = 1 V

DIN	Description
0xB0D9	AUX_DAC[7:0] = 0xD9 (217 LSB)
0xB104	AUX_DAC[15:8] = 0x04 (1024 LSB)
0xBE04	GLOB_CMD[2] = 1; move values into the DAC input register, resulting in a 1 V output level

DIGITAL PROCESSING CONFIGURATION

Table 27. Digital Processing Registers

Register Name	Address	Description
SMPL_PRD	0x36	Sample rate control
SENS_AVG	0x38	Digital filtering and range control

Sample Rate

The internal sampling system produces new data in the output data registers at a rate of 1024 SPS. The SMPL_PRD register in Table 28 provides two functional controls that affect sampling and register update rates. SMPL_PRD[12:8] provides a control for reducing the update rate, using an averaging filter with a decimated output. These bits provide a binomial control that divides the data rate by a factor of 2 every time this number increases by one. For example, set SMPL_PRD[12:8] = 0100 (DIN = 0xB704) to set the decimation factor to 16. This reduces the update rate to 64 SPS and the bandwidth to 31 Hz.

Table 28. SMPL_PRD Bit Descriptions

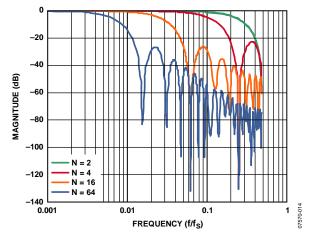
Bits	Bits Description (Default = 0x0001)		
[15:13]	Not used		
[12:8]	Average/decimation rate setting, binomial		
[7:1]	Not used		
[0]	Clock: 1 = internal (1024 SPS), 0 = external		

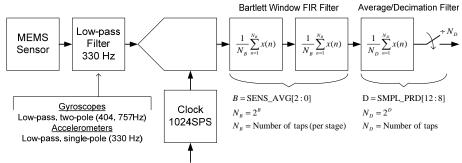
Input Clock Configuration

SMPL_PRD[0] provides a control for synchronizing the internal sampling to an external clock source. Set GPIO_CTRL[3] = 0 (DIN = 0x0B200) and SMPL_PRD[0] = 0 (DIN = 0xB600) to enable the external clock. See Table 2 and Figure 4 for timing information.

Digital Filtering

The SENS_AVG register in Table 29 provides user controls for the low-pass filter. This filter contains two cascaded averaging filters that provide a Bartlett window, FIR filter response (see Figure 18). For example, set SENS_AVG[2:0] = 100 (DIN = 0xB804) to set each stage to 16 taps. When used with the default sample rate of 1024 SPS and zero decimation (SMPL_PRD[12:8] = 00000), this value reduces the sensor bandwidth to approximately 20 Hz.




Figure 17. Bartlett Window, FIR Filter Frequency Response (Phase Delay = N Samples)

Dynamic Range

The SENS_AVG[10:8] bits provide three dynamic range settings for this gyroscope. The lower dynamic range settings ($\pm 75^{\circ}$ /sec and $\pm 150^{\circ}$ /sec) limit the minimum filter tap sizes to maintain resolution. For example, set SENS_AVG[10:8] = 010 (DIN = 0xB902) for a measurement range of $\pm 150^{\circ}$ /sec. Because this setting can influence the filter settings, program SENS_AVG[10:8] before programming SENS_AVG[2:0] if more filtering is required.

Table 29. SENS_AVG Bit Descriptions

Table 27	Description (Default = 0x0402)		
Bits			
[15:11]	Not used		
[10:8]	Measurement range (sensitivity) selection		
	$100 = \pm 300^{\circ}$ /sec (default condition)		
$010 = \pm 150^{\circ}/\text{sec}$, filter taps ≥ 4 (Bits[2:0] $\ge 0x02$)			
	$001 = \pm 75^{\circ}/\text{sec}$, filter taps ≥ 16 (Bits[2:0] $\ge 0x04$)		
[7:3]	Not used		
[2:0]	Number of taps in each stage; value of m in $N = 2^m$		

External clock enabled by SMPL_PRD[0] = 0

Figure 18. Sampling and Frequency Response Block Diagram

CALIBRATION

The mechanical structure and assembly process of the ADIS16385 provide excellent position and alignment stability for each sensor, even after subjected to temperature cycles, shock, vibration, and other environmental conditions. The factory calibration includes a dynamic characterization of each sensor's behavior over temperature and generates sensor-specific correction formulas. The bias correction registers in Table 30 provide users with the ability to address bias shifts that can result from mechanical stress. Figure 19 illustrates the summing function of each sensor's offset correction register.

Table 30. Registers for User Calibration

Register	Address	Description
XGYRO_OFF	0x1A	Gyroscope bias, x-axis
YGYRO_OFF	0x1C	Gyroscope bias, y-axis
ZGYRO_OFF	0x1E	Gyroscope bias, z-axis
XACCL_OFF	0x20	Accelerometer bias, x-axis
YACCL_OFF	0x22	Accelerometer bias, y-axis
ZACCL_OFF	0x24	Accelerometer bias, z-axis
GLOB_CMD	0x3E	Automatic calibration

Figure 19. User Calibration, XGYRO_OFF Example

There are two options for optimizing gyroscope bias accuracy prior to system deployment: automatic bias correction (ABC) and manual bias correction (MBC).

Automatic Bias Correction (ABC)

Set $GLOB_CMD[0] = 1$ (DIN = 0xBE01) to start the ABC function, which uses the following internal sequence to calibrate each gyroscope for bias error:

- Set the output range to ±75°/sec and wait for a complete output data cycle to complete (the SMPL_PRD[12:8] bits set this time).
- 2. Read the output register of the gyroscope.
- 3. Multiply the measurement by -1 to change its polarity.
- 4. Write the final value into the offset register.

The Allan Variance curves in Figure 7, Figure 9, and Figure 8 provide a trade-off between bias accuracy and averaging time. SMPL_PRD[12:8] provide a user control for averaging time when using the ABC function. Use this setting, in combination with GLOB_CMD[0], to create the automatic bias correction function.

ABC Example

Set SMPL_PRD[15:8] = 0x10 (DIN = 0xB710) to set the decimation rate to 65,536 (2¹⁶), which provides an averaging time of 64 seconds (65536 ÷ 1024 SPS) for this function. Then, set GLOB_CMD[0] = 1 (DIN = 0xBE01) and keep the platform stable for at least 65 seconds while the gyroscope bias data accumulates. After this completes, the ADIS16385 automatically updates the flash memory. The SPI is inactive and does not respond to user inputs while the ABC is processing. The only way to interrupt it is to remove power or initiate a hardware reset using the \overline{RST} pin. When using SMPL_PRD[12:8] = 0x10, the 1- σ accuracy for this correction is approximately 0.008°/sec for the X-axis and Y-axis gyroscopes and 0.003°/sec for the Z-axis gyroscope. See Table 15 for more information on GLOB_CMD.

Manual Bias Correction

The manual bias correction (MBC) function requires the user to collect the desired number of samples, calculate the averages to develop bias estimates for each gyroscope channel, and then write them into the bias offset registers, located in Table 31 for the gyroscopes. For example, set XGYRO_OFF = 0x1FF6 (DIN = 0x9B1F, 0x9AF6) to adjust the XGYRO_OUT offset by $-0.03125^{\circ}/sec$ (-10 LSBs). Table 32 provides a manual adjustment function for the accelerometer channels as well.

Table 31. XGYRO_OFF, YGYRO_OFF, and ZGYRO_OFF Bit Descriptions

Bits	Description (Default = 0x0000)	
[15:0]	Twos complement, 0.003125° /sec per LSB. Typical adjustment range = $\pm 102^{\circ}$ /sec.	

Table 32. XACCL_OFF, YACCL_OFF, and ZACCL_OFF Bit Descriptions

Bits	Description (Default = 0x0000)	
[15:0]	Data bits. Twos complement, 0.25 mg/LSB. Typical	
	adjustment range = $\pm 8.192 q$.	

Restoring Factory Calibration

Set GLOB_CMD[1] = 1 (DIN = 0xBE02) to execute the factory calibration restore function. This is a single-command function, which resets each user calibration register to 0x0000 and all sensor data to zero. Then, it automatically updates the flash memory within 50 ms. See Table 15 for more information on GLOB_CMD.

Point-of-Percussion (Gyroscope)

Set MSC_CTRL[6] = 1 (DIN = 0xB486) to enable this feature and maintain the factory-default settings for DIO1. This feature performs a point-of-percussion translation to the point identified in Figure 6. See Table 21 for more information on MSC_CTRL.

ALARMS

The ADIS16385 provides two independent alarms, Alarm 1 and Alarm 2, which have a number of programmable settings. Table 33 provides a list of registers for these user settings.

Table 33. Registers for Alarm Configuration

Register	Address	Description
ALM_MAG1	0x26	Alarm 1, trigger setting
ALM_MAG2	0X28	Alarm 2, trigger setting
ALM_SMPL1	0x2A	Alarm 1, sample period
ALM_SMPL2	0x2C	Alarm 2, sample period
ALM_CTRL	0x2E	Alarm configuration

The ALM_CTRL register in Table 37 provides data source selection (Bits[15:8]), static/dynamic setting for each alarm (Bits[7:6]), trigger polarity (Bits[5:4]), data source filtering (Bit[3]), and alarm indicator signal (Bits[2:0]).

Static Alarm Use

The static alarms setting compares the data source selection (ALM_CTRL[15:8]) with the values in the ALM_MAGx registers in Table 34 and Table 35. The data format in these registers matches the format of the data selection in ALM_CTRL[15:8]. The ALM_CTRL[5:4] bits provide polarity settings. See Table 38, Alarm 1, for a static alarm configuration example.

Table 34. ALM_MAG1 Bit Descriptions

Bits Description (Default = 0x0000)			
[15:0]	Threshold setting; matches for format of ALM_CTRL[11:8] selection		

Table 35. ALM_MAG2 Bit Descriptions

Bits	Description (Default = 0x0000)				
[15:0]	Threshold setting; matches for format of				
	ALM_CTRL[15:12] selection				

Dynamic Alarm Use

The dynamic alarm setting monitors the data selection for a rate-of-change comparison. The rate-of-change comparison is represented by the magnitude in the ALM_MAGx registers over the time represented by the number-of-samples setting in the ALM_SMPLx registers, located in Table 36. See Table 38, Alarm 2, for a dynamic alarm configuration example.

Table 36. ALM_SMPL1 and ALM_SMPL2 Bit Descriptions

Bits	Bits Description (Default = 0x0000)				
[15:8]	Not used				
[7:0]	Binary, number of samples (both $0x00$ and $0x01 = 1$)				

Alarm Reporting

The DIAG_STAT[9:8] bits provide error flags that indicate an alarm condition. The ALM_CTRL[2:0] bits provide controls for a hardware indicator using DIO1 or DIO2.

Table 37. ALM_CTRL Bit Descriptions

Bits	Bits Description (Default = 0x0000)				
[15:12]	Alarm 2 data source selection				
	0000 = disable				
	0001 = x-axis gyroscope output				
	0010 = y-axis gyroscope output				
	0011 = z-axis gyroscope output				
	0100 = x-axis accelerometer output				
	0101 = y-axis accelerometer output				
	0110 = z-axis accelerometer output				
	0111 = internal temperature output				
	1000 = auxiliary ADC input				
	1001 = self test				
[11:8]	Alarm 1 data source selection (same as Alarm 2)				
[7]	Alarm 2, dynamic/static (1 = dynamic, 0 = static)				
[6]	Alarm 1, dynamic/static (1 = dynamic, 0 = static)				
[5] Alarm 2, polarity (1 = greater than, 0 = less than)					
[4]	Alarm 1, polarity (1 = greater than, $0 = less than$)				
[3]	Data source filtering (1 = filtered, 0 = unfiltered)				
[2]	Alarm indicator (1 = enabled, $0 = disabled$)				
[1]	Alarm indicator active polarity $(1 = high, 0 = low)$				
[0]	Alarm output line select (1 = DIO2, 0 = DIO1)				

Alarm Example

Table 38 offers an example that configures Alarm 1 to trigger when filtered ZACCL_OUT data drops below 0.7g, and Alarm 2 to trigger when filtered ZGYRO_OUT data changes by more than 50°/sec over a 100 ms period, or 5,000°/sec². The filter setting helps reduce false triggers from noise and refine the accuracy of the trigger points. The ALM_SMPL2 setting of 102 samples provides a comparison period that is 99.6 ms for an internal sample rate of 1024 SPS. Because Alarm 1 is a static alarm in this example, there is no need to program ALM_SMPL1.

Table 38. Alarm Configuration Example 1

	Tuble 30. Marin Configuration Example 1					
	DIN	Description				
•	0xAF36,	ALM_CTRL = 0x36AF.				
	0xAEAF	Alarm 2: dynamic, Δ -ZGYRO_OUT (Δ -time, ALM_SMPL2) > ALM_MAG2.				
		Alarm 1: static, ZACCL_OUT < ALM_MAG1. Use filtered data source for comparison. DIO2 output indicator, positive polarity.				
	0xA90F, 0xA8A0	ALM_MAG2 = 0x0FA0 (+50°/sec).				
0xA70A, 0xA6F0		ALM_MAG1 = 0x0AF0 (0.7 g).				
	0xAC76	ALM_SMPL2[7:0] = 0x66 (102 samples).				

APPLICATIONS INFORMATION PROTOTYPE INTERFACE BOARD

The ADIS16385/PCBZ includes one ADIS16385BMLZ, one interface printed circuit board (PCB), and four M2x18 machine screws. The interface PCB provides larger connectors than the ADIS16385BMLZ for simpler prototyping, four-tapped M2 holes for attachment of the ADIS16385BMLZ, and four holes (machine screw size M2.5 or #4) for mounting the ADIS16385BMLZ to a solid structure. J1 and J2 are dual-row, 2 mm (pitch) connectors that work with a number of ribbon cable systems, including 3M Part Number 152212-0100-GB (ribbon crimp connector) and 3M Part Number 3625/12 (ribbon cable).

Figure 20 provides the top-level view of the interface board. Install the ADIS16385BMLZ onto this board using the silk pattern as an orientation guide. Figure 21 provides the pin assignments for J1 and J2. The pin descriptions match those listed in Table 5. The ADIS16385 does not require external capacitors for normal operation; therefore, the interface PCB does not use the C1/C2 pads.

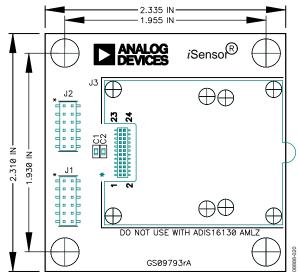


Figure 20. Physical Diagram for the ADIS16385/PCBZ

	J	1		J	2	
RST	1	2	SCLK	DNC 1	2	GND
cs	3	4	DOUT	DNC 3	4	DNC
DNC	5	6	DIN	GND 5	6	CLKIN
GND	7	8	GND	DNC 7	8	DNC
GND	9	10	vcc	DNC 9	10	DNC ਨੂ
vcc	11	12	vcc	DIO2 11	12	DIO1

Figure 21. J1/J2 Pin Assignments

INSTALLATION TIPS

Figure 22 and Figure 23 provide the mechanical design information used for the ADIS16385/PCBZ. Use Figure 22 and Figure 23 when implementing a connector-down approach, where the mating connector and the ADIS16385BMLZ are on the same surface. When designing a connector-up system, use the mounting holes shown in Figure 22 as a guide in designing the bulkhead mounting system and use Figure 23 as a guide in developing the mating connector interface on a flexible circuit or other connector system.

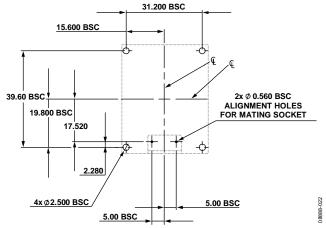


Figure 22. Suggested Mounting Hole Locations, Connector Down

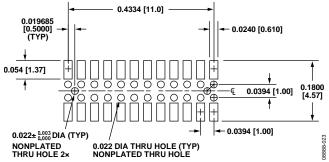


Figure 23. Suggested Layout and Mechanical Design for the Mating Connector

OUTLINE DIMENSIONS

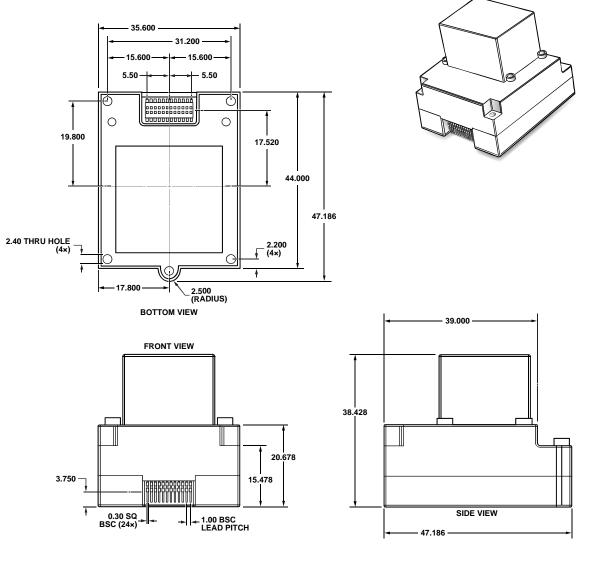


Figure 24. 24-Lead Module with Connector Interface (ML-24-5) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option
ADIS16385BMLZ	-40°C to +105°C	24-Lead Module with Connector Interface	ML-24-5
ADIS16385/PCBZ		Interface PCB	

¹ Z = RoHS Compliant Part.

Preliminary Technical Data

NOTES