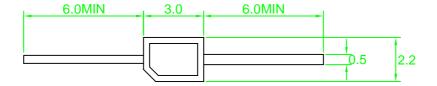


#### **AXIAL TYPE LED LAMPS**

### **LUY9353**

### DATA SHEET


DOC. NO : QW0905-LUY9353

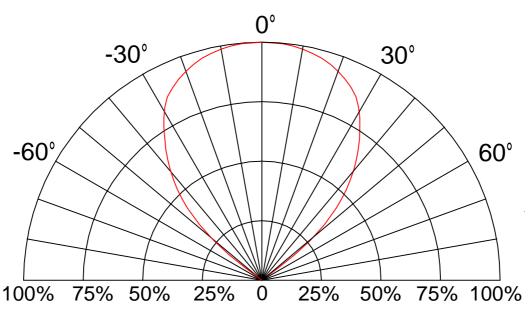
REV : <u>A</u>

DATE : <u>13 - Jul. - 2005</u>

PART NO. LUY9353 Page 1/6

### Package Dimensions








Note: 1.All dimension are in millimeter tolerance is ±0.25mm unless otherwise noted.

2. Specifications are subject to change without notice.

### **Directivity Radiation**





PART NO. LUY9353 Page 2/6

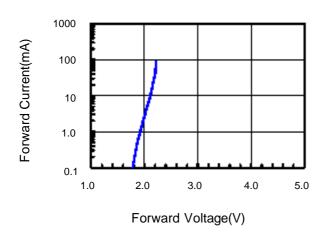
### Absolute Maximum Ratings at Ta=25

| Parameter                               | Symbol | Absolute Maximum Ratings | LINUT |
|-----------------------------------------|--------|--------------------------|-------|
| Parameter                               |        | UY                       | UNIT  |
| Forward Current                         | lF     | 50                       | mA    |
| Peak Forward Current<br>Duty 1/10@10KHz | lfp    | 90                       | mA    |
| Power Dissipation                       | PD     | 120                      | mW    |
| Reverse Current @5V                     | Ir     | 10                       | μА    |
| Electrostatic Discharge                 | Esd    | 2000                     | V     |
| Operating Temperature                   | Topr   | -40 ~ +85                |       |
| Storage Temperature                     | Tstg   | -40 ~ +100               |       |
| Soldering Temperature                   | Tsol   | Max 260 for 5 sec Max    |       |

### Typical Electrical & Optical Characteristics (Ta=25)

| PART NO | MATERIAL | COLOR   |             | Dominant<br>wave<br>length<br>Dnm | Spectral<br>halfwidth<br>nm | Forward<br>voltage<br>@20mA(V) |      | Luminous<br>intensity<br>@20mA(mcd) |      | Viewing<br>angle<br>2 1/2<br>(deg) |
|---------|----------|---------|-------------|-----------------------------------|-----------------------------|--------------------------------|------|-------------------------------------|------|------------------------------------|
|         |          | Emitted | Lens        |                                   |                             | Min.                           | Max. | Min.                                | Тур. |                                    |
| LUY9353 | AlGaInP  | Yellow  | Water Clear | 595                               | 15                          | 1.7                            | 2.6  | 48                                  | 80   | 84                                 |

Note : 1. The forward voltage data did not including  $\pm 0.1 \text{V}$  testing tolerance.


2. The luminous intensity data did not including  $\pm 15\%$  testing tolerance.

PART NO. LUY9353 Page 3/6

# Typical Electro-Optical Characteristics Curve UY CHIP

Fig.1 Forward current vs. Forward Voltage





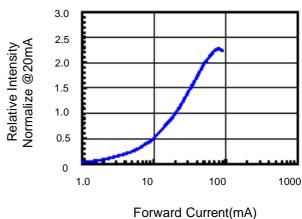
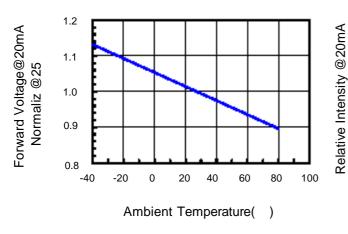




Fig.3 Forward Voltage vs. Temperature

Fig.4 Relative Intensity vs. Temperature



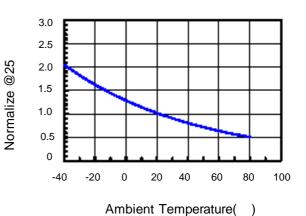
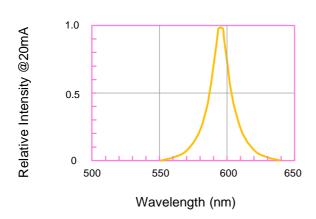
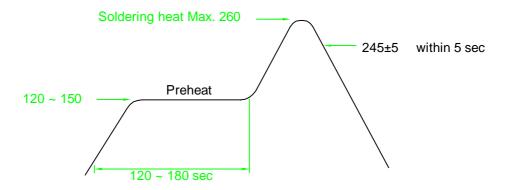
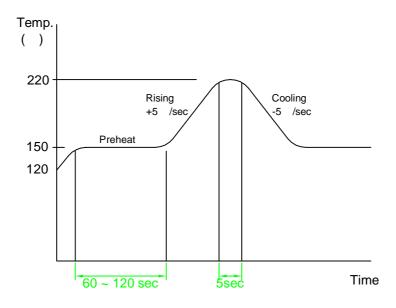




Fig.5 Relative Intensity vs. Wavelength




PART NO. LUY9353 Page 4/6


#### Soldering Iron:

Basic spec is 5 sec when 260 . If temperature is higher, time should be shorter(+10 -1sec). Power dissipation of iron should be smaller than 15W,and temperature should be controllable. Surface temperature of the device should be under 230 .

#### Soldering heat



#### Reflow Temp/Time



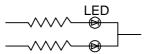


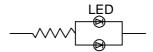
PART NO. LUY9353 Page 5/6

#### Precautions For Use:

#### Storage time:

- 1. The operation of Temperatures and RH are: 5 ~35 ,RH60%.
- 2.Once the package is opened, the products should be used within a week. Otherwise, they should be kept in a damp proof box with descanting agent. Considering the tape life, we suggest our customers to use our products within a year(from production date).
- 3.If opened more than one week in an atmosphere 5  $\sim$  35 ,RH60%, they should be treated at 60  $\pm$ 5 fo r 15hrs.


#### **Drive Method:**


LED is a current operated device, and therefore, requirer some kind of current limiting incorporated into the driver circuit. This current limiting typically takes the form of a current limiting resistor placed in series with the LED.

Consider worst case voltage variations than could occur across the current limiting resistor. The forwrd current should not be allowed to change by more than 40 % of its desired value.

Circuit model A

Circuit model B





- (A) Recommended circuit.
- (B) The difference of brightness between LED could be found due to the VF-IF characteristics of LED.

#### Cleaning:

Use alcohol-based cleaning solvents such as isopropyl alcohol to clean the LED.

#### ESD(Electrostatic Discharge):

Static Electricity or power surge will damage the LED. Use of a conductive wrist band or anti-electrosatic glove is recommended when handing these LED. All devices, equipment and machinery must be properly grounded.



PART NO.: LUY9353 Page 6/6

### Reliability Test:

| Test Item                              | Test Condition                                                         | Description                                                                                                                                                             | Reference<br>Standard                                                          |  |
|----------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|
| Operating Life Test                    | 1.Under Room Temperature<br>2.lf=20mA<br>3.t=1000 hrs (-24hrs, +72hrs) | This test is conducted for the purpose of determining the resisance of a part in electrical and themal stressed.                                                        | MIL-STD-750: 1026<br>MIL-STD-883: 1005<br>JIS C 7021: B-1                      |  |
| High Temperature<br>Storage Test       | 1.Ta=105 ±5<br>2.t=1000 hrs (-24hrs, +72hrs)                           | The purpose of this is the resistance of the device which is laid under ondition of high temperature for hours.                                                         | MIL-STD-883:1008<br>JIS C 7021: B-10                                           |  |
| Low Temperature<br>Storage Test        | 1.Ta=-40 ±5<br>2.t=1000 hrs (-24hrs, +72hrs)                           | The purpose of this is the resistance of the device which is laid under condition of low temperature for hours.                                                         | JIS C 7021: B-12                                                               |  |
| High Temperature<br>High Humidity Test | 1.Ta=65 ±5<br>2.RH=90%~95%<br>3.t=240hrs ±2hrs                         | The purpose of this test is the resistance of the device under tropical for hous.                                                                                       | MIL-STD-202:103B<br>JIS C 7021: B-11                                           |  |
| Thermal Shock Test                     | 1.Ta=105 ±5 &-40 ±5<br>(10min) (10min)<br>2.total 10 cycles            | The purpose of this is the resistance of the device to sudden extreme changes in high and low temperature.                                                              | MIL-STD-202: 107D<br>MIL-STD-750: 1051<br>MIL-STD-883: 1011                    |  |
| Solder Resistance<br>Test              | 1.T.Sol=260 ±5<br>2.Dwell time= 10 ±1sec.                              | This test intended to determine the thermal characteristic resistance of the device to sudden exposures at extreme changes in temperature when soldering the lead wire. | MIL-STD-202: 210A<br>MIL-STD-750: 2031<br>JIS C 7021: A-1                      |  |
| Solderability Test                     | 1.T.Sol=230 ±5<br>2.Dwell time=5±1sec                                  | This test intended to see soldering well performed or not.                                                                                                              | MIL-STD-202: 208D<br>MIL-STD-750: 2026<br>MIL-STD-883: 2003<br>JIS C 7021: A-2 |  |