

AA88349

PRELIMINARY 8-BIT DAC

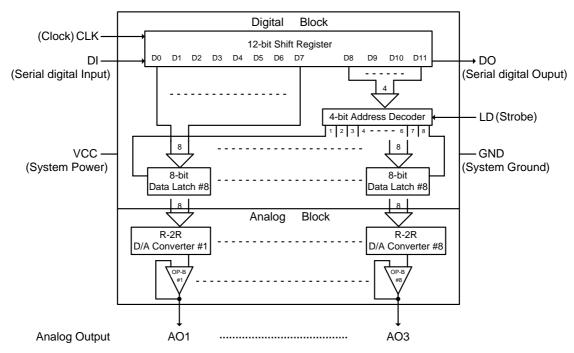
DESCRIPTION

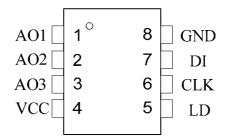
The AA88349 is a CMOS processed digital to analog converter (DAC) with 8-bit resolution, low leakage and operating current. The AA88349 has 3 channels with build in operational amplifier output buffers which could operate in the full-swing voltage range from VCC to GND and enhance the Drive/Sink ability up to max. 1mA. Digital data (DI) input serially in a max. 2.5MHz clock (CLK) rate. The latched 12-bit digital data is converted into an analog DC voltage in the range from GND to VCC with 8-bit resolution in one of the 3 channels by the D/A converter in a max. $100\,\mu$ s settling time. AA88349 is a single 5V power DAC. Analog DC output could be full voltage swing as the analog power is equal to the system power. In addition to normal D/A converter applications, AA88349 is also available for electronic volume and instead of potentio- meters for adjustment due to its high stability on the capacitive load. 8 pins TSSOP package type are available for AA88349. Its operational temper- nature range is specified over $-20\,^{\circ}\text{C}$ to $85\,^{\circ}\text{C}$.

■ FEATURES

- 12 bits serial data input (3 wire serial data transfer method, DI, CLK, LD)
- R-2R resistor ladder used for D/A conversion
- 3 channels with 8-bit resolution monotonic D/A converter
- 3 channels buffer operational amplifiers operating in the full voltage range from VCC to GND
- Max. 2.5 MHz serial digital data input
- Serial I/O for cascade application
- Max. 1.0 mA output drive/sink current
- Single +5 V system power supply

APPLICATION


DVD, CD-R, CD-RW, DVC, digital camera, and other industrial equipments


AA88349

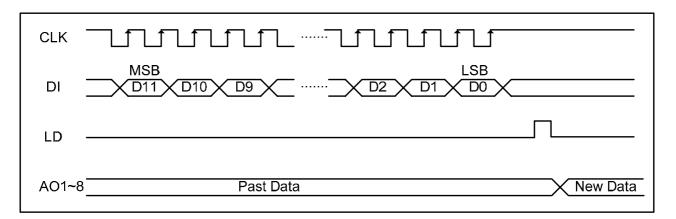
PRELIMINARY 8-BIT DAC

BLOCK DIAGRAM

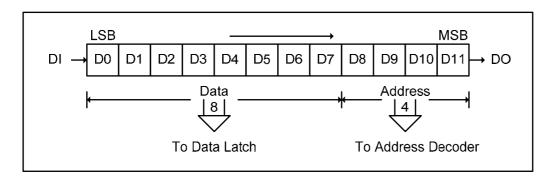
■ PIN DESCRIPTIONS

Top View

PIN NO.	PIN NAME	PIN FUNCTION
4	VCC	+5V system power supply pin .
8	GND	System ground pin
6	CLK	Serial clock input pin. At its rising edge, DI data shift into the Shift-Register.
5	LD	Data Strobe pin. When it's on high, upper 4-bit and lower 8-bit of the 12-bit in the Shift-Register be latched into the Address Decoder and the Data-Latch, respectively



AA88349


PRELIMINARY 8-BIT DAC

PIN NO.	PIN NAME	PIN FUNCTION					
Data Input							
7	D1	Serial Digital Data input pin					
DAC Outpo							
1	AO1	8-bit D/A converter outputs					
2	AO2	Output range is from GND to VCC					
3	AO3	Output range is nom GIVD to VCC					

DATA INPUT FORMAT

DATA FORMAT IN SHIFT REGISTER

AA88349

PRELIMINARY 8-BIT DAC

DATA CONVERSION

			DA	TA				DAC OUTPUT LEVEL
D7	D6	D5	D4	D3	D2	D1	D0	AOX
0	0	0	0	0	0	0	0	GND
0	0	0	0	0	0	0	1	GND + LSB*
0	0	0	0	0	0	1	0	GND+ 2 * LSB
{	{	{	\	\	{	{	~~~	{
1	1	1	1	1	1	1	0	VCC - LSB
1	1	1	1	1	1	1	1	VCC

● LSB = (VCC-GND)/255

CHANNEL MAP

ADDRESS	3						
1H [D-L#1		R-2R D/A#1		OP-B#1		AO1
2H	D-L#1		R-2R D/A#2	-	OP-B#2	►	
3H	D-L#1		R-2R D/A#3	-	OP-B#3		
4H	D-L#1	-	R-2R D/A#4	-	OP-B#4		
5H	D-L#1		R-2R D/A#5	-	OP-B#5		AO2
6H	D-L#1	-	R-2R D/A#6	-	OP-B#6		AO3
7H	D-L#1		R-2R D/A#7	-	OP-B#7		
8H	D-L#1		R-2R D/A#8	-	OP-B#8	-	

ADDRESS DECODING

	ADDR	ESS		DATA LATCH SELECTED
D8	D9	D10	D11	DATA EATON OLLEGIED
0	0	0	0	NA
0	0	0	1	Data Latch #1
0	0	1	0	NA
0	0	1	1	NA
0	1	0	0	NA
0	1	0	1	Data Latch #2
0	1	1	0	Data Latch #3
0	1	1	1	NA

AA88349

PRELIMINARY 8-BIT DAC

	ADDR	ESS		
D8	D9	D10	D11	DATA LATCH SELECTED
1	0	0	1	NA
1	0	1	0	NA
1	0	1	1	NA
1	1	0	0	NA
1	1	0	1	NA
1	1	1	0	NA
1	1	1	1	NA

ABSOLUTE MAXIMUM RATINGS

Ta=25°C, unless otherwise noted

PARAMETER	SYMBOL		UNIT		
FARAIVIETER	STIVIBUL	MIN	TYP	MAX	UNII
System Voltage	VCC	-0.3	_	+7.0	V
Input Voltage	VIN	-0.3	_	VCC + 0.3	V
Output Voltage	VOUT	-0.3	_	VCC + 0.3	V
Power Dissipation	PD	_	_	250	mW
Operating Ambient Temperature	TA	-20	_	+85	$^{\circ}\!\mathbb{C}$
Storage Temperature	TS	-55	_	+150	$^{\circ}\!\mathbb{C}$

NOTE: Stress above those listed under "Absolute Maximum Rating" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for the extended periods of time may affect device reliability.

■ ELECTRICAL CHARACTERISTICS

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIMITS			UNIT
			MIN	TYP	MAX	
VCC	System Voltage		4.5	5.0	5.5	V
GND	System voltage		_	0	_	V
IAO	Analog Output Current	VAO shift≦0.3V	-1.0	_	+1.0	mA

AA88349

PRELIMINARY 8-BIT DAC

				UNIT		
SYMBOL	PARAMETER	CONDITIONS	MIN	TYP	MAX	O.u.i
COL	Analog Output Load Capacitance for Oscillation limit		_	_	+1.0	μ F
TA	Operating Ambient Temperature		-20	_	+85	$^{\circ}\!\mathbb{C}$

◆ DC CHARACTERISTICS

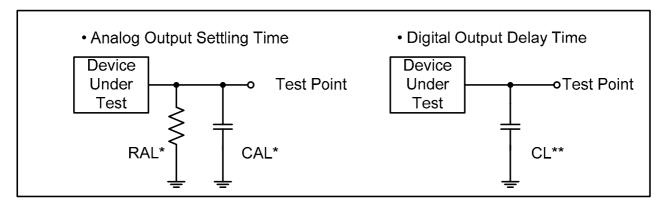
Ta = 25°C

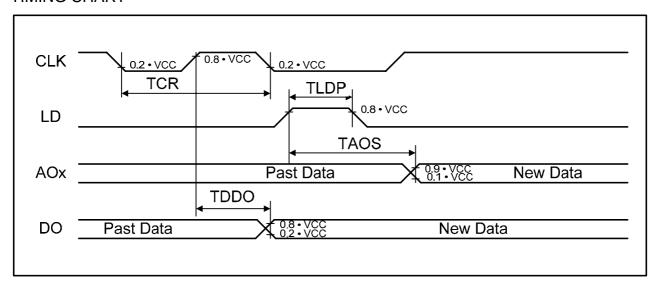
PARAMETER	SYMBOL	V	'ALU	UNIT	CONDITIONS	
TANAMETER	OTIMBOL	MIN	TYP	MAX	OIII	CONDITIONS
System Voltage	VCC	4.5	5.0	5.5	V	
System Current	ICC	_	1.2	2.5	mA	CLK = 1 MHz, No load;
Input Leakage Current	IILK	-5	_	+5	μ A	VIN = 0V / 5V
Digital Input Low Voltage	VIL	_	_	0.2 • VCC	V	
Digital Input High Voltage	VIH	0.5 • VCC	_	_	V	
Digital Output Low	VOL	_	_	0.4	V	IOL = +2.5 mA
Digital Output High	VOH	VCC - 0.4	=	=	V	IOH = -400 μ A

NOTES: Integral Non-Linearity: The difference between the digital data converted DC analog values and a reference straight line drawn through the first and the last output values Differential Non-Linearity: The difference between the ideal and real increment value of DC analog voltage when the digital data increase 1 bit.

AC CHARACTERISTICS

Ta = 25°C


PARAMETER	SYMBOL	VALUE			UNIT	CONDITIONS	
TARAMETER	O I WIDOL	MIN	TYP	MAX	01411		
Clock Rate	TCR	400	1000		ns		
Load Strobe Pulse Width	TLDP	_	200		ns		
Analog Output Settling Time	TAOS	_		100	μs	*RAL = 10 k Ω , CAL = 50pF (#00> #FF)	
Digital Output Delay Time	TDDO	_	_	350	ns	**CL = 100 pF (Max.)	

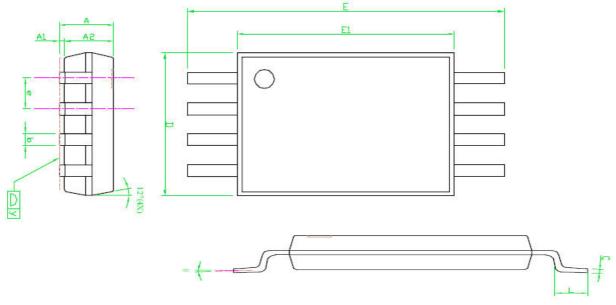

AA88349

PRELIMINARY 8-BIT DAC

AC TEST CONDITION

TIMING CHART

ORDERING INFORMATION


ORDER NO.	PACKAGE PACKING ONE REEL Q'TY		MARK CHART	
AA88349A	TSSOP8L	Tape & Reel	3,000ea	88349 XXXX A

AA88349

PRELIMINARY 8-BIT DAC

■ PACKAGE DIMENSIONS

NOTES:

Package body sizes exclude mold flash protrusions or gate burrs

Tolerance ± 0.1 mm (4 mil) unless otherwise specified

Coplanarity:0.1mm

Controlling dimension is millimeter converted inch dimensions are not necessarily exact Followed from jedec mo-153

SYMBOLS	DIMENSIONS IN MILLIMETERS			DIMENSIONS IN INCHES		
	MIN	NOM	MAX	MIN	NOM	MAX
A			1.20			0.048
A1	0.05		0.15	0.002		0.006
A2	0.80	1.00	1.05	0.031	0.039	0.041
b	0.19		0.30	0.007		0.012
С	0.09		0.20	0.004		0.008
D	2.90	3.00	3.10	0.114	0.118	0.122
Е	6.20	6.40	6.60	0.244	0.252	0.260
E1	4.30	4.40	4.50	0.169	0.173	0.177
e		0.65			0.026	
L	0.45	0.60	0.75	0.018	0.024	0.030
у			0.10			0.004
θ	0°		8°	0°		8°