

SS-241 R5 AHA 1/24/07

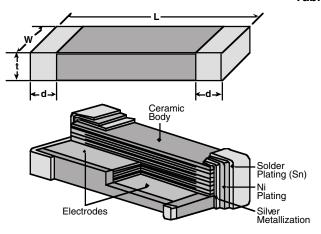
Ceramic Chip Capacitors Type X5R

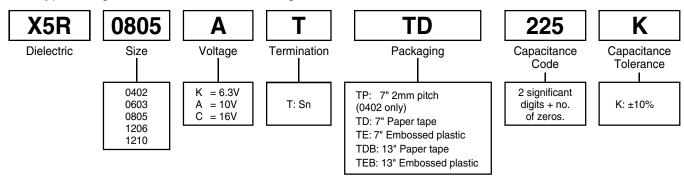
ISO 9001:2000 TS-16949

1. General

- General purpose dielectric for ceramic capacitors
- EIA class II dielectric
- Temperature variation of capacitance is within ±15% from -55°C to +85°C
- Well suited for decoupling and filtering applications
- Available in high capacitance values (up to 100 μF)

2. Dimensions




Table 1

Dimensions in inches (mm)

Case	Dimensions inches (mm)									
Size	L	L W t (Max.)								
0402	.039±.004 (1.0±0.1)			.01±.006 (0.25±0.15)						
0603	.063±.006 (1.6±0.15)	.032±.006 (0.81±0.15)	.035 (0.9)	.014±.006 (0.35±0.15)						
0805	.079±.008 (2.01±0.2)			.02±.01 (0.50±0.25)						
1206	.126±.008 (3.2±0.2)	.063±.008 (1.6±0.2)	.059 (1.5)	.02±.01 (0.5±0.25)						
1210	.126±.008 (3.2±0.2)	.098±.008 (2.5±0.2)	.067 (1.7)	.02±.01 (0.5±0.25)						

3. Type Designation

The type designation shall be the following form:

PAGE 1 OF 8

SS-241 R5

4. X5R Dielectric Capacitance Range

Available sizes are shaded.

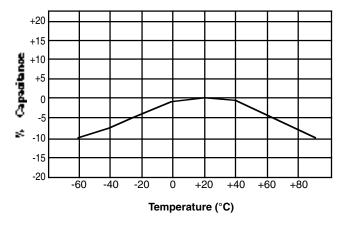
Size		0402			06	03			08	05			12	06		12	10
Capacitance values pF μF	6.3 (K)	10 (A)	16 (C)	6.3 (K)	10 (A)	16 (C)	25 (E)	6.3 (K)	10 (A)	16 (C)	25 (E)	6.3 (K)	10 (A)	16 (C)	25 (E)	6.3 (K)	10 (A)
100	(11)	(~)	(0)	(11)	(A)	(0)	(-)	(11)	(^,	(0)	(=)	(11)	(~)	(0)	(-)	(11)	(71)
150																	
220																	
330																	
470																	
680																	
1000																	
1200																	
1500																	
1800 2200																	
2700																	
3300																	
3900																	
4700																	
5600	1															1	
6800																	
8200																	
0.010																	
0.012																	
0.015																	
0.018																	
0.022																	
0.027																	
0.033																	
0.039																	
0.047 0.056																	
0.056																	
0.082																	
0.10																	
0.12																	
0.15																	
0.18																	
0.22																	
0.27					<u> </u>				<u></u>		<u></u>					<u> </u>	
0.33																	
0.47																	
0.56																	
0.68																	
0.82																	
1.0	-																
1.2 1.5																	
1.5																	
2.2	1	-	-	-			-				 			-		1	
3.3																	
4.7																	
6.8	1																
10																	
22																	
47																	
100																	

Capacitance tolerance available: ±10%

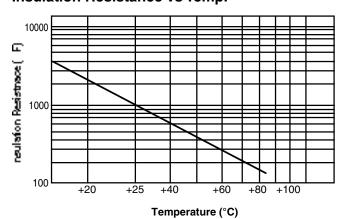
SS-241 R5

5. Characteristics

Item	Requirement		Test Methods			
Operating Temperature Range	-55°C to +85°C		Temperature cycle chamber			
Capacitance	Within specified tolerar	nce	Francisco 1 O kHz + 100/			
Dissipation Factor	2.5% for 50V DC rati 5.0% for 10V DC rati		Frequency: 1.0 kHz ± 10% Voltage: 1.0 Vrms ± .2 V For Cap > 10 µF, 0.5 Vrms @ 120 Hz			
Insulation Resistance	100,000 M or 500 M - µ whichever is less	uF,	Charge device with rated voltage for 60 ± 5 secs @ room temp/humidity			
Dielectric Strength	No breakdown or visua	ll defects	Charge device with 300% of rated voltage for 1-5 seconds, w/charge and discharge current limited to 50 mA (max)			
Resistance to	Appearance	No defects	Deflection: 1 mm Test Time: 30 seconds			
Flexure Stresses	Capacitance Variation	± 10%				
	Dissipation Factor	Meets initial values				
	Insulation Resistance Initial Value x 0.3		90 mm			
Solderability	95% of each terminal with fresh solder	should be covered	Dip device in eutectic solder at 230 \pm 5°C for 5.0 \pm 0.5 seconds			
Resistance to Solder Heat	Appearance	No defects, < 25% leaching of either end terminal	Dip device in eutectic solder at 260°C for			
	Capacitance Variation	± 7.5%	60 seconds. Store at room temperature			
	Dissipation Factor	Meets initial values	for 24 ± 2 hours before measuring			
	Insulation Resistance	Meets initial values	electrical properties			
	Dielectric Strength	Meets initial values				
Thermal Shock	Appearance	No visual defects	Step 1: -55°C ± 2° 30 ± 3 minutes			
	Capacitance Variation	± 7.5%	Step 2: Room temp 3 minutes			
	Dissipation Factor	Meets initial values	Step 3: +85°C ± 2° 30 ± 3 minutes			
	Insulation Resistance	Meets initial values	Step 4: Room temp 3 minutes			
	Dielectric Strength	Meets initial values	Repeat for 5 cycles and measure after 24 ± 2 hours at room temperature			


SS-241 R5

5. Characteristics (continued)


Item	Requirement		Test Methods		
Load Life	Appearance	No visual defects	Charge device with twice rated voltage		
	Capacitance Variation	± 12.5%	in test chamber set at 85°C ± 2°C for		
	Dissipation Factor	Initial value x 2.0	1000 hours (+48, -0)		
	Insulation Resistance	Initial value x 0.3	Remove from test chamber and stabilize at		
	Dielectric Strength	Meets initial values	room temp. and humidity for 24 ±2 hours before measuring		
Load Humidity	Appearance	No visual defects	Store in a test chamber set at 85°C ± 2°C/		
	Capacitance Variation	± 12.5%	85% ±5% relative humidity for 1000 hours		
	Dissipation Factor	Initial value x 2.0	(+48, -0) with rated voltage applied		
	Insulation Resistance	Initial value x 0.3	Remove from chamber and stabilize at		
	Dielectric Strength	Meets initial values	room temp. and humidity for 24 ±2 hours before measuring		

6. Typical Impedance Characteristics

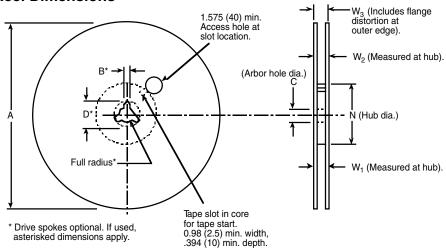
X5R - Temperature Coefficient

Insulation Resistance vs Temp.

SS-241 R5

7. Tape and Reel Quantities

All tape and reel specifications are in compliance with RS481.


Size	Dielectric	Voltage	Cap. Range	TP	TD	TE	TDB	TEB
0402	All	All	All	10000				
0603	All	All	All		4000		15000	
0805	X5R	All	All			3000		
1206	X5R	All	All			2000		
1210	X5R	10	106 ~ 226			2000		

^{*}TP is a 7" reel with a 2mm pitch,

TD & TE are 7" reels,

TDB & TEB are 13" reels

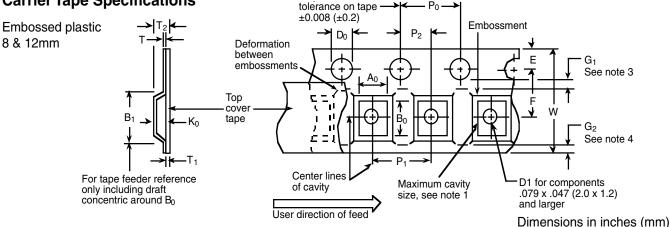
8. Reel Dimensions

Dimensions in inches (mm)

Tape Size ⁽¹⁾	A Max.	B* Min.	С	D* Min.	N Min.	W ₁	W ₂ Max.	W ₃
8mm	12.992	0.059	0.512 ± 0.008	.795	1.969	.331 [±] .060 (8.4 ± 1.0 (8.0)	.567 14.4	.311 (7.9 Min.) .429 (10.9 Max.)
12mm	(330)	(1.5)	(13.0 ± 0.20)	(20.2)	(50)	.488 ± .076 (12.4± 2.0)	.724 (18.4)	.469 (11.9 Min.) .607 (15.4 Max.)

Metric dimensions will govern.

English measurements rounded and for reference only.


(1) For tape sizes 16mm and 24mm (used with chip size 3640) consult EIA RS-481 latest revision.

PAGE 5 OF 8

SS-241 R5

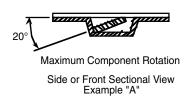
9. Carrier Tape Specifications

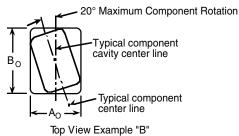
Tape Size Constant	D ₀	E	P ₀	P ₂	T Max.	T ₁	G ₁	G ₂
8mm and 12mm	.059 ± .004 (1.5 ± 0.10)	.069 ± .004 (1.75 ±0.10)	.157 ± .004 (4.0 ± 0.10)	.079 ± .002 (2.0 ± 0.05)	.024 (0.600)	.004 (0.10) Max.	.030 (0.75) Min. See note 3	.030 (0.75) Min. See note 4
Tape Size <u>Variable</u>	B ₁ Max. See note 6	D ₁ Min. See note 5	F	P ₁	R Min. See note 2	T ₂	w	$A_0B_0K_0$
8mm	.179 (4.55)	.039 (1.0)	.138 ± .002 (3.5 ± 0.05)	.157 ± .004 (4.0 ± 0.10)	.984 (25)	.098 (2.5 Max.)	.315 ± .012 .004 (8.0 ± 0.3)	See note 1
12mm	.323 (8.2)	.059 (1.5)	.217 ± .002 (5.5 ± 0.05)	.157 ± .004 (4.0 ± 0.10)	1.181 (30)	.256 (6.5 Max.)	.472 ± .012 (12.0 ± .30)	See note 1
12mm 1/2 Pitch	.179 (4.55)	.039 (1.0)	.138 ± .002 (3.5 ± 0.05)	.079 ± .004 (2.0 ± 0.10)	.984 (25)	.098 (2.5 Max.)	.315 ± .012 (8.0 ± 0.3)	See note 1
12mm Double Pitch	.323 (8.2)	.059 (1.5)	.217 ± .002 (5.5 ± 0.05)	.315 ± .004 (8.0 ± 0.10)	1.181 (30)	.256 (6.5 Max.)	.472 ± .012 (12.0 ± .30)	See note 1

Notes:

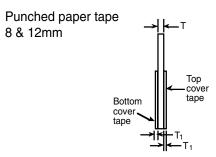
- 1. A₀, B₀ and K₀ are determined by the max. dimensions to the ends of the terminals extending from the components body and/or the body of the component. The clearance between the end of the terminals of the body of the components to the sides and depth of the cavity (A₀, B₀ and K₀) must be within .002" (0.05)mm min. and .020" (0.50)mm max. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see examples A & B).
- 2. Tape with components shall pass around radius "R" without damage. The minimum trailer length (Note 2 Fig. 3) may require additional length to provide R min. for .472" (12)mm embossed tape for reels with hub diameters approaching N min. (Table 4).
- 3. G₁ dimension is the flat area from the edge of the sprocket hole to either the outward deformation of the carrier tape between the embossed cavities or to the edge of the cavity whichever is less.
- 4. G₂ dimension is the flat area from the edge of the carrier tape opposite the sprocket holes to either the outward deformation of the carrier tape between the embossed cavity or to the edge of the cavity whichever is less.

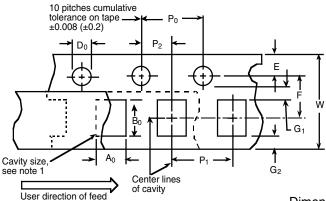
PAGE 6 OF 8


SS-241 R5


9. Carrier Tape Specifications (continued)

Embossed plastic 8 & 12mm


Notes:

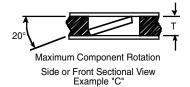

- 5. The embossed hole location shall be measured from the sprocket hole controlling the location of the embossment. Dimensions of embossment location and hole location shall be applied independent of each other.
- 6. B₁ dimension is a reference dimension for tape feeder clearance only.

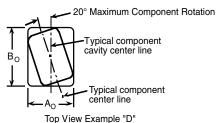
10. Carrier Tape Specifications

Dimensions in inches (mm)

Tape Size <u>Constant</u>	D ₀	E	P ₀	P ₂	T ₁	G ₁	G	2	R MIN
8mm and 12mm	.059 ± .004 000 (1.5 ± 0.1)	.069 ± .0 (1.75 ±0.	.157 ± .004 (4.0 ± 0.10)	.079 ± .002 (2.0 ± 0.05)	.004 (0.10) Max.	.030 (0.75) Min.	.03 (0.7 Mi	75)	.984 (25) See note 2
Tape Size <u>Variable</u>	P) ₁	F W A ₀ B ₀		A_0B_0		Т		
8mm	_	± .004 : 0.10)	.138 ± .002 (3.5 ± 0.05)	.315 (8.0	± .012 004 ± 0.3 - 0.1				
12mm	_	± .004 : .010)	.217 ± .002 (5.5 ± 0.05)		± .012 ± 0.3)	0 .	ı		
8mm 1/2 Pitch		± .004 : 0.10)	.138 ± .002 (3.5 ± 0.05)	.315 (8.0	± .012 004 ± 0.3) - 0.1	See note 1		See note 3	
12mm Double Pitch		± .004 : .010)	.217 ± .002 (5.5 ± 0.05)		± .012 ± 0.3)				

PAGE 7 OF 8

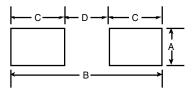

SS-241 R5


10. Carrier Tape Specifications (continued)

Punched paper tape 8 & 12mm

Notes:

- 1. A₀, B₀ and T are determined by the max. dimensions to the ends of the terminals extending from the component body and/or the body dimensions of the component. The clearance between the ends of the terminals or body of the components to the sides and depth of the cavity (A₀, B₀ and T) must be within .002" (0.05) mm min. and .020" (0.50) mm max. The clearance allowed must also prevent rotation of the component within the cavity of not more than 20 degrees (see examples C & D).
- 2. Tape with components shall pass around radius "R" without damage.
- 3. .043" (1.1) mm base tape and .063" (1.6) mm max. for non-paper base compositions.



11. Recommended Land Pattern Dimensions

Component pads should be designed to achieve good solder filets and minimize component movement during reflow soldering. Pad dimensions are given below for multilayer ceramic capacitors for both reflow and wave soldering. The basis for these designs is:

- Pad width equal to component width. It is permissible to decrease this to as low as 85% of component width but it is not advisable to go below this.
- Pad overlap 0.5mm beneath component
- Pad extension 0.5mm beyond components for reflow and 1.0mm for wave soldering

		Dimensions inches (mm)										
Case Size	Α	В	С	D								
0402	0.02	0.07	0.02	0.02								
	(0.50)	(1.70)	(0.60)	(0.50)								
0603	0.03	0.09	0.03	0.03								
	(0.75)	(2.30)	(0.80)	(0.70)								
0805	0.05	0.12	0.04	0.04								
	(1.25)	(3.00)	(1.00)	(1.00)								
1206	0.06	0.16	0.04	0.09								
	(1.60)	(4.00)	(1.00)	(2.00)								
1210	0.10	0.16	0.04	0.09								
	(2.50)	(4.00)	(1.00)	(2.00)								