

September 2006 Giving you the edge PCS2P5T915A

rev 0.2

### Low Voltage (2.5V) High Accuracy 1:5 Clock Fan-Out Buffer

#### **Features**

- Very low Output Skew: < 25 pS (max)
- Very low Duty Cycle Distortion: 300 pS (max)
- Low Propagation delays : 2nS (max )
- DC to 250MHz Operating Range
- Very low Power Consumption
- Hot insertable
- Over-Voltage Tolerant Inputs
- Very Low Cycle to cycle Jitter
- 2.5V Supply Voltage
- Isolated Output Power (VDDQ)
- 3 level inputs for selectable interface
- Selectable Inputs: HSTL, eHSTL, 1.8V/2.5V LVTTL or LVPECL
- Available in Standard 48 pin TSSOP Package
- Lead Free Option

#### **Product Description**

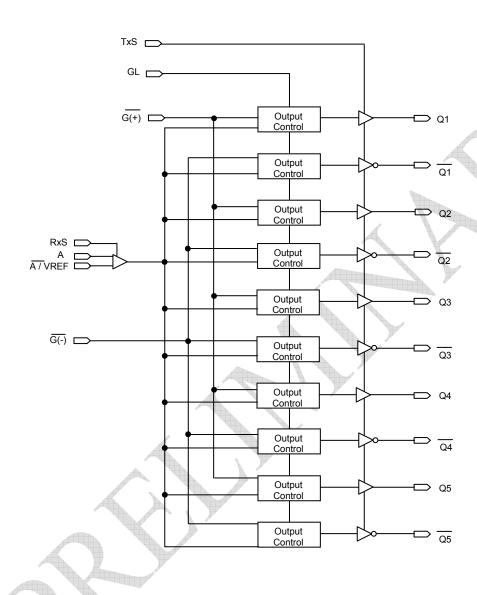
The PCS2P5T915A is a versatile user configurable/selectable 2.5V differential buffer for fanout and distribution of a high accuracy clock reference source. Accepting either a single ended or a differential

input, the PCS2P5T915A replicates the input to 10 outputs organised as output pairs for differential signalling.

The PCS2P5T915A performs as a translator or converter for a differential HSTL, eHSTL, 1.8V/2.5V LVTTL or CMOS, LVPECL or single ended 1.8V/2.5V LVTTL or CMOS inputs to HSTL, eHSTL, 1.8V/2.5V LVTTL outputs A user interface for configuration/selection is controlled via a three level input that can be wired or conditioned for the appropriate low-mid-high levels. In addition, the PCS2P5T915A true or complementary outputs may be asynchronously enabled and/or disabled. Multiple power pins for power and and returns guarantee the low skews and high accuracy.

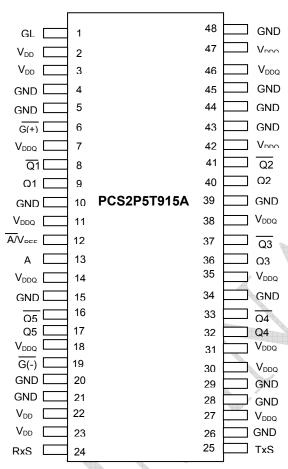
#### **Applications**

- High Accuracy Clock Signal Fan-out and Distribution
- Specialty Synchronous Memory Clock Support
- Data Communications


Switches

Routers

Hubs.




# PCS2P5T915A Functional Block Diagram





#### **Pin Configuration**



# Absolute Maximum Ratings<sup>1</sup>

Notes: 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. V<sub>DDQ</sub> and V<sub>DD</sub> internally operate independently. No power sequencing requirements need to be met.

3. Not to exceed 3.6V.

| Symbol           | Description                       | Max                           | Unit |
|------------------|-----------------------------------|-------------------------------|------|
| $V_{DD}$         | Power Supply Voltage <sup>2</sup> | -0.5 to +3.6                  | V    |
| $V_{DDQ}$        | Output Power Supply <sup>2</sup>  | -0.5 to +3.6                  | V    |
| Vı               | Input Voltage                     | -0.5 to +3.6                  | V    |
| Vo               | Output Voltage <sup>3</sup>       | -0.5 to V <sub>DDQ</sub> +0.5 | V    |
| $V_{REF}$        | Reference Voltage <sup>3</sup>    | -0.5 to +3.6                  | V    |
| T <sub>STG</sub> | Storage Temperature               | -65 to +165                   | ° C  |
| TJ               | Junction Temperature              | 150                           | ° C  |

# Capacitance<sup>1,2</sup> (T<sub>A</sub> = +25°C, F = 1.0MHz)

| Symbol          | Parameter         | Min | Тур | Max | Unit |
|-----------------|-------------------|-----|-----|-----|------|
| C <sub>IN</sub> | Input Capacitance |     | 3.5 |     | pF   |

**Notes:** 1. This parameter is measured at characterization but not tested.

2. Capacitance applies to all inputs except RxS and TxS.



PCS2P5T915A September 2006 Giving you the edge

#### rev 0.2

**Recommended Operating Range** 

| Symbol         | Description                                              | Min  | Тур                  | Max  | Unit |
|----------------|----------------------------------------------------------|------|----------------------|------|------|
| T <sub>A</sub> | Ambient Operating Temperature                            | -40  | +25                  | +85  | ° C  |
| $V_{DD}^{1}$   | Internal Power Supply Voltage                            | 2.4  | 2.5                  | 2.6  | V    |
|                | HSTL Output Power Supply Voltage                         | 1.4  | 1.5                  | 1.6  | V    |
| $V_{DDQ}^{1}$  | Extended HSTL and 1.8V LVTTL Output Power Supply Voltage | 1.65 | 1.8                  | 1.95 | V    |
|                | 2.5V LVTTL Output Power Supply Voltage                   |      | $V_{DD}$             |      | V    |
| $V_T$          | Termination Voltage                                      |      | V <sub>DDQ</sub> / 2 |      | V    |

**Note:** 1. All power supplies should operate in tandem. If  $V_{DD}$  or  $V_{DDQ}$  is at maximum, then  $V_{DDQ}$  or  $V_{DD}$  (respectively) should be at maximum, and vice-versa.

#### Pin Description

| Pin Descr         | iptioi | 1                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------|--------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Symbol            | I/O    | Туре                    | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Α                 | I      | Adjustable <sup>1</sup> | Clock input. A is the "true" side of the differential clock input. If operating in single-ended mode, A is the clock input.                                                                                                                                                                                                                                                                                                                                                               |
| ĀV <sub>REF</sub> | 1      | Adjustable <sup>1</sup> | Complementary clock input. $\overline{A}/V_{REF}$ is the "complementary" side of A if the input is in differential mode. If operating in single-ended mode, $\overline{A}/V_{REF}$ is connected to GND. For single-ended operation in differential mode, $\overline{A}/V_{REF}$ should be set to the desired toggle voltage for A:  2.5V LVTTL $V_{REF} = 1250 \text{mV}$ 1.8V LVTTL, eHSTL $V_{REF} = 900 \text{mV}$ HSTL $V_{REF} = 750 \text{mV}$ LVEPECL , $V_{REF} = 1082 \text{mV}$ |
| <del>G(</del> +)  | I      | LVTTL <sup>5</sup>      | Gate control for "true", Qn, outputs. When $\overline{G(+)}$ is LOW, the "true" outputs are enabled. When $\overline{G(+)}$ is HIGH, the "true" outputs are asynchronously disabled to the level designated by $\operatorname{GL}^4$ .                                                                                                                                                                                                                                                    |
| <del>G</del> (-)  | ı      | LVTTL <sup>5</sup>      | Gate control for "complementary", $\overline{Qn}$ , outputs. When $\overline{G(-)}$ is LOW, the "complementary" outputs are enabled. When $\overline{G(-)}$ is HIGH, the "complementary" outputs are asynchronously disabled to the opposite level as $GL^4$ .                                                                                                                                                                                                                            |
| GL                | 1      | LVTTL <sup>5</sup>      | Specifies output disable level. If HIGH, "true" outputs disable HIGH and "complementary" outputs disable LOW. If LOW, "true" outputs disable LOW and "complementary" outputs disable HIGH.                                                                                                                                                                                                                                                                                                |
| Qn                | 0      | Adjustable <sup>2</sup> | Clock outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Qn                | 0      | Adjustable <sup>2</sup> | Complementary clock outputs                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| RxS               | I      | 3 Level <sup>3</sup>    | Selects single-ended 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) clock input or differential (LOW) clock input                                                                                                                                                                                                                                                                                                                                                                                    |
| TxS               | I      | 3 Level <sup>3</sup>    | Sets the drive strength of the output drivers to be 2.5V LVTTL (HIGH), 1.8V LVTTL (MID) or HSTL (LOW) compatible. Used in conjuction with $V_{DDQ}$ to set the interface levels.                                                                                                                                                                                                                                                                                                          |
| $V_{DD}$          | 4      | PWR                     | Power supply for the device core and inputs                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $V_{DDQ}$         |        | PWR                     | Power supply for the device outputs. When utilizing 2.5V LVTTL outputs, $V_{\text{DDQ}}$ should be connected to $V_{\text{DD}}$ .                                                                                                                                                                                                                                                                                                                                                         |
| GND               |        | PWR                     | Power supply return for all power                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

Notes: 1. Inputs are capable of translating the following interface standards. User can select between:
Single-ended 2.5V LVTTL levels

Single-ended 1.8V LVTTL levels

or Differential 2.5V/1.8V LVTTL levels

Differential HSTL and eHSTL levels

- Differential LVEPECL levels 2. Outputs are user selectable to drive 2.5V, 1.8V LVTTL, eHSTL, or HSTL interface levels when used with the appropriate VDDQ voltage.
- 3. 3-level inputs are static inputs and must be tied to VDD or GND or left floating. These inputs are not hot-insertable or over voltage tolerant.
- 4. Because the gate controls are asynchronous, runt pulses are possible. It is the user's responsibility to either time the gate control signals to minimize the possibility of runt pulses or be able to tolerate them in down stream circuitry.
- 5. Pins listed as LVTTL inputs will accept 2.5V signals when RxS = HIGH or 1.8V signals when RxS = LOW or MID.



### Input/Output Selection<sup>1</sup>

| Input/Output Selection |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Input                  | Output                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
| 2.5V LVTTL SE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1.8V LVTTL SE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 2.5V LVTTL DSE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1.8V LVTTL DSE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| LVEPECL DSE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| eHSTL DSE              | 2.5V LVTTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| HSTL DSE               | 2.50 LVIIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 2.5V LVTTL DIF         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1.8V LVTTL DIF         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| LVEPECL DIF            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| eHSTL DIF              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| HSTL DIF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 2.5V LVTTL SE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1.8V LVTTL SE          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 2.5V LVTTL DSE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1.8V LVTTL DSE         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| LVEPECL DSE            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| eHSTL DSE              | 1.8V LVTTL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| HSTL DSE               | 1.8V LVIIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 2.5V LVTTL DIF         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| 1.8V LVTTL DIF         | \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| LVEPECL DIF            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| eHSTL DIF              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| HSTL DIF               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                        | The second secon |  |  |  |  |

| Input          | Output                                    |
|----------------|-------------------------------------------|
| 2.5V LVTTL SE  |                                           |
| 1.8V LVTTL SE  |                                           |
| 2.5V LVTTL DSE |                                           |
| 1.8V LVTTL DSE | A                                         |
| LVEPECL DSE    |                                           |
| eHSTL DSE      | eHSTL                                     |
| HSTL DSE       | CHOIL                                     |
| 2.5V LVTTL DIF |                                           |
| 1.8V LVTTL DIF |                                           |
| LVEPECL DIF    | N. C. |
| eHSTL DIF      |                                           |
| HSTL DIF       |                                           |
| 2.5V LVTTL SE  |                                           |
| 1.8V LVTTL SE  |                                           |
| 2.5V LVTTL DSE |                                           |
| 1.8V LVTTL DSE |                                           |
| LVEPECL DSE    |                                           |
| eHSTL DSE      | HSTL                                      |
| HSTL DSE       | HOIL                                      |
| 2.5V LVTTL DIF |                                           |
| 1.8V LVTTL DIF |                                           |
| LVEPECL DIF    |                                           |
| eHSTL DIF      |                                           |
| HSTL DIF       |                                           |

Note: 1. The INPUT/OUTPUT SELECTION Table describes the total possible combinations of input and output interfaces. Single-Ended (SE) inputs in a single-ended mode require the  $\Delta IV_{REF}$  pin to be connected to GND. Differential Single-Ended (DSE) is for single-ended operation in differential mode, requiring a  $V_{REF}$ . Differential (DIF) inputs are used only in differential mode.

#### **DC Electrical Characteristics Over Operating Range**

| Symbol           | Parameter                             | Test Co                              | onditions  | Min                      | Max              | Unit |
|------------------|---------------------------------------|--------------------------------------|------------|--------------------------|------------------|------|
| V <sub>IHH</sub> | Input HIGH Voltage Level <sup>1</sup> | 3-Level I                            | nputs Only | V <sub>DD -</sub> 0.4    |                  | V    |
| V <sub>IMM</sub> | Input MID Voltage Level <sup>1</sup>  | 3-Level I                            | nputs Only | V <sub>DD</sub> /2 - 0.2 | $V_{DD}/2 + 0.2$ | V    |
| $V_{ILL}$        | Input LOW Voltage Level <sup>1</sup>  | 3-Level Inputs Only                  |            |                          | 0.4              | V    |
|                  |                                       | V <sub>IN</sub> = V <sub>DD</sub>    | HIGH Level |                          | 200              |      |
| l <sub>3</sub>   | 3-Level Input DC Current (RxS, TxS)   | V <sub>IN</sub> = V <sub>DD</sub> /2 | MID Level  | -50                      | +50              | μA   |
| A                |                                       | V <sub>IN</sub> = GND                | LOW Level  | -200                     |                  |      |

Note: 1. These inputs are normally wired to  $V_{DD}$ , GND, or left floating. Internal termination resistors bias unconnected inputs to  $V_{DD}/2$ .



#### DC Electrical Characteristics Over Operating Range for HSTL<sup>1</sup>

| Symbol          | Parameter                                        | Test Conditions                                  | Min                    | Typ <sup>7</sup> | Max                    | Unit |
|-----------------|--------------------------------------------------|--------------------------------------------------|------------------------|------------------|------------------------|------|
| Input Cha       | racteristics                                     |                                                  | •                      |                  |                        |      |
| I <sub>IH</sub> | Input HIGH Current <sup>9</sup>                  | $V_{DD}$ = 2.6V $V_{I}$ = $V_{DDQ}$ /GND         |                        |                  | ±5                     |      |
| I <sub>IL</sub> | Input LOW Current <sup>9</sup>                   | $V_{DD}$ = 2.6V $V_{I}$ = GND/ $V_{DDQ}$         |                        |                  | ±5                     | μA   |
| $V_{IK}$        | Clamp Diode Voltage                              | V <sub>DD</sub> = 2.4V, I <sub>IN</sub> = - 18mA |                        | -0.7             | - 1.2                  | V    |
| $V_{IN}$        | DC Input Voltage                                 |                                                  | -0.3                   |                  | +3.6                   | V    |
| $V_{DIF}$       | DC Differential Voltage <sup>2,8</sup>           |                                                  | 0.2                    | A                |                        | V    |
| $V_{CM}$        | DC Common Mode Input<br>Voltage <sup>3,8</sup>   |                                                  | 680                    | 750              | 900                    | mV   |
| $V_{IH}$        | DC Input HIGH <sup>4,5,8</sup>                   |                                                  | V <sub>REF</sub> + 100 |                  |                        | mV   |
| $V_{IL}$        | DC Input LOW <sup>4,6,8</sup>                    |                                                  |                        |                  | V <sub>REF</sub> - 100 | mV   |
| $V_{REF}$       | Single-Ended Reference<br>Voltage <sup>4,8</sup> |                                                  |                        | 750              |                        | mV   |
| Output C        | haracteristics                                   |                                                  |                        |                  |                        |      |
| 1/              | Outrout I II CI I Voltage                        | I <sub>OH</sub> = -8mA                           | V <sub>DDQ</sub> - 0.4 |                  |                        | V    |
| $V_{OH}$        | Output HIGH Voltage                              | I <sub>OH</sub> = -100μA                         | V <sub>DDQ</sub> - 0.1 |                  |                        | V    |
|                 | 0.1.1100000000                                   | I <sub>OL</sub> = 8mA                            |                        |                  | 0.4                    | V    |
| $V_{OL}$        | Output LOW Voltage                               | I <sub>OL</sub> = 100μA                          |                        |                  | 0.1                    | V    |

Notes: 1. See RECOMMENDED OPERATING RANGE table.

- interface table should be referenced.

  9. For differential mode (RxS = LOW), A and A/V<sub>REF</sub> must be at the opposite rail.

# Power Supply Characteristics for HSTL Outputs<sup>1</sup>

| Symbol            | Parameter                                                      | Test Conditions <sup>2</sup>                                                                      | Тур | Max | Unit   |
|-------------------|----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----|-----|--------|
| I <sub>DDQ</sub>  | Quiescent V <sub>DD</sub> Power<br>Supply Current              | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded | 20  | 30  | mA     |
| $I_{DDQQ}$        | Quiescent V <sub>DDQ</sub> Power<br>Supply Current             | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded | 0.1 | 0.3 | mA     |
| I <sub>DDD</sub>  | Dynamic V <sub>DD</sub> Power<br>Supply Current per<br>Output  | $V_{DD}$ = Max., $V_{DDQ}$ = Max., $C_L$ = 0pF                                                    | 20  | 30  | μΑ/MHz |
| I <sub>DDDQ</sub> | Dynamic V <sub>DDQ</sub> Power<br>Supply Current per<br>Output | V <sub>DD</sub> = Max., V <sub>DDQ</sub> = Max., C <sub>L</sub> = 0pF                             | 30  | 50  | μΑ/MHz |
|                   | Total Power V <sub>DD</sub> Supply                             | V <sub>DDQ</sub> = 1.5V, F <sub>REFERENCE</sub> CLOCK= 100MHz,C <sub>L</sub> = 15pF               | 20  | 40  | m Λ    |
| I <sub>TOT</sub>  | Current                                                        | V <sub>DDQ</sub> = 1.5V, F <sub>REFERENCE</sub> CLOCK= 250MHz, C <sub>L</sub> = 15pF              | 35  | 50  | mA     |
| I <sub>TOTQ</sub> | Total Power V <sub>DDQ</sub> Supply                            | V <sub>DDQ</sub> = 1.5V, F <sub>REFERENCE CLOCK</sub> = 100MHz, C <sub>L</sub> = 15pF             | 35  | 70  | mA     |
| ITOTQ             | Current                                                        | V <sub>DDO</sub> = 1.5V, F <sub>REFERENCE</sub> CLOCK= 250MHz, C <sub>I</sub> = 15pF              | 60  | 120 | 1 '''  |

Note: 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

- 2. The termination resistors are excluded from these measurements.
- 3. If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

See RECOMMENDED OPERATING RANGE table.
 V<sub>DIF</sub> specifies the minimum input differential voltage (V<sub>TR</sub> - V<sub>CP</sub>) required for switching where V<sub>TR</sub> is the "true" input level and V<sub>CP</sub> is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
 V<sub>CM</sub> specifies the maximum allowable range of (V<sub>TR</sub> + V<sub>CP</sub>) /2. Differential mode only.
 For single-ended operation, in differential mode, AV<sub>REF</sub> is tied to the DC voltage V<sub>REF</sub>.
 Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
 Voltage required to maintain a logic LOW, single-ended operation in differential mode.
 Typical values are at V<sub>DD</sub> = 2.5V, V<sub>DDQ</sub> = 1.5V, +25°C ambient.
 The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.

#### Differential Input AC Test Conditions for HSTL

| Symbol                          | Parameter                                             | Value          | Units |
|---------------------------------|-------------------------------------------------------|----------------|-------|
| $V_{DIF}$                       | Input Signal Swing <sup>1</sup>                       | 1              | V     |
| V <sub>X</sub>                  | Differential Input Signal Crossing Point <sup>2</sup> | 750            | mV    |
| $V_{THI}$                       | Input Timing Measurement Reference Level <sup>3</sup> | Crossing Point | V     |
| t <sub>R</sub> , t <sub>F</sub> | Input Signal Edge Rate <sup>4</sup>                   | 1              | V/nS  |

Notes: 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment.

Compliant devices must meet the V<sub>DIF</sub> (AC) specification under actual use conditions.

2. A 750mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices

- must meet the  $\dot{V}_X$  specification under actual use conditions.
- 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
- 4. The input signal edge rate of 1V/nS or greater is to be maintained in the 20% to 80% range of the input waveform.

DC Electrical Characteristics Over Operating Range for eHSTL<sup>1</sup>

| De Electrical Characteristics Over Operating Range for endit |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         |                                               |  |  |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------|-----------------------------------------------|--|--|
| ol Parameter                                                 | Test Conditions                                                                                                                                                                                                                                     | Min                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Typ <sup>7</sup>                  | Max                                     | Unit                                          |  |  |
| haracteristics                                               |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 7                                       |                                               |  |  |
| Input HIGH Current <sup>9</sup>                              | $V_{DD}$ = 2.6V $V_{I} = V_{DDQ}/GND$                                                                                                                                                                                                               | 4 \ \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                   | ±5                                      | μΑ                                            |  |  |
| Input LOW Current <sup>9</sup>                               | $V_{DD}$ = 2.6V $V_{I}$ = GND/ $V_{DDQ}$                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | ±5                                      |                                               |  |  |
| Clamp Diode Voltage                                          | V <sub>DD</sub> = 2.4V, I <sub>IN</sub> = -18mA                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | - 0.7                             | - 1.2                                   | V                                             |  |  |
| DC Input Voltage                                             |                                                                                                                                                                                                                                                     | -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                   | +3.6                                    | V                                             |  |  |
| DC Differential Voltage <sup>2,8</sup>                       |                                                                                                                                                                                                                                                     | 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                   |                                         | V                                             |  |  |
| DC Common Mode Input<br>Voltage <sup>3,8</sup>               |                                                                                                                                                                                                                                                     | 800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 900                               | 1000                                    | mV                                            |  |  |
| DC Input HIGH <sup>4,5,8</sup>                               |                                                                                                                                                                                                                                                     | V <sub>REF</sub> + 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                         | mV                                            |  |  |
| DC Input LOW <sup>4,6,8</sup>                                |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | V <sub>REF</sub> - 100                  | mV                                            |  |  |
| Single-Ended Reference<br>Voltage <sup>4,8</sup>             | 4 74                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 900                               |                                         | mV                                            |  |  |
| Characteristics                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                         |                                               |  |  |
| Output IIICI I Valtaga                                       | I <sub>OH</sub> = -8mA                                                                                                                                                                                                                              | V <sub>DDQ</sub> - 0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                         | V                                             |  |  |
| Output HIGH Voltage                                          | I <sub>OH</sub> = -100μA                                                                                                                                                                                                                            | V <sub>DDQ</sub> - 0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                   |                                         | V                                             |  |  |
| Output LOW/Voltage                                           | I <sub>OL</sub> = 8mA                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 0.4                                     | V                                             |  |  |
| Output LOW Voltage                                           | I <sub>OL</sub> = 100μA                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                   | 0.1                                     | V                                             |  |  |
|                                                              | Input HIGH Current <sup>9</sup> Input LOW Current <sup>9</sup> Clamp Diode Voltage DC Input Voltage DC Differential Voltage <sup>2,8</sup> DC Common Mode Input Voltage <sup>3,8</sup> DC Input HIGH <sup>4,5,8</sup> DC Input LOW <sup>4,6,8</sup> | Parameter Test Conditions  haracteristics  Input HIGH Current <sup>9</sup> V <sub>DD</sub> = 2.6V V <sub>I</sub> = V <sub>DDQ</sub> /GND  Input LOW Current <sup>9</sup> V <sub>DD</sub> = 2.6V V <sub>I</sub> = GND/V <sub>DDQ</sub> Clamp Diode Voltage V <sub>DD</sub> = 2.4V, I <sub>IN</sub> = -18mA  DC Input Voltage  DC Differential Voltage <sup>2,8</sup> DC Common Mode Input Voltage <sup>3,8</sup> DC Input HIGH <sup>4,5,8</sup> DC Input LOW <sup>4,6,8</sup> Single-Ended Reference Voltage <sup>4,8</sup> Characteristics  Output HIGH Voltage  I <sub>OH</sub> = -8mA  I <sub>OH</sub> = -100µA | Parameter   Test Conditions   Min | Parameter   Test Conditions   Min   Typ | Parameter   Test Conditions   Min   Typ   Max |  |  |

- 2.  $V_{DIF}$  specifies the minimum input differential voltage ( $V_{TR}$   $V_{CP}$ ) required for switching where  $V_{TR}$  is the "true" input level and  $V_{CP}$  is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
- 3.  $V_{CM}$  specifies the maximum allowable range of  $(V_{TR} + V_{CP})$  /2. Differential mode only.
- 4. For single-ended operation, in a differential mode, A/V<sub>REF</sub> is tied to the DC voltage V<sub>REF</sub>.
- 5. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 6. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
- 7. Typical values are at  $V_{DD}$  = 2.5V,  $V_{DDQ}$  = 1.8V, +25°C ambient.
- 8. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 9. For differential mode (RxS = LOW), A and A/ $V_{REF}$  must be at the opposite rail.



### Power Supply Characteristics for eHSTL Outputs<sup>1</sup>

| Symbol            | Parameter                                                      | Test Conditions <sup>2</sup>                                                                                                                                                   | Тур      | Max       | Unit   |
|-------------------|----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------|--------|
| I <sub>DDQ</sub>  | Quiescent V <sub>DD</sub> Power<br>Supply Current              | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded                                                                              | 20       | 30        | mA     |
| I <sub>DDQQ</sub> | Quiescent V <sub>DDQ</sub> Power<br>Supply Current             | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded                                                                              | 0.1      | 0.3       | mA     |
| I <sub>DDD</sub>  | Dynamic V <sub>DD</sub> Power Supply Current per Output        | $V_{DD}$ = Max., $V_{DDQ}$ = Max., $C_L$ = 0pF                                                                                                                                 | 20       | 30        | μΑ/MHz |
| I <sub>DDDQ</sub> | Dynamic V <sub>DDQ</sub> Power<br>Supply<br>Current per Output | $V_{DD}$ = Max., $V_{DDQ}$ = Max., $C_L$ = 0pF                                                                                                                                 | 40       | 60        | μΑ/MHz |
| I <sub>TOT</sub>  | Total Power V <sub>DD</sub> Supply Current                     | V <sub>DDQ</sub> = 1.8V, F <sub>REFERENCE CLOCK</sub> = 100MHz, C <sub>L</sub> = 15pF                                                                                          | 20       | 40        | mA     |
| 101               |                                                                | $V_{DDQ}$ = 1.8V, $F_{REFERENCE\ CLOCK}$ = 250MHz, $C_L$ = 15pF                                                                                                                | 35       | 50 🗸      |        |
| I <sub>TOTQ</sub> | Total Power V <sub>DDQ</sub> Supply<br>Current                 | V <sub>DDQ</sub> = 1.8V, F <sub>REFERENCE CLOCK</sub> = 100MHz, C <sub>L</sub> = 15pF<br>V <sub>DDQ</sub> = 1.8V, F <sub>REFERENCE CLOCK</sub> = 250MHz, C <sub>L</sub> = 15pF | 40<br>80 | 80<br>160 | mA     |

Notes: 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

#### **Differential Input AC Test Conditions for eHSTL**

| Symbol                          | Parameter                                             | Value          | Units |
|---------------------------------|-------------------------------------------------------|----------------|-------|
| $V_{DIF}$                       | Input Signal Swing <sup>1</sup>                       | 1              | V     |
| V <sub>X</sub>                  | Differential Input Signal Crossing Point <sup>2</sup> | 900            | mV    |
| $V_{THI}$                       | Input Timing Measurement Reference Level <sup>3</sup> | Crossing Point | V     |
| t <sub>R</sub> , t <sub>F</sub> | Input Signal Edge Rate⁴                               | 1              | V/nS  |

Notes: 1. The 1V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>DIF</sub> (AC) specification under actual use conditions.

#### DC Electrical Characteristics Over Operating Range for LVEPECL<sup>1</sup>

| Symbol          | Parameter                                        | Test (                 | Conditions                 | Min   | Typ <sup>2</sup> | Max   | Unit |
|-----------------|--------------------------------------------------|------------------------|----------------------------|-------|------------------|-------|------|
| Input Ch        | aracteristics                                    |                        |                            | •     | •                | •     |      |
| I <sub>IH</sub> | Input HIGH Current <sup>6</sup>                  | V <sub>DD</sub> = 2.6V | $V_I = V_{DDQ}/GND$        |       |                  | ±5    | μA   |
| I <sub>IL</sub> | Input LOW Current <sup>6</sup>                   | V <sub>DD</sub> = 2.6V | $V_I = GND/V_{DDQ}$        |       |                  | ±5    | μΛ   |
| V <sub>IK</sub> | Clamp Diode Voltage                              | V <sub>DD</sub> = 2.4  | V, I <sub>IN</sub> = -18mA |       | -0.7             | - 1.2 | V    |
| V <sub>IN</sub> | DC Input Voltage                                 |                        |                            | - 0.3 |                  | 3.6   | V    |
| V <sub>СМ</sub> | DC Common Mode Input<br>Voltage <sup>3,5</sup>   |                        |                            | 915   | 1082             | 1248  | mV   |
| $V_{REF}$       | Single-Ended Reference<br>Voltage <sup>4,5</sup> |                        |                            |       | 1082             |       | mV   |
| V <sub>IH</sub> | DC Input HIGH                                    |                        |                            | 1275  |                  | 1620  | mV   |
| V <sub>IL</sub> | DC Input LOW                                     |                        |                            | 555   |                  | 875   | mV   |

- 2. Typical values are at  $V_{DD}$  = 2.5V, +25°C ambient.

- 3. V<sub>CM</sub> specifies the maximum allowable range of (V<sub>TR</sub> + <del>VCP</del>) /2. Differential mode only.
   4. For single-ended operation while in differential mode, A/V<sub>REF</sub> is tied to the DC Voltage V<sub>REF</sub>.
   5. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 6. For differential mode (RxS = LOW), A and A/ $V_{REF}$  must be at the opposite rail.

<sup>2.</sup> The termination resistors are excluded from these measurements.

<sup>3.</sup> If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

<sup>2.</sup> A 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>X</sub> specification under actual use conditions.

In all cases, input waveform timing is marked at the differential cross-point of the input signals.
 The input signal edge rate of 1V/nS or greater is to be maintained in the 20% to 80% range of the input waveform.



**Differential Input AC Test Conditions for LVEPECL** 

| Symbol                          | Parameter                                             | Value          | Units |
|---------------------------------|-------------------------------------------------------|----------------|-------|
| $V_{DIF}$                       | Input Signal Swing <sup>1</sup>                       | 732            | mV    |
| V <sub>X</sub>                  | Differential Input Signal Crossing Point <sup>2</sup> | 1082           | mV    |
| $V_{THI}$                       | Input Timing Measurement Reference Level <sup>3</sup> | Crossing Point | V     |
| t <sub>R</sub> , t <sub>F</sub> | Input Signal Edge Rate⁴                               | 1              | V/nS  |

Notes: 1. The 732mV peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>DIF</sub> (AC) specification under actual use conditions.

- 2. A 1082mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>x</sub> specification under actual use conditions.
- 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.
- 4. The input signal edge rate of 1V/nS or greater is to be maintained in the 20% to 80% range of the input waveform.

DC Electrical Characteristics Over Operating Range for 2.5V LVTTL<sup>1</sup>

| Parameter   Test Conditions   Min   Typ8   Max   Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | DC Electi       | C Electrical Characteristics Over Operating Range for 2.5v Lv i i L |                                          |                        |                  |                        |      |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---------------------------------------------------------------------|------------------------------------------|------------------------|------------------|------------------------|------|--|--|
| IIH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Symbol          | Parameter                                                           | Test Conditions                          | Min                    | Typ <sup>8</sup> | Max                    | Unit |  |  |
| IIIL   Input LOW Current   10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Input Ch        | naracteristics                                                      |                                          |                        | )                |                        |      |  |  |
| Input LOW Current   V   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   V   E   S   E   S   V   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E   S   E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | I <sub>IH</sub> | Input HIGH Current <sup>10</sup>                                    | $V_{DD}$ = 2.6V $V_{I}$ = $V_{DDQ}$ /GND |                        |                  | ±5                     |      |  |  |
| Vin   DC Input Voltage   -0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | I <sub>IL</sub> | Input LOW Current <sup>10</sup>                                     | $V_{DD}$ = 2.6V $V_{I}$ = GND/ $V_{DDQ}$ |                        |                  | ±5                     | μΑ   |  |  |
| Single-Ended Inputs     V <sub>IH</sub>   DC Input HIGH   1.7   V     V <sub>IL</sub>   DC Input LOW   0.7   V     Differential Inputs     V <sub>DIF</sub>   DC Differential Voltage   0.2   V     V <sub>CM</sub>   DC Common Mode Input Voltage   1150   1250   1350   mV     V <sub>IH</sub>   DC Input HIGH   0.6,9   V     V <sub>IL</sub>   DC Input LOW   0.7   V     V <sub>IL</sub>   DC Input LOW   0.7   V     V <sub>REF</sub>   Single-Ended Reference Voltage   0.9   V     V <sub>OH</sub>   Output HIGH Voltage   I <sub>OH</sub> = -12mA   V <sub>DDQ</sub> - 0.4   V     V <sub>OH</sub>   Output LOW Voltage   I <sub>OH</sub> = -100μA   V <sub>DDQ</sub> - 0.1   V     V <sub>OL</sub>   Output LOW Voltage   I <sub>OL</sub> = 12mA   0.4   V     I <sub>OL</sub> = 100μA   V <sub>DDQ</sub> - 0.1   V     I <sub>OL</sub> = 100μA   I <sub>OL</sub> = 100μA   0.1   V     I <sub>OL</sub> | Vıĸ             | Clamp Diode Voltage                                                 | $V_{DD}$ = 2.4V, $I_{IN}$ = -18mA        | A                      | - 0.7            | - 1.2                  | V    |  |  |
| V <sub>IH</sub> DC Input HIGH         1.7         V           V <sub>IL</sub> DC Input LOW         0.7         V           Differential Inputs           V <sub>DIF</sub> DC Differential Voltage <sup>3,9</sup> 0.2         V           V <sub>CM</sub> DC Common Mode Input Voltage <sup>4,9</sup> 1150         1250         1350         mV           V <sub>IH</sub> DC Input HIGH <sup>5,6,9</sup> V <sub>REF</sub> + 100         mV         mV           V <sub>IL</sub> DC Input LOW <sup>5,7,9</sup> V <sub>REF</sub> + 100         mV           V <sub>REF</sub> Single-Ended Reference Voltage <sup>5,9</sup> 1250         mV           Output Characteristics         I <sub>OH</sub> = -12mA         V <sub>DDQ</sub> - 0.4         V           V <sub>OH</sub> Output HIGH Voltage         I <sub>OH</sub> = -12mA         V <sub>DDQ</sub> - 0.4         V           V <sub>OL</sub> Output LOW Voltage         I <sub>OL</sub> = 12mA         0.4         V           V <sub>OL</sub> Output LOW Voltage         I <sub>OL</sub> = 12mA         0.4         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | V <sub>IN</sub> | DC Input Voltage                                                    |                                          | -0.3                   |                  | +3.6                   | V    |  |  |
| ViL         DC Input LOW         0.7         V           Differential Inputs           V <sub>DIF</sub> DC Differential Voltage <sup>3,9</sup> 0.2         V           V <sub>CM</sub> DC Common Mode Input Voltage <sup>4,9</sup> 1150         1250         1350         mV           V <sub>IH</sub> DC Input HIGH <sup>5,6,9</sup> V <sub>REF</sub> + 100         mV           V <sub>IL</sub> DC Input LOW <sup>5,7,9</sup> V <sub>REF</sub> + 100         mV           V <sub>REF</sub> Single-Ended Reference Voltage <sup>5,9</sup> 1250         mV           Output Characteristics           V <sub>OH</sub> Output HIGH Voltage         I <sub>OH</sub> = -12mA         V <sub>DDQ</sub> - 0.4         V           V <sub>OL</sub> Output LOW Voltage         I <sub>OH</sub> = -100μA         V <sub>DDQ</sub> - 0.1         V           V <sub>OL</sub> Output LOW Voltage         I <sub>OL</sub> = 12mA         0.4         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Single-E        | inded Inputs <sup>2</sup>                                           |                                          |                        |                  |                        |      |  |  |
| Differential Inputs   D.2   V   V   V   D.2   D.2   D.2   V   V   V   D.2   D.2   D.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | V <sub>IH</sub> | DC Input HIGH                                                       |                                          | 1.7                    |                  |                        | V    |  |  |
| V <sub>DIF</sub> DC Differential Voltage <sup>3,9</sup> 0.2         V           V <sub>CM</sub> DC Common Mode Input Voltage <sup>4,9</sup> 1150         1250         1350         mV           V <sub>IH</sub> DC Input HIGH <sup>5,6,9</sup> V <sub>REF</sub> + 100         mV           V <sub>IL</sub> DC Input LOW <sup>5,7,9</sup> V <sub>REF</sub> - 100         mV           V <sub>REF</sub> Single-Ended Reference Voltage <sup>5,9</sup> 1250         mV           Output Characteristics           V <sub>OH</sub> Output HIGH Voltage         I <sub>OH</sub> = -12mA         V <sub>DDQ</sub> - 0.4         V           I <sub>OH</sub> = -100µA         V <sub>DDQ</sub> - 0.1         V           V <sub>OL</sub> Output LOW Voltage         I <sub>OL</sub> = 12mA         0.4         V           I <sub>OL</sub> = 100µA         0.1         V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | V <sub>IL</sub> | DC Input LOW                                                        |                                          |                        |                  | 0.7                    | V    |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Differenti      | ial Inputs                                                          |                                          |                        |                  |                        |      |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $V_{DIF}$       | DC Differential Voltage <sup>3,9</sup>                              |                                          | 0.2                    |                  |                        | V    |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | V <sub>CM</sub> | Voltage <sup>4,9</sup>                                              |                                          | 1150                   | 1250             | 1350                   | mV   |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $V_{IH}$        | DC Input HIGH <sup>5,6,9</sup>                                      |                                          | V <sub>REF</sub> + 100 |                  |                        | mV   |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{IL}$        |                                                                     |                                          |                        |                  | V <sub>REF</sub> - 100 | mV   |  |  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $V_{REF}$       | Single-Ended Reference<br>Voltage <sup>5,9</sup>                    |                                          |                        | 1250             |                        | mV   |  |  |
| $V_{OH}$ Output HIGH Voltage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Output 0        | Characteristics                                                     |                                          |                        |                  |                        |      |  |  |
| $V_{OL}$ Output LOW Voltage $I_{OH}$ = -100 $\mu$ A $V_{DDQ}$ - 0.1 $V$ $I_{OL}$ = 12mA $V$ $V_{DD}$ 0.4 $V$ $V_{DD}$ 0.1 $V$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Vou             | Output HIGH Voltage                                                 | I <sub>OH</sub> = -12mA                  | V <sub>DDQ</sub> - 0.4 |                  |                        | V    |  |  |
| $V_{OL}$ Output LOW Voltage $I_{OL}$ = 100 $\mu$ A 0.1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V OH            | Catpat Hori Voltage                                                 | I <sub>OH</sub> = -100μA                 | V <sub>DDQ</sub> - 0.1 |                  |                        | V    |  |  |
| I <sub>OL</sub> = IUUµA U.1 V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Voi             | Output LOW Voltage                                                  |                                          |                        |                  | _                      |      |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 |                                                                     | · · · · · · · · · · · · · · · · · · ·    |                        |                  | 0.1                    | V    |  |  |

- 2. For 2.5V LVTTL single-ended operation, the RxS pin is tied HIGH and AV<sub>REF</sub> is tied to GND.

  3. V<sub>DIF</sub> specifies the minimum input differential voltage (V<sub>TR</sub> V<sub>CP</sub>) required for switching where V<sub>TR</sub> is the "true" input level and V<sub>CP</sub> is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
- 4.  $V_{CM}$  specifies the maximum allowable range of  $(V_{TR} + V_{CP})/2$ . Differential mode only. 5. For single-ended operation, in differential mode, A/V<sub>REF</sub> is tied to the DC voltage  $V_{REF}$ .
- 6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 7. Voltage required to maintain a logic LOW, single-ended operation in differential mode.
- 8. Typical values are at V<sub>DD</sub> = 2.5V, V<sub>DDQ</sub> = V<sub>DD</sub>, +25°C ambient.
  9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 10. For differential mode (RxS = LOW), A and A/V<sub>RFF</sub> must be at the opposite rail.



#### Power Supply Characteristics for 2.5V LVTTL Outputs<sup>1</sup>

| Symbol            | Parameter                                                   | Test Conditions <sup>2</sup>                                                                      | Тур | Max  | Unit   |
|-------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----|------|--------|
| I <sub>DDQ</sub>  | Quiescent V <sub>DD</sub> Power<br>Supply Current           | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded | 20  | 30   | mA     |
| I <sub>DDQQ</sub> | Quiescent V <sub>DDQ</sub> Power<br>Supply Current          | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded | 0.1 | 0.3  | mA     |
| I <sub>DDD</sub>  | Dynamic V <sub>DD</sub> Power Supply Current per Output     | $V_{DD}$ = Max., $V_{DDQ}$ = Max., $C_L$ = 0pF                                                    | 25  | 40   | μΑ/MHz |
| I <sub>DDDQ</sub> | Dynamic V <sub>DDQ</sub> Power<br>Supply Current per Output | $V_{DD}$ = Max., $V_{DDQ}$ = Max., $C_L$ = 0pF                                                    | 45  | 70   | μΑ/MHz |
|                   | Total Power V <sub>DD</sub> Supply                          | V <sub>DDQ</sub> = 2.5V., F <sub>REFERENCE CLOCK</sub> = 100MHz, C <sub>L</sub> = 15pF            | 25  | 40   | m Λ    |
| I <sub>TOT</sub>  | Current                                                     | V <sub>DDQ</sub> = 2.5V., F <sub>REFERENCE</sub> CLOCK= 200MHz, C <sub>L</sub> = 15pF             | 45  | 70   | mA     |
|                   | Total Power V <sub>DDQ</sub> Supply                         | V <sub>DDQ</sub> = 2.5V., F <sub>REFERENCE</sub> CLOCK= 100MHz, C <sub>L</sub> = 15pF             | 40  | 80 / | A      |
| Ιτοτα             | Current                                                     | V <sub>DDQ</sub> = 2.5V., F <sub>REFERENCE CLOCK</sub> = 200MHz, C <sub>L</sub> = 15pF            | 100 | 200  | mA     |

Notes: 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

#### Differential Input AC Test Conditions for 2.5V LVTTL

| Symbol                          | Parameter                                             | Value              | Units |
|---------------------------------|-------------------------------------------------------|--------------------|-------|
| $V_{DIF}$                       | Input Signal Swing <sup>1</sup>                       | $V_{DD}$           | V     |
| V <sub>X</sub>                  | Differential Input Signal Crossing Point <sup>2</sup> | V <sub>DD</sub> /2 | V     |
| $V_{THI}$                       | Input Timing Measurement Reference Level <sup>3</sup> | Crossing Point     | V     |
| t <sub>R</sub> , t <sub>F</sub> | Input Signal Edge Rate <sup>4</sup>                   | 2.5                | V/nS  |

Notes: 1. A nominal 2.5V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>DIF</sub> (AC) specification under actual use conditions.

### Single-ended Input AC Test Conditions for 2.5V LVTTL

| Symbol           | Parameter                                             | Value              | Units |
|------------------|-------------------------------------------------------|--------------------|-------|
| V <sub>IH</sub>  | Input HIGH Voltage                                    | $V_{DD}$           | V     |
| V <sub>IL</sub>  | Input LOW Voltage                                     | 0                  | V     |
| V <sub>THI</sub> | Input Timing Measurement Reference Level <sup>1</sup> | V <sub>DD</sub> /2 | V     |
| $t_R$ , $t_F$    | Input Signal Edge Rate <sup>2</sup>                   | 2                  | V/nS  |

Notes: 1. A nominal 1.25V timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE) environment.

<sup>2.</sup> The termination resistors are excluded from these measurements.

<sup>3.</sup> If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

 <sup>2.</sup> A nominal 1.25V crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>x</sub> specification under actual use conditions.
 3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

<sup>4.</sup> The input signal edge rate of 2.5V/nS or greater is to be maintained in the 20% to 80% range of the input waveform.

<sup>2.</sup> The input signal edge rate of 2V/nS or greater is to be maintained in the 10% to 90% range of the input waveform.



### DC Electrical Characteristics Over Operating Range for 1.8V LVTTL<sup>1</sup>

| Symbol          | Parameter                                        | Test Conditions                                 | Min                    | Typ <sup>8</sup> | Max                    | Unit |
|-----------------|--------------------------------------------------|-------------------------------------------------|------------------------|------------------|------------------------|------|
| Input Chara     | cteristics                                       |                                                 |                        |                  |                        |      |
| I <sub>IH</sub> | Input HIGH Current <sup>12</sup>                 | $V_{DD}$ = 2.6V $V_{I}$ = $V_{DDQ}$ /GND        |                        |                  | ±5                     | μA   |
| I <sub>IL</sub> | Input LOW Current <sup>12</sup>                  | $V_{DD}$ = 2.6V $V_{I}$ = GND/ $V_{DDQ}$        |                        |                  | ±5                     | μΑ   |
| $V_{IK}$        | Clamp Diode Voltage                              | V <sub>DD</sub> = 2.4V, I <sub>IN</sub> = -18mA |                        | -0.7             | - 1.2                  | V    |
| $V_{IN}$        | DC Input Voltage                                 |                                                 | - 0.3                  |                  | V <sub>DDQ</sub> + 0.3 | V    |
| Single-End      | ded Inputs <sup>2</sup>                          |                                                 |                        |                  |                        |      |
| $V_{IH}$        | DC Input HIGH                                    |                                                 | 1.073 <sup>11</sup>    |                  |                        | V    |
| $V_{IL}$        | DC Input LOW                                     |                                                 |                        |                  | 0.683 <sup>11</sup>    | V    |
| Differentia     | I Inputs                                         |                                                 |                        |                  |                        |      |
| $V_{DIF}$       | DC Differential Voltage <sup>3,9</sup>           |                                                 | 0.2                    | M.               |                        | V    |
| V <sub>CM</sub> | DC Common Mode Input<br>Voltage <sup>4,9</sup>   |                                                 | 825                    | 900              | 975                    | mV   |
| $V_{IH}$        | DC Input HIGH <sup>5,6,9</sup>                   | 4                                               | V <sub>REF</sub> + 100 |                  |                        | mV   |
| $V_{IL}$        | DC Input LOW <sup>5,7,9</sup>                    |                                                 |                        | Jan 1997         | V <sub>REF</sub> - 100 | mV   |
| $V_{REF}$       | Single-Ended Reference<br>Voltage <sup>5,9</sup> | A                                               | 1                      | 900              |                        | mV   |
| Output Ch       | aracteristics                                    |                                                 |                        |                  |                        |      |
| $V_{OH}$        | Output HIGH Voltage                              | I <sub>OH</sub> = -6mA                          | V <sub>DDQ</sub> - 0.4 |                  |                        | V    |
| V OH            | Output HIGH Voltage                              | I <sub>OH</sub> = -100μA                        | V <sub>DDQ</sub> - 0.1 |                  |                        | V    |
| V <sub>OL</sub> | Output LOW Voltage                               | I <sub>OL</sub> = 6mA                           |                        |                  | 0.4                    | V    |
| <b>V</b> OL     | Output LOW Voltage                               | I <sub>OL</sub> = 100μA                         |                        |                  | 0.1                    | V    |

- 2. For 1.8V LVTTL single-ended operation, the RxS pin is allowed to float or tied to VDD/2 and A/VREF is tied to GND.
- 3.  $V_{\text{DIF}}$  specifies the minimum input differential voltage ( $V_{\text{TR}}$   $V_{\text{CP}}$ ) required for switching where  $V_{\text{TR}}$  is the "true" input level and  $V_{\text{CP}}$  is the "complement" input level. Differential mode only. The DC differential voltage must be maintained to guarantee retaining the existing HIGH or LOW input. The AC differential voltage must be achieved to guarantee switching to a new state.
- 4.  $V_{CM}$  specifies the maximum allowable range of  $(V_{TR} + V_{CP})/2$ . Differential mode only.
- 5. For single-ended operation in differential mode, AVREF is tied to the DC voltage VREF. The input is guaranteed to toggle within ±200mV of VREF when V<sub>REF</sub> is constrained within +600mV and V<sub>DDI</sub>-600mV, where V<sub>DDI</sub> is the nominal 1.8V power supply of the device driving the A input. To guarantee switching in voltage range specified in the JEDEC 1.8V LVTTL interface specification, V<sub>REF</sub> must be maintained at 900mV with appropriate
- 6. Voltage required to maintain a logic HIGH, single-ended operation in differential mode.
- 7. Voltage required to maintain a logic LOW, single-ended operation in differential mode. 8. Typical values are at  $V_{DD} = 2.5V$ ,  $V_{DDQ} = 1.8V$ ,  $+25^{\circ}C$  ambient.
- 9. The reference clock input is capable of HSTL, eHSTL, LVEPECL, 1.8V or 2.5V LVTTL operation independent of the device output. The correct input interface table should be referenced.
- 10. This value is the worst case minimum  $V_{IH}$  over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is  $V_{IH} = 0.65 \cdot V_{DD}$  where  $V_{DD}$  is 1.8V  $\pm$  0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value ( $V_{IH} = 0.65 \cdot [1.8 \cdot 0.15V]$ ) rather than reference against a nominal 1.8V supply.
- 11. This value is the worst case maximum V<sub>IL</sub> over the specification range of the 1.8V power supply. The 1.8V LVTTL specification is V<sub>IL</sub> = 0.35 V<sub>DD</sub> where V<sub>DD</sub> is 1.8V ± 0.15V. However, the LVTTL translator is supplied by a 2.5V nominal supply on this part. To ensure compliance with the specification, the translator was designed to accept the calculated worst case value (V<sub>IL</sub> = 0.35 • [1.8 + 0.15V]) rather than reference against a nominal 1.8 $\forall$  supply. 12. For differential mode (RxS = LOW), A and A/V<sub>REF</sub> must be at the opposite rail.



### Power Supply Characteristics for 1.8V LVTTL Outputs<sup>1</sup>

| Symbol            | Parameter                                                   | Test Conditions <sup>2</sup>                                                                      | Тур | Max  | Unit   |
|-------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------|-----|------|--------|
| I <sub>DDQ</sub>  | Quiescent V <sub>DD</sub> Power<br>Supply Current           | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded | 20  | 30   | mA     |
| I <sub>DDQQ</sub> | Quiescent V <sub>DDQ</sub> Power<br>Supply Current          | V <sub>DDQ</sub> = Max., Reference Clock = LOW <sup>3</sup> Outputs enabled, All outputs unloaded | 0.1 | 0.3  | mA     |
| I <sub>DDD</sub>  | Dynamic V <sub>DD</sub> Power Supply Current per Output     | $V_{DD}$ = Max., $V_{DDQ}$ = Max., $C_L$ = 0pF                                                    | 20  | 40   | μΑ/MHz |
| I <sub>DDDQ</sub> | Dynamic V <sub>DDQ</sub> Power<br>Supply Current per Output | $V_{DD}$ = Max., $V_{DDQ}$ = Max., $C_L$ = 0pF                                                    | 55  | 80   | μΑ/MHz |
|                   | Total Power V <sub>DD</sub> Supply                          | V <sub>DDQ</sub> = 1.8V., F <sub>REFERENCE CLOCK</sub> = 100MHz, C <sub>L</sub> = 15pF            | 25  | 40   | mA     |
| I <sub>TOT</sub>  | Current                                                     | V <sub>DDQ</sub> = 1.8V., F <sub>REFERENCE</sub> CLOCK= 200MHz, C <sub>L</sub> = 15pF             | 40  | 60 🎤 | , IIIA |
|                   | Total Power V <sub>DDQ</sub> Supply Current                 | V <sub>DDQ</sub> = 1.8V., F <sub>REFERENCE CLOCK</sub> = 100MHz, C <sub>L</sub> = 15pF            | 50  | 100  | A      |
| Ιτοτα             |                                                             | V <sub>DDQ</sub> = 1.8V., F <sub>REFERENCE CLOCK</sub> = 200MHz, C <sub>L</sub> = 15pF            | 120 | 240  | mA     |

Notes: 1. These power consumption characteristics are for all the valid input interfaces and cover the worst case input and output interface combinations.

#### Differential Input AC Test Conditions for 1.8V LVTTL

| Symbol                          | Parameter                                             | Value               | Units |
|---------------------------------|-------------------------------------------------------|---------------------|-------|
| $V_{DIF}$                       | Input Signal Swing <sup>1</sup>                       | $V_{DDI}$           | V     |
| Vx                              | Differential Input Signal Crossing Point <sup>2</sup> | V <sub>DDI</sub> /2 | mV    |
| $V_{THI}$                       | Input Timing Measurement Reference Level <sup>3</sup> | Crossing Point      | V     |
| t <sub>R</sub> , t <sub>F</sub> | Input Signal Edge Rate <sup>4</sup>                   | 1.8                 | V/nS  |

Notes:1. V<sub>DDI</sub> is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input. A nominal 1.8V peak-to-peak input pulse level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>DIF</sub> (AC) specification under actual use conditions.

3. In all cases, input waveform timing is marked at the differential cross-point of the input signals.

# Single-ended Input AC Test Conditions for 1.8V LVTTL

| Symbol                          | Parameter                                             | Value               | Units |
|---------------------------------|-------------------------------------------------------|---------------------|-------|
| V <sub>IH</sub>                 | Input HIGH Voltage <sup>1</sup>                       | $V_{DDI}$           | V     |
| VIL                             | Input LOW Voltage                                     | 0                   | V     |
| $V_{THI}$                       | Input Timing Measurement Reference Level <sup>2</sup> | V <sub>DDI</sub> /2 | mV    |
| t <sub>R</sub> , t <sub>F</sub> | Input Signal Edge Rate <sup>3</sup>                   | 2                   | V/nS  |

The termination resistors are excluded from these measurements.

<sup>3.</sup> If the differential input interface is used, the true input is held LOW and the complementary input is held HIGH.

<sup>2.</sup> A nominal 900mV crossing point level is specified to allow consistent, repeatable results in an automatic test equipment (ATE) environment. Compliant devices must meet the V<sub>X</sub> specification under actual use conditions.

<sup>4.</sup> The input signal edge rate of 1.8V/nS or greater is to be maintained in the 20% to 80% range of the input waveform.

Notes: 1. V<sub>DDI</sub> is the nominal 1.8V supply (1.8V ± 0.15V) of the part or source driving the input.

2. A nominal 900mV timing measurement reference level is specified to allow constant, repeatable results in an automatic test equipment (ATE)

<sup>3.</sup> The input signal edge rate of 2V/nS or greater is to be maintained in the 10% to 90% range of the input waveform.



# AC Electrical Characteristics Over Operating Range<sup>5</sup>

| Symbo<br>I           | Pa                                                 | rameter                                                          | Min                       | Тур                 | Max                       | Unit   |
|----------------------|----------------------------------------------------|------------------------------------------------------------------|---------------------------|---------------------|---------------------------|--------|
| Skew Par             | ameters                                            |                                                                  |                           |                     |                           |        |
| t <sub>SK(O)</sub>   | Same Device Output<br>Pin-to-Pin Skew <sup>1</sup> | Single-Ended and Differential Modes Single-Ended in Differential |                           |                     | 25                        | pS     |
|                      | Thirte Thireston                                   | Mode (DSE)                                                       |                           | 25                  |                           |        |
| t <sub>sk(INV)</sub> | Inverting Skew <sup>2</sup>                        | Single-Ended and Differential Modes                              |                           |                     | 300                       | pS     |
| SK(IINV)             | involuing exew                                     | Single-Ended in Differential Mode (DSE)                          |                           | 300                 |                           | ρο     |
| t <sub>SK(P)</sub>   | Pulse Skew <sup>3</sup>                            | Single-Ended and Differential Modes                              |                           |                     | 300                       | pS     |
| SK(P)                | ruise Skew                                         | Single-Ended in Differential Mode (DSE)                          |                           | 300                 |                           | ро     |
| t <sub>SK(PP)</sub>  | Part-to-Part Skew <sup>4</sup>                     | Single-Ended and Differential Modes                              | 4                         |                     | 300                       | pS     |
| ISK(PP)              |                                                    | Single-Ended in Differential Mode (DSE)                          |                           | 300                 |                           | ρο     |
| $V_{\text{OX}}$      | HSTL and eHSTL Differer Output Crossing Voltage I  | ntial True and Complementary<br>Level                            | V <sub>DDQ</sub> /2 - 200 | V <sub>DDQ</sub> /2 | V <sub>DDQ</sub> /2 + 200 | mV     |
| Propagati            | on Delay                                           |                                                                  |                           |                     |                           |        |
| t <sub>PLH</sub>     | Propagation Delay A to Qn/Qn                       | 2.5V / 1.8V LVTTL Outputs                                        |                           |                     | 2.5                       | nS     |
| $t_PHL$              | Qn/Qn                                              | HSTL / eHSTL Outputs                                             |                           |                     | 2                         | 110    |
| t <sub>R</sub>       | Output Rise Time                                   | 2.5V /1.8V LVTTL Outputs                                         | 350                       |                     | 1050                      | pS     |
| чĸ                   | (20% to 80%)                                       | HSTL / eHSTL Outputs                                             | 350                       |                     | 1350                      | ро     |
| t⊧                   | Output Fall Time                                   | 2.5V /1.8V LVTTL Outputs                                         | 350                       |                     | 1050                      | pS     |
| <b>ч</b> -           | (20% to 80%)                                       | HSTL / eHSTL Outputs                                             | 350                       |                     | 1350                      | ро     |
| $f_{\Omega}$         | Frequency Range (HSTL/                             | eHSTL outputs)                                                   |                           |                     | 250                       | MHz    |
| 10                   | Frequency Range (2.5V/1                            | .8V LVTTL outputs)                                               |                           |                     | 200                       | IVIIIZ |
| Output G             | Sate Enable/Disable Del                            | ay                                                               |                           |                     |                           |        |
| t <sub>PGE</sub>     | Output Gate Enable to Qr                           | n/Qn                                                             |                           |                     | 3.5                       | nS     |
| t <sub>PGD</sub>     | Output Gate Enable to Qr<br>Level                  | n/Qn Driven to GL Designated                                     |                           |                     | 3                         | nS     |

Notes: 1. Skew measured between all outputs or output pairs under identical input and output interfaces, transitions and load conditions on any one device. For single ended and differential LVTTL outputs, this measurement is made when each output voltage passes through V<sub>DDQ</sub>/2. For differential LVTTL outputs, the true outputs are compared only with other true outputs and the complementary outputs are compared only with other complementary outputs. For differential HSTL outputs, the measurement takes place at the crossing point of the true and complementary signals.

<sup>2.</sup> For operating with either 1.8V or 2.5V LVTTL output interfaces with both true and complementary outputs enabled. Inverting skew is the skew between true and complementary outputs switching in opposite directions under identical input and output interfaces, transitions and load conditions on any one device.

<sup>3.</sup> Skew measured is the difference between propagation delay times  $t_{PHL}$  and  $t_{PLH}$  of any output or output pair under identical input and output interfaces, transitions and load conditions on any one device. For single ended and differential LVTTL outputs, this measurement is made when each output voltage passes through  $V_{DDO}/2$ . The measurement applies to both true and complementary signals. For differential HSTL outputs, the measurement takes place at the crossing point of the true and complementary signals.

<sup>4.</sup> Skew measured is the magnitude of the difference in propagation times between any outputs or output pairs of two devices, given identical transitions and load conditions at identical V<sub>DD</sub>/V<sub>DDQ</sub> levels and temperature.

<sup>5.</sup> Guaranteed by design.

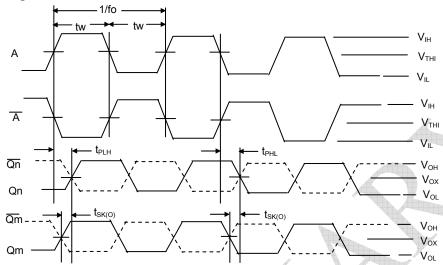


### AC Differential Input Specifications<sup>1</sup>

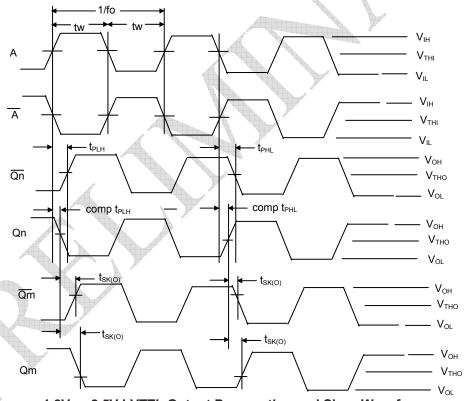
| Symbol          | Parameter                                                                        | Min                  | Тур | Max                  | Unit |  |
|-----------------|----------------------------------------------------------------------------------|----------------------|-----|----------------------|------|--|
| t w             | Reference Clock Pulse Width HIGH or LOW (HSTL/eHSTL outputs) <sup>2</sup>        | 1.73                 |     |                      |      |  |
|                 | Reference Clock Pulse Width HIGH or LOW (2.5V / 1.8V LVTTL outputs) <sup>2</sup> | 2.17                 |     | A                    | nS   |  |
| HSTL/eH         | HSTL/eHSTL/1.8V LVTTL/2.5V LVTTL                                                 |                      |     |                      |      |  |
| $V_{DIF}$       | AC Differential Voltage <sup>3</sup>                                             | 400                  | A   |                      | mV   |  |
| V <sub>IH</sub> | AC Input HIGH <sup>4,5</sup>                                                     | V <sub>x</sub> + 200 |     |                      | mV   |  |
| V <sub>IL</sub> | AC Input LOW <sup>4,6</sup>                                                      |                      |     | V <sub>x</sub> - 200 | mV   |  |
| LVEPECI         | LVEPECL                                                                          |                      |     |                      |      |  |
| $V_{DIF}$       | AC Differential Voltage <sup>3</sup>                                             | 400                  |     |                      | mV   |  |
| V <sub>IH</sub> | AC Input HIGH⁴                                                                   | 1275                 |     |                      | mV   |  |
| V <sub>IL</sub> | AC Input LOW <sup>4</sup>                                                        |                      |     | 875                  | mV   |  |

- Notes: 1. For differential input mode, RxS is tied to GND.
  2. Both differential input signals should not be driven to the same level simultaneously. The input will not change state until the inputs have crossed and the voltage range defined by V<sub>DIF</sub> has been met or exceeded.
  - 3. Differential mode only. V<sub>DIF</sub> specifies the minimum input voltage (V<sub>TR</sub> V<sub>CP</sub>) required for switching where V<sub>TR</sub> is the "true" input level and V<sub>CP</sub> is "complement" input level. The AC differential voltage must be achieved to guarantee switching to a new state.

    4. For single-ended operation, AV<sub>REF</sub> is tied to DC voltage (V<sub>REF</sub>). Refer to each input interface's DC specification for the correct V<sub>REF</sub> range.


    5. Voltage required to switch to a logic HIGH, single-ended operation only.

    6. Voltage required to switch to a logic LOW, single-ended operation only.



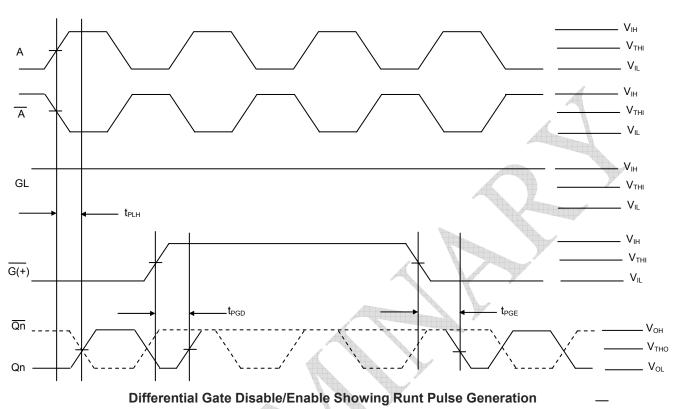



#### **Differential AC Timing Waveforms**



#### HSTL and eHSTL Output Propagation and Skew Waveforms

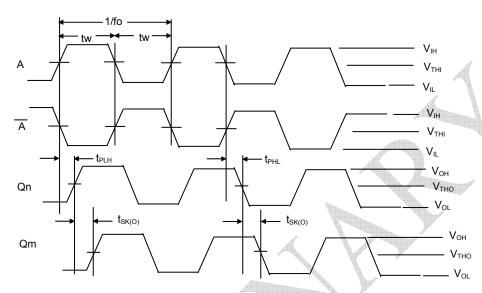



1.8V or 2.5V LVTTL Output Propagation and Skew Waveforms

Notes: 1. For the HSTL and eHSTL outputs, t<sub>PHL</sub> and t<sub>PLH</sub> are measured from the input passing through V<sub>THI</sub> or input pair crossing to the crossing point of each

- 2. For 1.8V and 2.5V LVTTL outputs, t<sub>PHL</sub> and t<sub>PLH</sub> are measured from the input passing through V<sub>THI</sub> or input pair crossing to the slower of Qn or Qn passing through V<sub>THO</sub>.
- 3. Pulse skew is calculated using the following expression:

where  $t_{PHL}$  and  $t_{PLH}$  are measured on the controlled edges of any one output from the rising and falling edges of a single pulse. Note that the  $t_{PHL}$  and t<sub>PLH</sub> shown above are not valid measurements for this calculation because they are not taken from the same pulse.



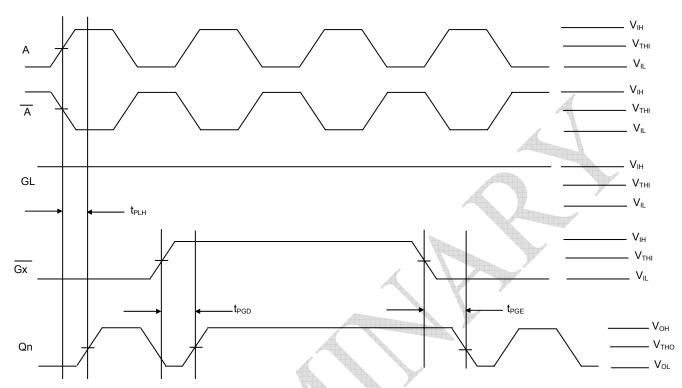



Notes: 1. The waveforms shown only gate "true" output, Qn.
2. As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem.



### **SDR AC TIMING WAVEFORMS**



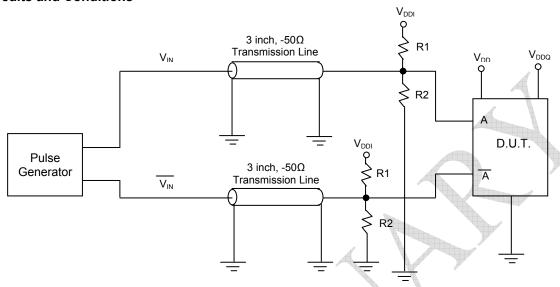

### **Propagation and Skew Waveforms**

Notes: 1.  $t_{PHL}$  and  $t_{PLH}$  signals are measured from the input passing through  $V_{THI}$  or input pair crossing to Qn passing through  $V_{THO}$ .

2. Pulse Skew is calculated using the following expression:

 $t_{SK(P)} = |t_{PHL} - t_{PLH}|$  where  $t_{PHL}$  and  $t_{PLH}$  are measured on the controlled edges of any one output from rising and falling edges of a single pulse. Please note that the and  $t_{PLH}$  shown are not valid measurements for this calculation because they are not taken from the same pulse.



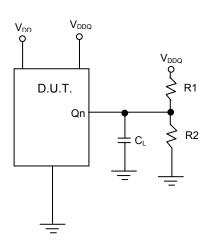



SDR Gate Disable/Enable Showing Runt Pulse Generation

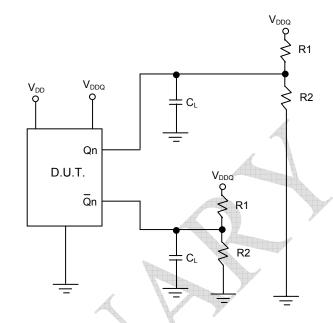
Note: As shown, it is possible to generate runt pulses on gate disable and enable of the outputs. It is the user's responsibility to time their Gx signals to avoid this problem.



### **Test Circuits and Conditions**




Test Circuit for Differential Input<sup>1</sup>


### **Differential Input Test Conditions**

| Symbol           | $V_{DD} = 2.5V \pm 0.1V$                                                                                                                                 | Unit |  |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|------|--|
| R1               | 100                                                                                                                                                      | Ω    |  |
| R2               | 100                                                                                                                                                      | Ω    |  |
| V <sub>DDI</sub> | V <sub>CM</sub> *2                                                                                                                                       | V    |  |
| V <sub>THI</sub> | HSTL: Crossing of A and $\overline{A}$ eHSTL: Crossing of A and $\overline{A}$ LVEPECL: Crossing of A and $\overline{A}$ 1.8V LVTTL: V <sub>DDI</sub> /2 | V    |  |
|                  | 2.5V LVTTL: V <sub>DD</sub> /2                                                                                                                           |      |  |

Note: 1. This input configuration is used for all input interfaces. For single-ended testing, the  $V_{IN}$  input is tied to GND. For testing single-ended in differential input mode, the  $V_{IN}$  is left floating.



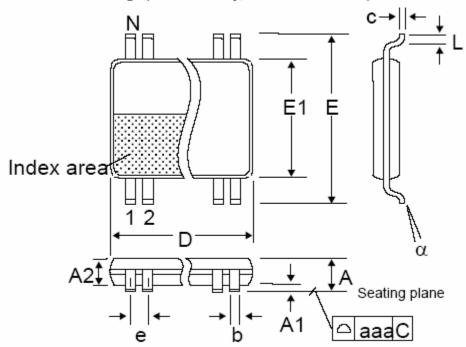




**Test Circuit for Differential Outputs** 

# **SDR Output Test Conditions**

| Symbol    | V <sub>DD</sub> = 2.5V ± 0.1V<br>V <sub>DDQ</sub> = Interface<br>Specified | Unit |  |
|-----------|----------------------------------------------------------------------------|------|--|
| C L       | 15                                                                         | pF   |  |
| R1        | 100                                                                        | Ω    |  |
| R2        | 100                                                                        | Ω    |  |
| $V_{THO}$ | V <sub>DDQ</sub> / 2                                                       | V    |  |


# **Differential Output Test Contions**

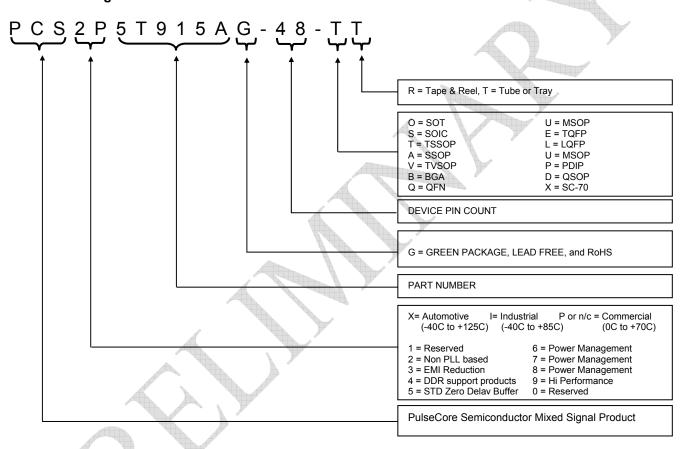
| Symbol    | $V_{DD}$ = 2.5V ± 0.1V<br>$V_{DDQ}$ = Interface Specified | Unit |  |
|-----------|-----------------------------------------------------------|------|--|
| C L       | 15                                                        | pF   |  |
| R1        | 100                                                       | Ω    |  |
| R2        | 100                                                       | Ω    |  |
| Vox       | HSTL: Cross <u>ing</u> of Qn and Qn                       | W    |  |
| VOX       | eHSTL: Crossing of Qn and Qn                              | V    |  |
| $V_{THO}$ | 1.8V LVTTL: V <sub>DDQ</sub> /2                           | V    |  |
| V THO     | 2.5V LVTTL: V <sub>DDQ</sub> /2                           | V    |  |



# **Package Information**

# Package (6.10 mm Body, JEDEC MO-153-ED)




|        | Dimensions |       |             |       |  |
|--------|------------|-------|-------------|-------|--|
| Symbol | Inches     |       | Millimeters |       |  |
|        | Min        | Max   | Min         | Max   |  |
| Α      | <b>/</b>   | 0.047 |             | 1.20  |  |
| A1     | 0.002      | 0.006 | 0.05        | 0.15  |  |
| A2     | 0.031      | 0.041 | 0.8         | 1.05  |  |
| b      | 0.008 BSC  |       | 0.20 BSC    |       |  |
| С      | 0.004      | 0.008 | 0.09        | 0.20  |  |
| D      | 0.488      | 0.496 | 12.40       | 12.60 |  |
| E1     | 0.236      | 0.244 | 6.00        | 6.20  |  |
| E      | 0.319 BSC  |       | 8.10 BSC    |       |  |
| е      | 0.020 BSC  |       | 0.50 BSC    |       |  |
| L      | 0.018      | 0.030 | 0.45        | 0.75  |  |
| N      | 4          |       | 8           |       |  |
| α      | 0°         | 8°    | 0°          | 8°    |  |



#### **Ordering Information**

| Part Number  | Marking   | Package Type         | Temperature |
|--------------|-----------|----------------------|-------------|
| PCS2P5T915AG | 2P5T915AG | 48 pin TSSOP Package | Commercial  |
| PCS2I5T915AG | 2I5T915AG | 48 pin TSSOP Package | Industrial  |

#### **Device Ordering Information**



Licensed under US patent Nos 5,488,627 and 5,631,920.





PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077

Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Preliminary Information Part Number: PCS2P5T915A Document Version: v0.2

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.