74LVC1G66

Bilateral switch

Rev. 06 - 27 August 2007
Product data sheet

1. General description

The 74LVC1G66 is a low-power, low-voltage Si-gate CMOS device.
The 74LVC1G66 provides one single pole, single-throw analog switch function. It has two input/output terminals (Y and Z) and an active HIGH enable input pin (E). When E is LOW, the analog switch is turned off.

Schmitt-trigger action at the enable input makes the circuit tolerant of slower input rise and fall times across the entire V_{CC} range from 1.65 V to 5.5 V .

2. Features

- Wide supply voltage range from 1.65 V to 5.5 V
- Very low ON resistance:
-7.5 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$
-6.5 Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$
- 6Ω (typical) at $\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}$
- Switch current capability of 32 mA
- High noise immunity
- CMOS low power consumption
- TTL interface compatibility at 3.3 V
- Latch-up performance meets requirements of JESD78 Class I
- ESD protection:
- HBM JESD22-A114E exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V

■ Enable input accepts voltages up to 5.5 V

- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74LVC1G66GW	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	TSSOP5	plastic thin shrink small outline package; 5 leads; body width 1.25 mm	SOT353-1
74LVC1G66GV	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	SC-74A	plastic surface-mounted package; 5 leads	SOT753
74LVC1G66GM	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1.45 \times 0.5 \mathrm{~mm}$	SOT886
74LVC1G66GF	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1 \times 0.5 \mathrm{~mm}$	SOT891

4. Marking

Table 2. Marking

Type number	Marking code
74LVC1G66GW	VL
$74 \mathrm{LVC1G66GV}$	V 66
$74 \mathrm{LVC1G66GM}$	VL
$74 \mathrm{LVC1G66GF}$	VL

5. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Logic diagram

6. Pinning information

6.1 Pinning

Fig 4. Pin configuration SOT353-1 and SOT753

Transparent top view
Fig 5. Pin configuration SOT886

74LVC1G66

Transparent top view
Fig 6. Pin configuration SOT891

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT353-1/SOT753	SOT886/SOT891	
Y	1	1	independent input or output
Z	2	2	independent output or input
GND	3	3	ground (0 V)
E	4	4	enable input (active HIGH)
n.c.	-	5	not connected
V $_{\text {CC }}$	5	6	supply voltage

7. Functional description

Table 4. Function table[1]

Input E	Switch
L	OFF-state
H	ON-state

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level; $\mathrm{L}=\mathrm{LOW}$ voltage level

8. Limiting values

Table 5. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{C C}$	supply voltage		-0.5	+6.5	V
V	input voltage		[1] -0.5	+6.5	V
I_{IK}	input clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	-50	-	mA
$\mathrm{I}_{\text {SK }}$	switch clamping current	$\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{1}>\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	-	± 50	mA
$V_{\text {SW }}$	switch voltage	enable and disable mode	[2] -0.5	$\mathrm{V}_{\mathrm{CC}}+0.5$	V
Isw	switch current	$\mathrm{V}_{\mathrm{SW}}>-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{SW}}<\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	-	± 50	mA
I_{CC}	supply current		-	100	mA
$\mathrm{I}_{\text {GND }}$	ground current		-100	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	[3] -	250	mW

[1] The minimum input voltage rating may be exceeded if the input current rating is observed.
[2] The minimum and maximum switch voltage ratings may be exceeded if the switch clamping current rating is observed.
[3] For TSSOP5 and SC-74A packages: above $87.5^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $4.0 \mathrm{~mW} / \mathrm{K}$.
For XSON6 packages: above $45^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $2.4 \mathrm{~mW} / \mathrm{K}$.
9. Recommended operating conditions

Table 6. Recommended operating conditions

[1] To avoid sinking GND current from terminal Z when switch current flows in terminal Y, the voltage drop across the bidirectional switch must not exceed 0.4 V . If the switch current flows into terminal Z , no GND current will flow from terminal Y . In this case, there is no limit for the voltage drop across the switch.
[2] Applies to control signal levels.

10. Static characteristics

Table 7. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85{ }^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		$0.65 \mathrm{~V}_{\text {CC }}$	-	-	$0.65 \mathrm{~V}_{\mathrm{CC}}$	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		1.7	-	-	1.7	-	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V		2.0	-	-	2.0	-	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	-	$0.7 \mathrm{~V}_{\mathrm{CC}}$	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V		-	-	$0.35 \mathrm{~V}_{\text {cc }}$	-	$0.35 \mathrm{~V}_{\mathrm{CC}}$	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		-	-	0.7	-	0.7	V
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$ to 3.6 V		-	-	0.8	-	0.8	V
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		-	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	-	$0.3 \mathrm{~V}_{\mathrm{CC}}$	V
1	input leakage current	$\begin{aligned} & \text { pin } \mathrm{E} ; \mathrm{V}_{1}=5.5 \mathrm{~V} \text { or GND; } \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	[2]	-	± 0.1	± 5	-	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {S(OFF) }}$	OFF-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; } \\ & \text { see } \underline{\text { Figure } 7} \end{aligned}$	[2]	-	± 0.1	± 5	-	± 200	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{S}(\mathrm{ON})}$	ON-state leakage current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \text {; } \\ & \text { see Figure } 8 \end{aligned}$	[2]	-	± 0.1	± 5	-	± 200	$\mu \mathrm{A}$
$I_{\text {CC }}$	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V} \text { or } \mathrm{GND} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{l}_{\mathrm{O}}=0 \mathrm{~A} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 5.5 \mathrm{~V} \end{aligned}$	[2]	-	0.1	10	-	200	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	$\begin{aligned} & \operatorname{pin} \mathrm{E} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{SW}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$	[2]	-	5	500	-	5000	$\mu \mathrm{A}$
C_{1}	input capacitance			-	2.0	-	-	-	pF
$\mathrm{C}_{\text {(}}$ (OFF)	OFF-state capacitance			-	6.5	-	-	-	pF
$\mathrm{C}_{\text {S(ON) }}$	ON-state capacitance			-	11	-	-	-	pF

[1] All typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
[2] These typical values are measured at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.

10.1 Test circuits

$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=\mathrm{GND}$ or V_{CC}
Fig 7. Test circuit for measuring OFF-state leakage current

$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND and $\mathrm{V}_{\mathrm{O}}=$ open circuit.
Fig 8. Test circuit for measuring ON -state leakage current

10.2 ON resistance

Table 8. ON resistance
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 10 to Figure 15.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\mathrm{ON}(\text { peak })}$	ON resistance (peak)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}; see Figure 9						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	34.0	130	-	195	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	12.0	30	-	45	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	10.4	25	-	38	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	7.8	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	6.2	15	-	23	Ω
$\mathrm{R}_{\mathrm{ON} \text { (rail) }}$	ON resistance (rail)	$V_{1}=$ GND; see Figure 9						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	8.2	18	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.1	16	-	24	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	6.9	14	-	21	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	6.5	12	-	18	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	5.8	10	-	15	Ω
		$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} ;$ see Figure 9						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	10.4	30	-	45	Ω
		$\mathrm{I}_{\text {SW }}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	7.6	20	-	30	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	7.0	18	-	27	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	6.1	15	-	23	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	4.9	10	-	15	Ω

Table 8. ON resistance ...continued
At recommended operating conditions; voltages are referenced to GND (ground 0 V); for graphs see Figure 10 to Figure 15.

Symbol	Parameter	Conditions	$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
			Min	Typ[1]	Max	Min	Max	
$\mathrm{R}_{\text {ON(flat) }}$	ON resistance (flatness)	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to V_{CC}						
		$\begin{aligned} & \mathrm{I}_{\mathrm{SW}}=4 \mathrm{~mA} ; \\ & \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} \text { to } 1.95 \mathrm{~V} \end{aligned}$	-	26.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=8 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	5.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=12 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$	-	3.5	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=24 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	2.0	-	-	-	Ω
		$\mathrm{I}_{\mathrm{SW}}=32 \mathrm{~mA}$; $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V	-	1.5	-	-	-	Ω

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] Flatness is defined as the difference between the maximum and minimum value of ON resistance measured at identical V_{CC} and temperature.

10.3 ON resistance test circuit and graphs

$\mathrm{R}_{\mathrm{ON}}=\mathrm{V}_{\mathrm{SW}} / \mathrm{I}_{\mathrm{SW}}$.

Fig 9. Test circuit for measuring ON resistance

(1) $\mathrm{V}_{\mathrm{CC}}=1.8 \mathrm{~V}$.
(2) $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$.
(3) $\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$.
(4) $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$.
(5) $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$.

Fig 10. Typical ON resistance as a function of input voltage; $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 11. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=1.8 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 13. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\text {amb }}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$.

Fig 12. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{cc}}=2.5 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$.

Fig 14. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{Cc}}=3.3 \mathrm{~V}$

(1) $\mathrm{T}_{\mathrm{amb}}=125^{\circ} \mathrm{C}$.
(2) $\mathrm{T}_{\mathrm{amb}}=85^{\circ} \mathrm{C}$.
(3) $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
(4) $T_{a m b}=-40^{\circ} \mathrm{C}$.

Fig 15. ON resistance as a function of input voltage; $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

11. Dynamic characteristics

Table 9. Dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 18.

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$		Unit
				Min	Typ[1]	Max	Min	Max	
t_{pd}	propagation delay	Y to Z or Z to Y ; see Figure 16	[2][3]						
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		-	0.8	2.0	-	3.0	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		-	0.4	1.2	-	2.0	ns
		$\mathrm{V}_{C C}=2.7 \mathrm{~V}$		-	0.4	1.0	-	1.5	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V		-	0.3	0.8	-	1.5	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		-	0.2	0.6	-	1.0	ns
$\mathrm{t}_{\text {en }}$	enable time	E to Y or Z ; see Figure 17	[4]						
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		1.0	5.3	12	1.0	15.5	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		1.0	3.0	6.5	1.0	8.5	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		1.0	2.6	6.0	1.0	8.0	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		1.0	2.5	5.0	1.0	6.5	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		1.0	1.9	4.2	1.0	5.5	ns

Table 9. Dynamic characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V); for load circuit see Figure 18.

Symbol	Parameter	Conditions		$-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			$-40{ }^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$		Unit
				Min	Typ[${ }^{[1]}$	Max	Min	Max	
$\mathrm{t}_{\text {dis }}$	disable time	E to Y or Z ; see Figure 17 [5]	[5]						
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V		1.0	4.2	10	1.0	13	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V		1.0	2.4	6.9	1.0	9.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$		1.0	3.6	7.5	1.0	9.5	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		1.0	3.4	6.5	1.0	8.5	ns
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V		1.0	2.5	5.0	1.0	6.5	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$	[6]						
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$		-	9.8	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$		-	12.0	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$		-	17.3	-	-	-	pF

[1] Typical values are measured at $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ and nominal V_{CC}.
[2] $t_{p d}$ is the same as $t_{p L H}$ and $t_{\text {PHL }}$
[3] propagation delay is the calculated RC time constant of the typical ON resistance of the switch and the specified capacitance when driven by an ideal voltage source (zero output impedance).
[4] $t_{\text {en }}$ is the same as $t_{P Z H}$ and $t_{P Z L}$
[5] $t_{\text {dis }}$ is the same as $t_{P L Z}$ and $t_{P H Z}$
[6] $\mathrm{C}_{\text {PD }}$ is used to determine the dynamic power dissipation (P_{D} in $\mu \mathrm{W}$).
$\mathrm{P}_{\mathrm{D}}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{i}} \times \mathrm{N}+\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}(\mathrm{ON})}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{C}_{\mathrm{S}(\mathrm{ON})}=$ maximum ON -state switch capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left\{\left(\mathrm{C}_{\mathrm{L}}+\mathrm{C}_{\mathrm{S}(\mathrm{ON})}\right) \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right\}=$ sum of the outputs.

11.1 Waveforms and test circuit

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 16. Input (Y or Z) to output (Z or Y) propagation delays

Measurement points are given in Table 10.
Logic levels: V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 17. Enable and disable times

Table 10. Measurement points

Supply voltage	Input	Output		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{X}}$	$\mathbf{V}_{\mathbf{Y}}$
1.65 V to 1.95 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.3 V to 2.7 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$
2.7 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
3.0 V to 3.6 V	1.5 V	1.5 V	$\mathrm{~V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$
4.5 V to 5.5 V	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$0.5 \mathrm{~V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.3 \mathrm{~V}$

Test data is given in Table 11.
Definitions for test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance Z_{o} of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$R_{L}=$ Load resistance.
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 18. Load circuit for switching times

Table 11. Test data

Supply voltage	Input		Load		$\mathrm{V}_{\text {EXT }}$		
$V_{\text {cc }}$	V_{1}	$\mathbf{t r}_{\text {r }}, \mathrm{t}_{\mathrm{f}}$	C_{L}	\mathbf{R}_{L}	$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	$\mathbf{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	$\mathbf{t}_{\text {PZL }}, \mathrm{t}_{\text {PLZ }}$
1.65 V to 1.95 V	$\mathrm{V}_{\text {CC }}$	$\leq 2.0 \mathrm{~ns}$	30 pF	$1 \mathrm{k} \Omega$	open	GND	$2 \mathrm{~V}_{\text {CC }}$
2.3 V to 2.7 V	$\mathrm{V}_{\text {cc }}$	$\leq 2.0 \mathrm{~ns}$	30 pF	500Ω	open	GND	$2 \mathrm{~V}_{C \mathrm{C}}$
2.7 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	6 V
3.0 V to 3.6 V	2.7 V	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	6 V
4.5 V to 5.5 V	V_{CC}	$\leq 2.5 \mathrm{~ns}$	50 pF	500Ω	open	GND	$2 \mathrm{~V}_{C C}$

11.2 Additional dynamic characteristics

Table 12. Additional dynamic characteristics
At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{a m b}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
THD	total harmonic distortion	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{kHz} ; \\ & \text { see Figure } 19 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.032	-	\%
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	0.008	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.006	-	\%
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	0.001	-	\%
		$\mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=10 \mathrm{kHz} ;$ $\text { see Figure } 19$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	0.068	-	\%
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	0.009	-	\%
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	0.008	-	\%
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	0.006	-	\%

Table 12. Additional dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{f}_{(-3 \mathrm{~dB})}$	-3 dB frequency response	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \\ & \text { see Figure } 20 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	135	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	145	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	150	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	155	-	MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$; see Figure 20				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	>500	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	>500	-	MHz
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$	-	>500	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	>500	-	MHz
		$\mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$; see Figure 20				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	200	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	350	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	410	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	440	-	MHz
$\alpha_{\text {iso }}$	isolation (OFF-state)	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 21 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-46	-	dB
		$\mathrm{V}_{C C}=4.5 \mathrm{~V}$	-	-46	-	dB
		$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=50 \Omega ; \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \text { see Figure } 21 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-37	-	dB
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	-37	-	dB
V_{ct}	crosstalk voltage	between digital input and switch; $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=2 \mathrm{~ns} ; \text { see Figure } 22 \end{aligned}$				
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	69	-	mV
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	87	-	mV
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	156	-	mV
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	302	-	mV

Table 12. Additional dynamic characteristics ...continued At recommended operating conditions; voltages are referenced to GND (ground $=0 \mathrm{~V}$); $T_{\text {amb }}=25^{\circ} \mathrm{C}$.

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$Q_{\text {inj }}$	charge injection	$\begin{aligned} & C_{L}=0.1 \mathrm{nF} ; \mathrm{V}_{\text {gen }}=0 \mathrm{~V} ; \mathrm{R}_{\text {gen }}=0 \Omega ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \mathrm{R}_{\mathrm{L}}=1 \mathrm{M} \Omega ; \text { see Figure } 23 \end{aligned}$				
		$\mathrm{V}_{C C}=1.8 \mathrm{~V}$	-	3.3	-	pC
		$\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$	-	4.1	-	pC
		$\mathrm{V}_{C C}=3.3 \mathrm{~V}$	-	5.0	-	pC
		$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$	-	6.4	-	pC
		$\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$	-	7.5	-	pC

11.3 Test circuits

Test conditions:

$V_{C C}=1.65 \mathrm{~V}: V_{i}=1.4 \mathrm{~V}(p-p)$.
$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=2 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=3 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=2.5 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
$\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}: \mathrm{V}_{\mathrm{i}}=4 \mathrm{~V}(\mathrm{p}-\mathrm{p})$.
Fig 19. Test circuit for measuring total harmonic distortion

Adjust f_{i} voltage to obtain 0 dBm level at output. Increase f_{i} frequency until dB meter reads -3 dB .
Fig 20. Test circuit for measuring the frequency response when switch is in ON-state

Adjust f_{i} voltage to obtain 0 dBm level at input.
Fig 21. Test circuit for measuring isolation (OFF-state)

Fig 22. Test circuit for measuring crosstalk between digital input and switch

V_{O}

$\mathrm{Q}_{\mathrm{inj}}=\Delta \mathrm{V}_{\mathrm{O}} \times \mathrm{C}_{\mathrm{L}}$.
$\Delta \mathrm{V}_{\mathrm{O}}=$ output voltage variation.
$\mathrm{R}_{\text {gen }}=$ generator resistance .
$\mathrm{V}_{\text {gen }}=$ generator voltage .
Fig 23. Test circuit for measuring charge injection

12. Package outline

DIMENSIONS (mm are the original dimensions)

| UNIT | \mathbf{A} | | | | | | | | | | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{m a x}$. | $\mathbf{A}_{\mathbf{1}}$ | $\mathbf{A}_{\mathbf{2}}$ | $\mathbf{A}_{\mathbf{3}}$ | $\mathbf{b}_{\mathbf{p}}$ | \mathbf{c} | $\mathbf{D}^{(1)}$ | $\mathbf{E}^{(1)}$ | \mathbf{e} | $\mathbf{e}_{\mathbf{1}}$ | $\mathbf{H}_{\mathbf{E}}$ | \mathbf{L} | $\mathbf{L}_{\mathbf{p}}$ | \mathbf{v} | \mathbf{w} | \mathbf{y} | $\mathbf{Z}^{(1)}$ | $\boldsymbol{\theta}$ |
| mm | 1.1 | 0.1
 0 | 1.0 | | | | | | | | | | | | | | |
| 0.8 | 0.15 | 0.30 | 0.25 | 2.25 | 1.35 | 0.65 | 1.3 | 2.25 | 0.425 | 0.46 | 0.3 | 0.1 | 0.1 | 0.60 | 7° | | |
| 0.0 | 0.0 | 1.85 | 1.15 | 0.65 | 0.3 | 0.15 | 0° | | | | | | | | | | |

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	SOT	JEDEC	JEITA			

Fig 24. Package outline SOT353-1 (TSSOP5)

detail X
DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A}	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{b p}$	\mathbf{c}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}
mm	1.1	0.100	0.40	0.26	3.1	1.7	0.95	3.0 2.5	0.6 0.2	0.33 0.23	0.2	0.2	0.1

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			

Fig 25. Package outline SOT753 (SC-74A)

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$ \max	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.25	1.5	1.05	0.6	0.5	0.35	0.40
	0.17	1.4	0.95	0.27	0.32				

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			

Fig 26. Package outline SOT886 (XSON6)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} $\mathbf{m a x}$	$\mathbf{A}_{\mathbf{1}}$ $\boldsymbol{m a x}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.20 0.12	1.05 0.95	1.05 0.95	0.55	0.35	0.35 0.27	0.40 0.32

Note

1. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES			EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA		
SOT891				\square (¢)	$\begin{array}{r} 05-04-06 \\ 07-05-15 \end{array}$

Fig 27. Package outline SOT891 (XSON6)

13. Abbreviations

Table 13. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
TTL	Transistor-Transistor Logic
HBM	Human Body Model
ESD	ElectroStatic Discharge
MM	Machine Model
DUT	Device Under Test

14. Revision history

Table 14. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G66_6	20070827	Product data sheet	-	74LVC1G66_5
Modifications:	- Section 10 "Static characteristics":			
	Changed: Conditions for OFF-state and ON-state leakage current.			

74LVC1G66_5 20070807 Product data sheet \quad 74LVC1G66_4

Modifications:

- The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors.
- Legal texts have been adapted to the new company name when appropriate.
- Added type number 74LVC1G66GM (XSON6/SOT886 package)
- Added type number 74LVC1G66GF (XSON6/SOT891 package)
- Section 2 "Features":

Added: Wide supply voltage range from 1.65 V to 5.5 V
Changed: JESD78 Class II to JESD78 Class I
Added: Enable input accepts voltages up to 5.5 V

- Section 8 "Limiting values":

Added: Limiting values of switch parameters.
Added: Derating factors of the applicable packages

- Section 9 "Recommended operating conditions":

Added: Recommended operation conditions of switch parameters.

- Section 10 "Static characteristics":

Changed: Maximum values of ON resistance (peak) parameters and graphics.
Changed: Conditions for input leakage and supply current.

- Section 11 "Dynamic characteristics":

Changed: Typical values of the charge injection.

74LVC1G66_4	20040413	Product specification	-	74LVC1G66_3
74LVC1G66_3	20021115	Product specification	-	74LVC1G66_2
74LVC1G66_2	20020529	Product specification	-	74LVC1G66_1
74LVC1G66_1	20011030	Product specification	-	-

15. Legal information

15.1 Data sheet status

Document status ${ }^{[1][2]}$	Product status $[3]$	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.
2] The term 'short data sheet' is explained in section "Definitions".
[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft - The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information

Short data sheet - A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General - Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes - NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof

Suitability for use - NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or
malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.
Applications - Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.
Limiting values - Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.
Terms and conditions of sale - NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.
No offer to sell or license - Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

17. Contents

1 General description 1
2 Features 1
3 Ordering information 2
4 Marking 2
5 Functional diagram 2
6 Pinning information 3
6.1 Pinning 3
6.2 Pin description 3
7 Functional description 3
8 Limiting values 4
9 Recommended operating conditions. 4
10 Static characteristics 5
10.1 Test circuits 6
10.2 ON resistance 6
10.3 ON resistance test circuit and graphs 7
11 Dynamic characteristics 9
11.1 Waveforms and test circuit 10
11.2 Additional dynamic characteristics 12
11.3 Test circuits 14
12 Package outline 16
13 Abbreviations 20
14 Revision history 20
15 Legal information 21
15.1 Data sheet status 21
15.2 Definitions 21
15.3 Disclaimers 21
15.4 Trademarks 21
16 Contact information. 21
17 Contents 22

