# PHP78NQ03LT

# N-channel TrenchMOS logic level FET

Rev. 06 — 30 January 2009

**Product data sheet** 

## 1. Product profile

### 1.1 General description

Logic level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.

#### 1.2 Features and benefits

- Suitable for high frequency applications due to fast switching characteristics
- Suitable for logic level gate drive sources

### 1.3 Applications

Computer motherboards

DC-to-DC convertors

#### 1.4 Quick reference data

Table 1. Quick reference

| Symbol            | Parameter                           | Conditions                                                                                                                                                                 | Min | Тур  | Max | Unit |
|-------------------|-------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|------|-----|------|
| $V_{DS}$          | drain-source voltage                | $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$                                                                                                                            | -   | -    | 25  | V    |
| I <sub>D</sub>    | drain current                       | $V_{GS} = 10 \text{ V}; T_{mb} = 25 ^{\circ}\text{C}$                                                                                                                      | -   | -    | 75  | Α    |
| P <sub>tot</sub>  | total power dissipation             | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>                                                                                                                               | -   | -    | 93  | W    |
| Dynamic           | characteristics                     |                                                                                                                                                                            |     |      |     |      |
| $Q_{GD}$          | gate-drain charge                   | $V_{GS} = 5 \text{ V}; I_D = 50 \text{ A};$<br>$V_{DS} = 15 \text{ V}; T_j = 25 \text{ °C};$<br>see <u>Figure 11</u>                                                       | -   | 4.2  | 5.6 | nC   |
| Static ch         | aracteristics                       |                                                                                                                                                                            |     |      |     |      |
| R <sub>DSon</sub> | drain-source<br>on-state resistance | $V_{GS} = 10 \text{ V}; I_D = 25 \text{ A};$<br>$T_j = 25 \text{ °C}; \text{ see } \frac{\text{Figure 9}}{\text{10}};$<br>$\text{see } \frac{\text{Figure 10}}{\text{10}}$ | -   | 7.65 | 9   | mΩ   |



## 2. Pinning information

Table 2. Pinning information

| Pin | Symbol | Description                       | Simplified outline         | Graphic symbol                   |
|-----|--------|-----------------------------------|----------------------------|----------------------------------|
| 1   | G      | gate                              |                            | _                                |
| 2   | D      | drain                             | mb                         | D                                |
| 3   | S      | source                            |                            | $G \longrightarrow \overline{A}$ |
| mb  | D      | mounting base; connected to drain | 1 2 3                      | mbb076 S                         |
|     |        |                                   | SOT78<br>(TO-220AB; SC-46) |                                  |

## 3. Ordering information

Table 3. Ordering information

| Type number | Package            |                                                                                  |         |
|-------------|--------------------|----------------------------------------------------------------------------------|---------|
|             | Name               | Description                                                                      | Version |
| PHP78NQ03LT | TO-220AB;<br>SC-46 | plastic single-ended package; heatsink mounted; 1 mounting hole; 3-lead TO-220AB | SOT78   |

## 4. Limiting values

#### Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

| Symbol               | Parameter                                          | Conditions                                                                                                                 | Min | Max | Unit |
|----------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|-----|-----|------|
| $V_{DS}$             | drain-source voltage                               | $T_j \ge 25 \text{ °C}; T_j \le 175 \text{ °C}$                                                                            | -   | 25  | V    |
| $V_{DGR}$            | drain-gate voltage                                 | $T_j \ge 25$ °C; $T_j \le 175$ °C; $R_{GS} = 20$ kΩ                                                                        | -   | 25  | V    |
| $V_{GS}$             | gate-source voltage                                |                                                                                                                            | -20 | 20  | V    |
| I <sub>D</sub>       | drain current                                      | V <sub>GS</sub> = 5 V; T <sub>mb</sub> = 100 °C; see <u>Figure 1</u>                                                       | -   | 43  | Α    |
|                      |                                                    | V <sub>GS</sub> = 10 V; T <sub>mb</sub> = 25 °C                                                                            | -   | 75  | Α    |
|                      |                                                    | V <sub>GS</sub> = 10 V; T <sub>mb</sub> = 100 °C                                                                           | -   | 53  | Α    |
|                      |                                                    | V <sub>GS</sub> = 5 V; T <sub>mb</sub> = 25 °C; see <u>Figure 1</u> ;<br>see <u>Figure 3</u>                               | -   | 61  | Α    |
| I <sub>DM</sub>      | peak drain current                                 | $t_p \le 10 \ \mu s$ ; pulsed; $T_{mb} = 25 \ ^{\circ}C$ ;<br>see Figure 3                                                 | -   | 228 | Α    |
| P <sub>tot</sub>     | total power dissipation                            | T <sub>mb</sub> = 25 °C; see <u>Figure 2</u>                                                                               | -   | 93  | W    |
| T <sub>stg</sub>     | storage temperature                                |                                                                                                                            | -55 | 175 | °C   |
| Tj                   | junction temperature                               |                                                                                                                            | -55 | 175 | °C   |
| Source-dr            | ain diode                                          |                                                                                                                            |     |     |      |
| Is                   | source current                                     | $T_{mb} = 25  ^{\circ}C$                                                                                                   | -   | 75  | Α    |
| I <sub>SM</sub>      | peak source current                                | $t_p \le 10 \ \mu s$ ; pulsed; $T_{mb} = 25 \ ^{\circ}C$                                                                   | -   | 228 | Α    |
| Avalanche            | ruggedness                                         |                                                                                                                            |     |     |      |
| E <sub>DS(AL)S</sub> | non-repetitive<br>drain-source avalanche<br>energy | $V_{GS}$ = 10 V; $T_{j(init)}$ = 25 °C; $I_D$ = 43 A; $V_{sup}$ ≤ 25 V; unclamped; $t_p$ = 0.25 ms; $R_{GS}$ = 50 $\Omega$ | -   | 185 | mJ   |

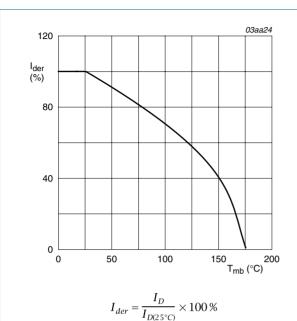
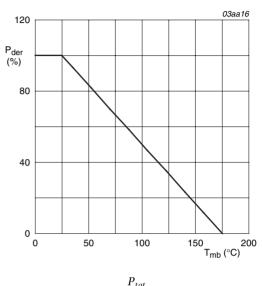
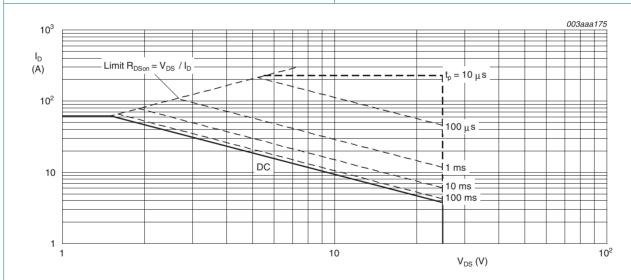





Fig 1. Normalized continuous drain current as a function of mounting base temperature



$$P_{der} = \frac{P_{tot}}{P_{tot(25^{\circ}C)}} \times 100\%$$

Fig 2. Normalized total power dissipation as a function of mounting base temperature



 $T_{mb} = 25$ °C;  $I_{DM}$  is single pulse;  $V_{GS} = 5V$ 

Fig 3. Safe operating area; continuous and peak drain currents as a function of drain-source voltage

## 5. Thermal characteristics

Table 5. Thermal characteristics

| Symbol                | Parameter                                         | Conditions            | Min | Тур | Max | Unit |
|-----------------------|---------------------------------------------------|-----------------------|-----|-----|-----|------|
| $R_{th(j-a)}$         | thermal resistance from junction to ambient       | vertical in still air | -   | 60  | -   | K/W  |
| R <sub>th(j-mb)</sub> | thermal resistance from junction to mounting base | see Figure 4          | -   | -   | 1.6 | K/W  |

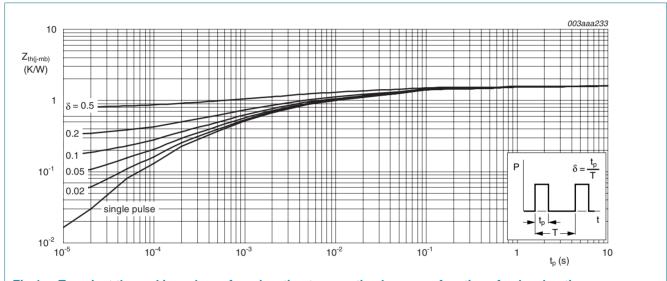



Fig 4. Transient thermal impedance from junction to mounting base as a function of pulse duration

## 6. Characteristics

Table 6. Characteristics

| $V_{(BR)DSS} = V_{(BR)DSS} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Table 6.            | Characteristics       |                                                                     |     |      |      |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------------------|---------------------------------------------------------------------|-----|------|------|------|
| $ \begin{array}{c} V_{(BR)DSS} \\ V_{CS(Ih)} \\ V_{CS(Ih)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Symbol              | Parameter             | Conditions                                                          | Min | Тур  | Max  | Unit |
| Decomposition   Decompositi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Static cha          | racteristics          |                                                                     |     |      |      |      |
| VGS(th)   voltage   VGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $V_{(BR)DSS}$       |                       | $I_D = 250 \ \mu A; \ V_{GS} = 0 \ V; \ T_j = -55 \ ^{\circ}C$      | 22  | -    | -    | V    |
| voltage   See Figure 7; see Figure 8   I <sub>D</sub> = 1 mA; V <sub>DS</sub> = V <sub>GS</sub> ; T <sub>1</sub> = 175 °C;   0.5   - V   V <sub>S</sub>   I <sub>D</sub> = 1 mA; V <sub>DS</sub> = V <sub>GS</sub> ; T <sub>1</sub> = 25 °C;   1   1.5   2   V   V <sub>S</sub> = V <sub>S</sub>   I <sub>D</sub> = 1 mA; V <sub>DS</sub> = V <sub>GS</sub> ; T <sub>1</sub> = 25 °C;   1   1.5   2   V   V <sub>S</sub> = V <sub>S</sub>   I <sub>D</sub> = 25 °C;   1   1.5   2   V   V <sub>S</sub> = 0   V <sub>S</sub>   I <sub>D</sub> = 25 °C;   1   1.5   2   V   V <sub>S</sub> = 0   V <sub>S</sub>   V <sub>S</sub> = 0   V |                     | breakdown voltage     | $I_D = 250 \mu A; V_{GS} = 0 V; T_j = 25 °C$                        | 25  | -    | -    | V    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{GS(th)}$        |                       |                                                                     | -   | -    | 2.2  | V    |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                     |                       |                                                                     | 0.5 | -    | -    | V    |
| $V_{DS} = 25 \text{ V; } V_{GS} = 0 \text{ V; } T_j = 150  ^{\circ}\text{C} \qquad - \qquad - \qquad 500 \qquad \mu A$ $I_{GSS} \qquad \text{gate leakage current} \qquad V_{GS} = 15 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25  ^{\circ}\text{C} \qquad - \qquad 10 \qquad 100 \qquad nA$ $V_{GS} = -15 \text{ V; } V_{DS} = 0 \text{ V; } T_j = 25  ^{\circ}\text{C} \qquad - \qquad 10 \qquad 100 \qquad nA$ $R_{DSOn} \qquad \text{drain-source on-state resistance} \qquad V_{GS} = 10 \text{ V; } I_D = 25 \text{ A; } T_j = 25  ^{\circ}\text{C}; \qquad - \qquad 7.65 \qquad 9 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } T_j = 175  ^{\circ}\text{C}; \qquad - \qquad 20.7 \qquad 24.3 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } T_j = 175  ^{\circ}\text{C}; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } T_j = 25  ^{\circ}\text{C}; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } T_j = 25  ^{\circ}\text{C}; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } T_j = 25  ^{\circ}\text{C}; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } T_j = 25  ^{\circ}\text{C}; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } T_j = 25  ^{\circ}\text{C}; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 13 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 50 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 4.8 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 50 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 4.8 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 25 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 4.8 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 50 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 4.8 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 50 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 4.8 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 50 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 4.8 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 50 \text{ A; } V_{DS} = 15 \text{ V; } V_{GS} = 5 \text{ V; } \qquad - \qquad 4.8 \qquad - \qquad nC$ $\frac{1}{V_{GS}} = 5 \text{ V; } I_D = 50 \text{ A; } V_{DS} = 15 \text{ V; } V_{CS} = 5 \text{ V; } \qquad - \qquad 389 \qquad - \qquad pF$ $\frac{1}{V_{GS}} = 10 \text{ V; } I_D = 10 \text{ A; } I_D = 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                     |                       |                                                                     | 1   | 1.5  | 2    | V    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $I_{DSS}$           | drain leakage current | $V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 25 \text{ °C}$  | -   | -    | 10   | μΑ   |
| $V_{GS} = -15 \ V; \ V_{DS} = 0 \ V; \ T_j = 25 \ ^{\circ}C \qquad - \qquad 10 \qquad 100 \qquad nA$ $R_{DSOn} \qquad drain-source \ on-state resistance \qquad V_{GS} = 10 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \qquad - \qquad 7.65 \qquad 9 \qquad m\Omega$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ T_j = 175 \ ^{\circ}C; \qquad - \qquad 20.7 \qquad 24.3 \qquad m\Omega$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ T_j = 25 \ ^{\circ}C; \qquad - \qquad 11.5 \qquad 13.5 \qquad m\Omega$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ V_{GS} = 5 \ V; \qquad - \qquad 13 \qquad - \qquad nC$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ V_{GS} = 5 \ V; \qquad - \qquad 13 \qquad - \qquad nC$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ V_{GS} = 5 \ V; \qquad - \qquad 13 \qquad - \qquad nC$ $V_{GS} = 5 \ V; \ I_D = 25 \ A; \ V_{GS} = 5 \ V; \qquad - \qquad 13 \qquad - \qquad nC$ $V_{GS} = 5 \ V; \ I_D = 25 \ ^{\circ}C; \ See \ Figure 10 \qquad - \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                     |                       | $V_{DS} = 25 \text{ V}; V_{GS} = 0 \text{ V}; T_j = 150 \text{ °C}$ | -   | -    | 500  | μΑ   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $I_{GSS}$           | gate leakage current  | $V_{GS} = 15 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$  | -   | 10   | 100  | nA   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                       | $V_{GS} = -15 \text{ V}; V_{DS} = 0 \text{ V}; T_j = 25 \text{ °C}$ | -   | 10   | 100  | nA   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Doon                |                       |                                                                     | -   | 7.65 | 9    | mΩ   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                     |                       | ,                                                                   | -   | 20.7 | 24.3 | mΩ   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                     |                       |                                                                     | -   | 11.5 | 13.5 | mΩ   |
| $See \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Dynamic             | characteristics       |                                                                     |     |      |      |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Q <sub>G(tot)</sub> | total gate charge     |                                                                     | -   | 13   | -    | nC   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $Q_{GS}$            | gate-source charge    |                                                                     | -   | 4.8  | -    | nC   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $Q_{GD}$            | gate-drain charge     | T <sub>j</sub> = 25 °C; see <u>Figure 11</u>                        | -   | 4.2  | 5.6  | nC   |
| $C_{rss} \qquad \text{reverse transfer} \\ capacitance \\ t_{d(on)} \qquad \text{turn-on delay time} \qquad V_{DS} = 15 \text{ V}; \ R_L = 0.6 \ \Omega; \ V_{GS} = 10 \text{ V}; \\ t_r \qquad \text{rise time} \qquad R_{G(ext)} = 5.6 \ \Omega; \ T_j = 25 \ ^{\circ}\text{C} \qquad - \qquad 92 \qquad 130  \text{ns} \\ t_{d(off)} \qquad \text{turn-off delay time} \qquad - \qquad 30 \qquad 48  \text{ns} \\ t_f \qquad \text{fall time} \qquad - \qquad 40 \qquad 60  \text{ns} \\ \textbf{Source-drain diode} \\ V_{SD} \qquad \text{source-drain voltage} \qquad I_S = 25 \text{ A}; \ V_{GS} = 0 \text{ V}; \ T_j = 25 \ ^{\circ}\text{C}; \qquad - \qquad 0.95 \qquad 1.2  \text{V} \\ \text{see} \qquad \frac{\text{Figure 13}}{\text{Figure 13}} \\ t_{rr} \qquad \text{reverse recovery time} \qquad I_S = 20 \text{ A}; \ \text{dIs/dt} = -100 \text{ A/}\mu\text{s}; \ V_{GS} = 0 \text{ V}; \qquad - \qquad 40 \qquad - \qquad \text{ns} \\ \textbf{Source-drain diode} \qquad - \qquad 10 \text{ A/}\mu\text{s}; \ V_{GS} = 0 \text{ V}; \qquad - \qquad 40 \qquad - \qquad \text{ns} \\ \textbf{Source-drain diode} \qquad - \qquad 10 \text{ A/}\mu\text{s}; \ V_{GS} = 0 \text{ V}; \qquad - \qquad 40 \qquad - \qquad $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C <sub>iss</sub>    | input capacitance     |                                                                     | -   | 1074 | -    | pF   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | C <sub>oss</sub>    | output capacitance    | $T_j = 25 ^{\circ}\text{C}$ ; see Figure 12                         | -   | 389  | -    | pF   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | C <sub>rss</sub>    |                       |                                                                     | -   | 156  | -    | pF   |
| $t_{d(off)}  turn-off \ delay \ time \qquad \qquad -  30  48  ns$ $t_{f}  fall \ time \qquad \qquad -  40  60  ns$ $\textbf{Source-drain diode}$ $V_{SD}  source-drain \ voltage \qquad I_{S} = 25 \ A; \ V_{GS} = 0 \ V; \ T_{j} = 25 \ ^{\circ}\text{C}; \qquad -  0.95  1.2  V$ $see  Figure  13$ $t_{rr}  reverse \ recovery \ time \qquad I_{S} = 20 \ A; \ dI_{S}/dt = -100 \ A/\mu s; \ V_{GS} = 0 \ V; \qquad -  40  -  ns$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>d(on)</sub>  | turn-on delay time    |                                                                     | -   | 20   | 33   | ns   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t <sub>r</sub>      | rise time             | $R_{G(ext)} = 5.6 \Omega; T_j = 25 \text{ °C}$                      | -   | 92   | 130  | ns   |
| Source-drain diode $V_{SD}$ source-drain voltage $I_S = 25 \text{ A}$ ; $V_{GS} = 0 \text{ V}$ ; $T_j = 25 \text{ °C}$ ; - 0.95 1.2 V see Figure 13 $I_{ST} = 20 \text{ A}$ ;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | t <sub>d(off)</sub> | turn-off delay time   |                                                                     | -   | 30   | 48   | ns   |
| V <sub>SD</sub> source-drain voltage $I_S = 25 \text{ A}$ ; $V_{GS} = 0 \text{ V}$ ; $T_j = 25 \text{ °C}$ ; - 0.95 1.2 V see Figure 13 $I_{ST} = 20 \text{ A}$ ; $I$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t <sub>f</sub>      | fall time             |                                                                     | -   | 40   | 60   | ns   |
| see Figure 13  trr reverse recovery time $I_S = 20 \text{ A}$ ; $dI_S/dt = -100 \text{ A/}\mu\text{s}$ ; $V_{GS} = 0 \text{ V}$ ; - 40 - ns                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Source-di           | rain diode            |                                                                     |     |      |      |      |
| V 25 V₁ T 25 °C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $V_{SD}$            | source-drain voltage  |                                                                     | -   | 0.95 | 1.2  | V    |
| $Q_r$ recovered charge $V_{DS} = 25 \text{ V}; T_j = 25 \text{ °C}$ - 32 - nC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | t <sub>rr</sub>     | reverse recovery time |                                                                     | -   | 40   | -    | ns   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Q <sub>r</sub>      | recovered charge      | $V_{DS} = 25 \text{ V}; T_j = 25 \text{ °C}$                        | -   | 32   | -    | nC   |

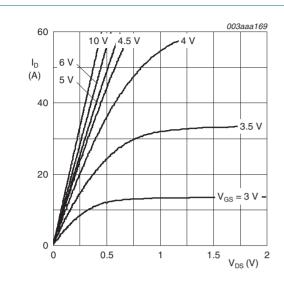



Fig 5. Output characteristics: drain current as a function of drain-source voltage; typical values

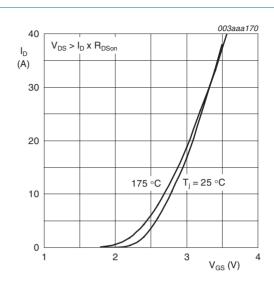



Fig 6. Transfer characteristics: drain current as a function of gate-source voltage; typical values

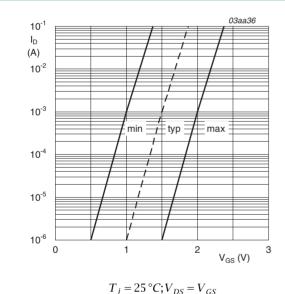



Fig 7. Sub-threshold drain current as a function of gate-source voltage

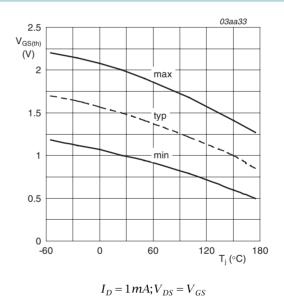



Fig 8. Gate-source threshold voltage as a function of junction temperature

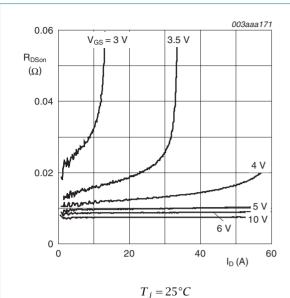



Fig 9. Drain-source on-state resistance as a function of drain current; typical values

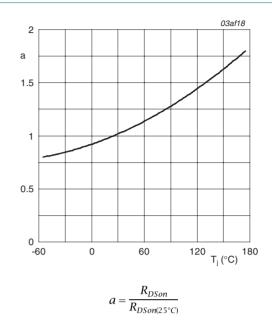



Fig 10. Normalized drain-source on-state resistance factor as a function of junction temperature

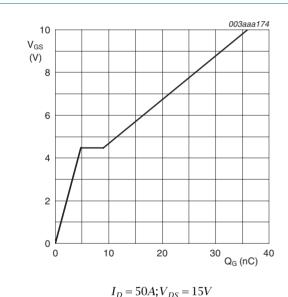
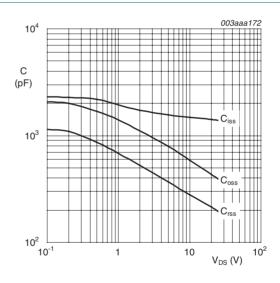




Fig 11. Gate-source voltage as a function of gate charge; typical values



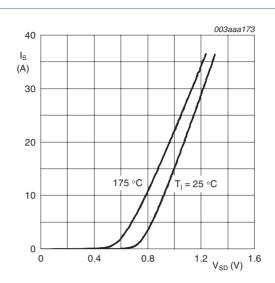
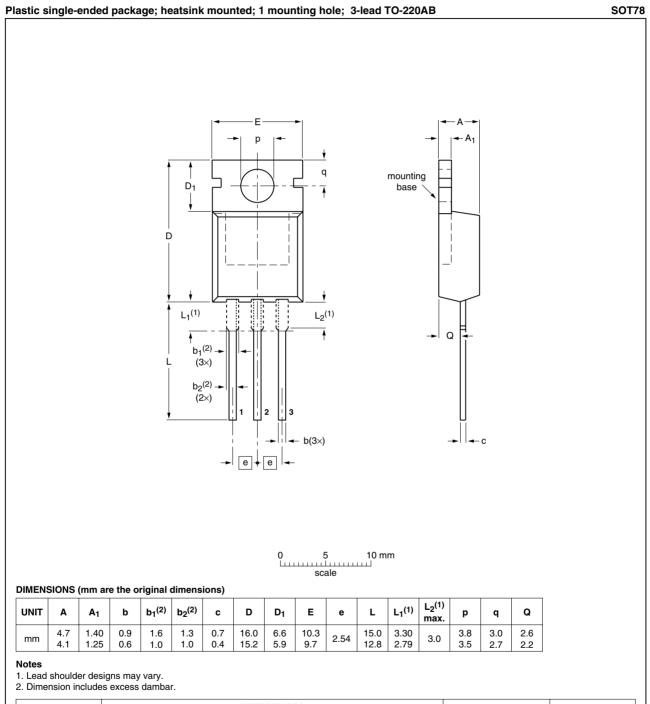

 $V_{GS} = 0V; f = 1MHz$ 

Fig 12. Input, output and reverse transfer capacitances as a function of drain-source voltage; typical values

**Product data sheet** 

9 of 13


## N-channel TrenchMOS logic level FET



 $T_j = 25^{\circ} C \text{ and } 175^{\circ} C; V_{GS} = 0V$ 

Fig 13. Source current as a function of source-drain voltage; typical values

## 7. Package outline



| OUTLINE |       |     | REFER           | ENCES | EUROPEAN   | ISSUE DATE                      |
|---------|-------|-----|-----------------|-------|------------|---------------------------------|
| VE      | RSION | IEC | JEDEC           | JEITA | PROJECTION | ISSUE DATE                      |
| S       | OT78  |     | 3-lead TO-220AB | SC-46 |            | <del>08-04-23</del><br>08-06-13 |

Fig 14. Package outline SOT78 (TO-220AB)

11 of 13

## N-channel TrenchMOS logic level FET

## **Revision history**

#### Table 7. **Revision history**

**Product data sheet** 

| - Revision metery                         |                                 |                                                   |                  |                              |
|-------------------------------------------|---------------------------------|---------------------------------------------------|------------------|------------------------------|
| Document ID                               | Release date                    | Data sheet status                                 | Change notice    | Supersedes                   |
| PHP78NQ03LT_6                             | 20090130                        | Product data sheet                                | -                | PHP78NQ03LT_5                |
| Modifications:                            |                                 | of this data sheet has b<br>of NXP Semiconductors | •                | comply with the new identity |
|                                           | <ul> <li>Legal texts</li> </ul> | have been adapted to t                            | he new company r | name where appropriate.      |
| PHP78NQ03LT_5<br>(9397 750 15086)         | 20050609                        | Product data sheet                                | -                | PHP_PHU78NQ03LT_4            |
| PHP_PHU78NQ03LT_4<br>(9397 750 13431)     | 20040726                        | Product data sheet                                | -                | PHP_PHB_PHD78NQ03LT_3        |
| PHP_PHB_PHD78NQ03LT_3 (9397 750 09667)    | 20020626                        | Product data sheet                                | -                | PHP_PHB_PHD78NQ03LT_2        |
| PHP_PHB_PHD78NQ03LT_2<br>(9397 750 09418) | 20020322                        | Product data sheet                                | -                | PHP_PHB_PHD78NQ03LT_1        |
| PHP_PHB_PHD78NQ03LT_1 (9397 750 08916)    | 20011114                        | Product data sheet                                | -                | -                            |

## 9. Legal information

#### 9.1 Data sheet status

| Document status [1][2]         | Product status[3] | Definition                                                                            |
|--------------------------------|-------------------|---------------------------------------------------------------------------------------|
| Objective [short] data sheet   | Development       | This document contains data from the objective specification for product development. |
| Preliminary [short] data sheet | Qualification     | This document contains data from the preliminary specification.                       |
| Product [short] data sheet     | Production        | This document contains the product specification.                                     |

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

### 9.2 Definitions

**Draft** — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

#### 9.3 Disclaimers

**General** — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

**Applications** — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

**Quick reference data** — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at <a href="http://www.nxp.com/profile/terms">http://www.nxp.com/profile/terms</a>, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

**No offer to sell or license** — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

#### 9.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

12 of 13

TrenchMOS — is a trademark of NXP B.V.

#### 10. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

# PHP78NQ03LT

## N-channel TrenchMOS logic level FET

## 11. Contents

| 1   | Product profile          |
|-----|--------------------------|
| 1.1 | General description      |
| 1.2 | Features and benefits1   |
| 1.3 | Applications             |
| 1.4 | Quick reference data1    |
| 2   | Pinning information2     |
| 3   | Ordering information2    |
| 4   | Limiting values3         |
| 5   | Thermal characteristics5 |
| 6   | Characteristics6         |
| 7   | Package outline          |
| 8   | Revision history11       |
| 9   | Legal information12      |
| 9.1 | Data sheet status        |
| 9.2 | Definitions              |
| 9.3 | Disclaimers              |
| 9.4 | Trademarks12             |
| 10  | Contact information12    |

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

