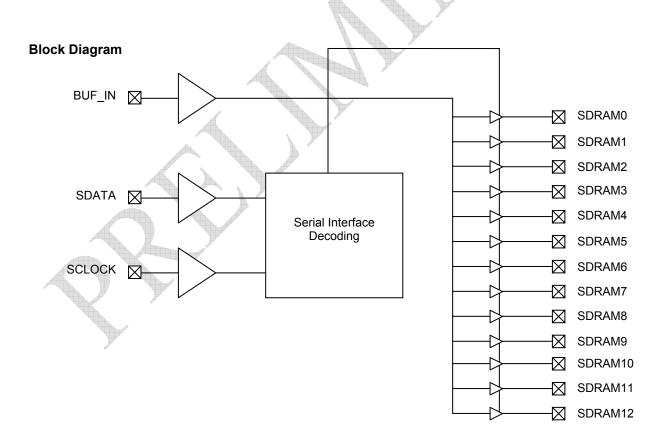


PCS2I2313ANZ

13 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs

Features


rev 0.5

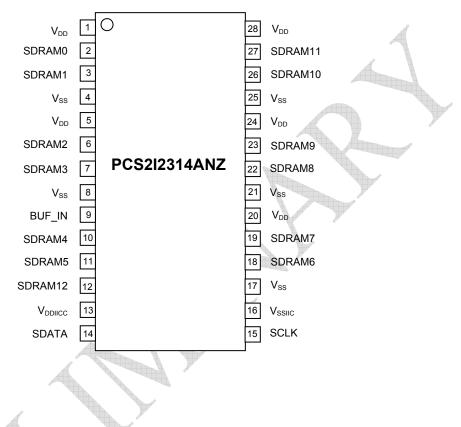
- One input to 13 Output Buffer/Driver
- Supports up to three SDRAM DIMMs
- One additional outputs for feedback
- Serial interface for output control
- Low skew outputs
- Up to 133MHz operation
- Multiple V_{DD} and V_{SS} pins for noise reduction
- Low EMI outputs
- 28 pin SOIC (300-mil) Package
- 3.3V operation

Functional Description

The PCS2I2313ANZ is a 3.3V buffer designed to distribute high-speed clocks in desktop PC applications. The part has 13 outputs, 12 of which can be used to drive up to three SDRAM DIMMs, and the remaining can be used for external feedback to a PLL. The device operates at 3.3V and outputs can run up to 133MHz, thus making it compatible with Pentium^{®*}II processors. The PCS2I2313ANZ can be used in conjunction with the clock synthesizer for a complete Pentium II motherboard solution. The PCS2I2313ANZ also includes a serial interface, which can enable or disable each output clock. On power-up, all output clocks are enabled.

*Pentium is a registered trademark of Intel Corporation.

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200, Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-879-9018 www.pulsecoresemi.com


rev 0.5

PCS2I2313ANZ

Pin Configuration

28 Pin SOIC Package -- Top View

Pin Description

Pins	Name	Туре	Description
1, 5, 20, 24, 28	VDD	Р	3.3V Digital Voltage supply
4, 8, 17, 21, 25	Vss	Р	Ground
13	VDDIIC	Р	3.3V Serial Interface voltage supply
16	Vssiic	Р	Ground for serial interface
9	BUF_IN	I	Input clock .5V Tolerant
14	SDATA	I/O	Serial data input, internal pull-up to VDD .5V Tolerant
15	SCLK	Ι	Serial clock input, internal pull-up to VDD .5V Tolerant
2, 3, 6, 7, 10, 11, 12, 18, 19, 22, 23, 26, 27	SDRAM [0-12]	0	SDRAM Clock Outputs

PCS2I2313ANZ

rev 0.5

Serial Configuration Map

• The Serial bits will be read by the clock driver in the following order:

Byte 0 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte 1 - Bits 7, 6, 5, 4, 3, 2, 1, 0 Byte N - Bits 7, 6, 5, 4, 3, 2, 1, 0

- Reserved bits should be programmed to "0" or "1".
- Serial interface address for the PCS2I2313ANZ is:

A6	A5	A4	A3	A2	A1	A0	R/W
1	1	0	1	0	0	1	

Byte 0: SDRAM Active/Inactive Register

(1 = Enable, 0 = Disable), Default = Enable

Bit	Pin #	Description			
Bit 7	11	SDRAM5 (Active/Inactive)			
Bit 6	10	SDRAM4 (Active/Inactive)			
Bit 5		Reserved			
Bit 4		Reserved			
Bit 3	7	SDRAM3 (Active/Inactive)			
Bit 2	6	SDRAM2 (Active/Inactive)			
Bit 1	3	SDRAM1 (Active/Inactive)			
Bit 0	2	SDRAM0 (Active/Inactive)			

Byte 1: SDRAM Active/Inactive Register

(1 = Enable, 0 = Disable), Default = Enable

Bit	Pin #	Description	
Bit 7	27	SDRAM11 (Active/Inactive)	
Bit 6	26	SDRAM10 (Active/Inactive)	
Bit 5	23	SDRAM9 (Active/Inactive)	
Bit 4	22	SDRAM8 (Active/Inactive)	
Bit 3		Reserved	
Bit 2		Reserved	
Bit 1	19	SDRAM7 (Active/Inactive)	
Bit 0	18	SDRAM6 (Active/Inactive)	

Byte 2: SDRAM Active/Inactive Register

(1 = Enable, 0 = Disable), Default = Enable

	Bit	Pin #	Description
6	Bit 7	_	Reserved
	Bit 6	12	SDRAM12 (Active/Inactive)
	Bit 5	Y	Reserved
A 10 10	Bit 4		Reserved
	Bit 3		Reserved
	Bit 2		Reserved
100	Bit 1		Reserved
	Bit 0		Reserved

Note 1 : When the value of bit in these bytes is high, the output is enabled. When the value of the bit is low, the output is forced to low state. The default value of all the bits is high after chip is powered up.

IIC Byte Flow

Byte	Description
1	IIC Address
2	Command (dummy value, ignored)
3	Byte Count (dummy value, ignored)
4	IIC Data Byte 0
5	IIC Data Byte 1
6	IIC Data Byte 2

PCS2I2313ANZ

rev 0.5

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit				
V _{DD}	Supply Voltage to Ground Potential	-0.5 to +7.0	V				
V _{IN}	DC Input Voltage (Except BUF_IN)	-5 to VDD + 0.5	V				
V _{BUFIN}	DC Input Voltage (BUF_IN)	-0.5 to +7.0	V				
T _{STG}	Storage Temperature	-65 to +150	°C				
TJ	Junction Temperature	150	°C				
T _{DV}	Static Discharge Voltage	2	ку				
I DV	(As per JEDEC STD 22- A114-B)		Γίν				
	Note: These are stress ratings only and are not implied for functional use. Exposure to absolute maximum ratings for prolonged periods of time may affect device reliability.						

Operating Conditions¹

Parameter	Description	Min	Max	Unit
V _{DD}	Supply Voltage	3.135	3.465	V
T _A	Operating Temperature (Ambient Temperature)	0	70	°C
CL	Load Capacitance	20	30	pF
C _{IN}	Input Capacitance		7	pF
t _{PU}	Power-up time for all V_{DD} 's to reach minimum specified voltage (power ramps must be monotonic)	0.05	50	mS

Note: 1. Electrical parameters are guaranteed under the operating conditions specified.

PCS2I2313ANZ

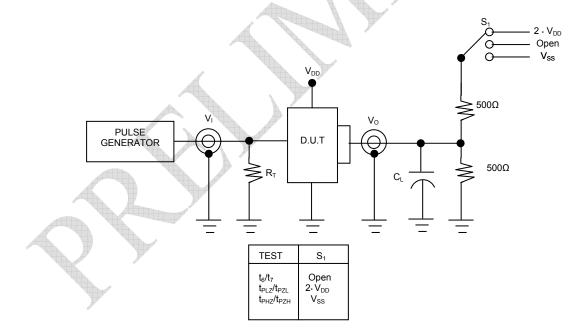
rev 0.5

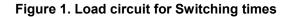
Electrical Characteristics

Parameter	Description	Test Conditions	Min	Тур	Max	Unit
V _{IL}	Input LOW Voltage	Except serial interface pins			0.8	V
VILIIC	Input LOW Voltage	For serial interface pins only			0.7	V
V _{IH}	Input HIGH Voltage		2.0			V
V _{OL}	Output LOW Voltage ¹	I _{OL} = 25 mA			0.4	V
V _{OH}	Output HIGH Voltage ¹	I _{OH} = -36 mA	2.4	1		V
I _{CC}	Quiescent Supply Current	V_{DD} = 3.465V, V_i = V_{DD} or GND, I_0 =0		50	100	μA
I _{OZ}	High Impedance Output Current	V_{DD} = 3.465V, V_i = V_{DD} or GND			±10	μA
I _{OFF}	Off-State Current (for SCL ,SDATA)	V_{DD} = 0V, V _i = 0V or 5.5V		ł	50	μA
ΔI_{CC}	Change in Supply Current	V_{DD} = 3.135V to 3.465V One Input at V_{DD} -0.6, All other Inputs at V_{DD} or GND	¥		500	μA
li	Input Leakage	V _{DD} = 3.465V or GND (Applicable to all Input Pins)	-5		+5	μA
I _{DD}	Supply Current ¹	Unloaded outputs,133MHz			266	mA
I _{DD}	Supply Current ¹	Loaded outputs, 30pF,133MHz			360	mA
I _{DD}	Supply Current ¹	Unloaded outputs, 100MHz	¢.		200	mA
I _{DD}	Supply Current ¹	Loaded outputs, 30pF,100MHz			290	mA
I _{DD}	Supply Current ¹	Unloaded outputs, 66.67MHz			150	mA
I _{DD}	Supply Current ¹	Loaded outputs, 30pF,66.67MHz			185	mA
I _{DDS}	Supply Current	$\begin{array}{l} \text{BUF_IN=V_{DD} or V_{SS}} \\ \text{All other inputs at } V_{DD} \end{array}$			500	μA

Note: 1. Parameter is guaranteed by design and characterization. Not 100% tested in production.

PCS2I2313ANZ

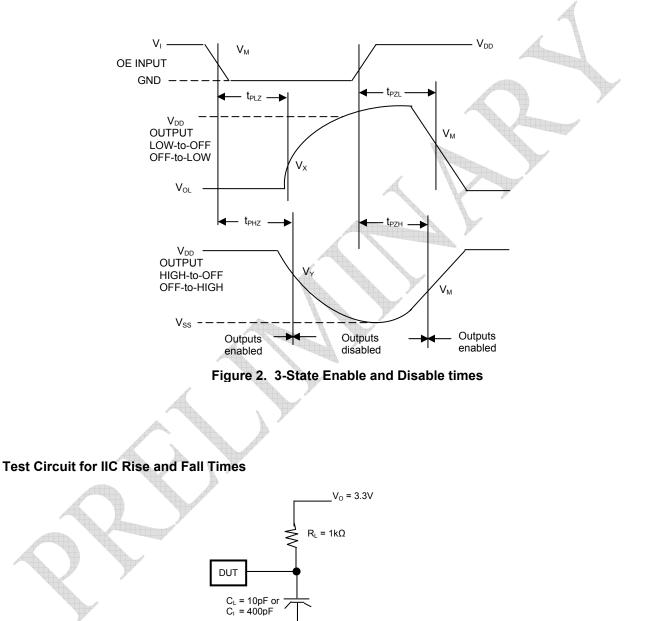

rev 0.5


Switching Characteristics¹

Parameter	Name	Test Conditions	Min	Тур	Max	Unit
F _{in}	Maximum Operating Frequency				133	MHz
t _D	Duty cycle ^{2,3} = $t_2 \div t_1$	Measured at 1.5V	45.0	50.0	55.0	%
t ₃	Rising Edge Rate ³	Measured between 0.4V and 2.4V	1	2	4	V/nS
t4	Falling Edge Rate ³	Measured between 2.4V and 0.4V	1	2	4	V/nS
t ₅	Output to Output Skew ³	All outputs equally loaded		150	225	pS
t ₆	SDRAM Buffer LH Prop. Delay ³	Input edge greater than 1 V/nS	1	2.7	3.5	nS
t7	SDRAM Buffer HL Prop. Delay ³	Input edge greater than 1 V/nS	1	2.7	3.5	nS
t _{PLZ,} t _{PHZ}	SDRAM Buffer Enable Delay ³	Input edge greater than 1 V/nS	1	3	5	nS
t _{PZL,} t _{PZH}	SDRAM Buffer Disable Delay ³	Input edge greater than 1 V/nS	1	3	5	nS
4	Rise Time for SDATA	C _L = 10pF	6			nS
t _r	(Refer Test Circuit for IIC) Refer figure no.3	C _L = 400pF			250	115
+	Fall Time for SDATA	C _L = 10pF	20			nS
t _f	(Refer Test Circuit for IIC) Refer figure no.3	C _L = 400pF			250	113

Note: 1. All parameters specified with loaded outputs.
2. Duty cycle of input clock is 50%. Rising and falling edge rate is greater than 1V/nS
3. Parameter is guaranteed by design and characterization. Not 100% tested in production.

Test Circuit for SDRAM Enable and Disable Times



rev 0.5

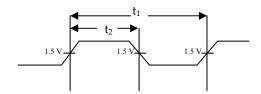
SDRAM Enable and Disable Times

 $V_{M} = 1.5V$ $V_{X} = V_{OL} + 0.3V$ $V_{Y} = V_{OH} - 0.3V$

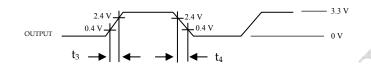
 $V_{\text{OH}} \, \text{and} \, V_{\text{OL} \, \text{are}}$ the typical Output Voltage drop that occur with the output load

GND

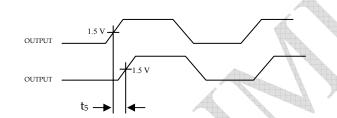
Figure 3. Test Circuit for IIC



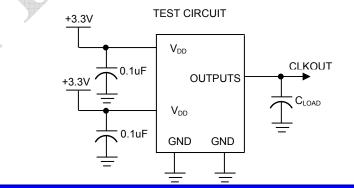
PCS2I2313ANZ


rev 0.5

Switching Waveforms


Duty Cycle Timing

All Outputs Rise/Fall Time

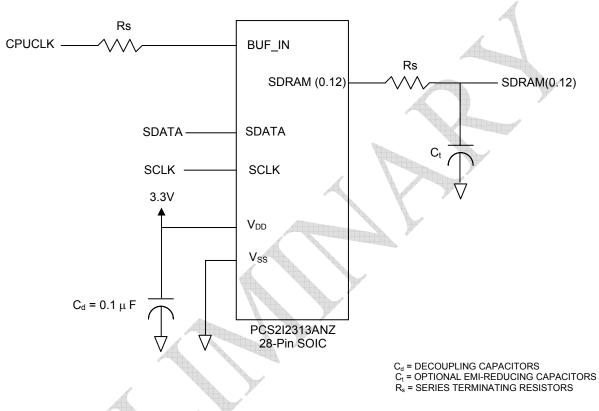

Output - Output Skew

SDRAM Buffer LH and HL Propagation Delay

Test Circuit

13 Output, 3.3V SDRAM Buffer for Desktop PCs with 3 DIMMs

8 of 13


PCS2I2313ANZ

rev 0.5

Application Information

Clock traces must be terminated with either series or parallel termination, as is normally done.

Application Circuit

Summary

- Surface mount, low-ESR, ceramic capacitors should be used for filtering. Typically, these capacitors have a value of 0.1 µF. In some cases, smaller value capacitors may be required.
- The value of the series terminating resistor satisfies the following equation, where Rtrace is the loaded characteristic impedance of the trace, Rout is the output impedance of the buffer (typically 25Ω), and Rseries is the series terminating resistor.

Rseries > Rtrace - Rout

- Footprints must be laid out for optional EMI-reducing capacitors, which should be placed as close to the terminating resistor as is physically possible. Typical values of these capacitors range from 4.7pF to 22pF.
- A Ferrite Bead may be used to isolate the Board V_{DD} from the clock generator V_{DD} island. Ensure that the Ferrite Bead offers greater than 50Ω impedance at the clock frequency, under loaded DC conditions.
- If a Ferrite Bead is used, a 10µF–22µF tantalum bypass capacitor should be placed close to the Ferrite Bead. This capacitor prevents power supply droop during current surges.

PCS2I2313ANZ

rev 0.5

IIC Serial Interface Information

The information in this section assumes familiarity with IIC programming.

How to program PCS2I2313ANZ through IIC:

- Master (host) sends a start bit.
- Master (host) sends the write address D3 (H).
- PCS2I2313ANZ device will acknowledge.
- Master (host) sends the Command Byte.
- PCS2I2313ANZ device will acknowledge the Command Byte.
- Master (host) sends a Byte count
- PCS2I2313ANZ device will acknowledge the Byte count.
- Master (host) sends the Byte 0
- PCS2I2313ANZ device will acknowledge Byte 0
- Master (host) sends the Byte 1
- PCS2I2313ANZ device will acknowledge Byte 1
- Master (host) sends the Byte 2
- PCS2I2313ANZ device will acknowledge Byte 2
- Master (host) sends a Stop bit.

Controller (Host)	PCS2I2313ANZ (slave/receiver)
Start Bit	
Slave Address D3(H)	
	ACK
Command Byte	
	ACK
Byte count	
	ACK
Byte 0	
	ACK
Byte 1	
	ACK
Byte 2	
	ACK
Stop Bit	

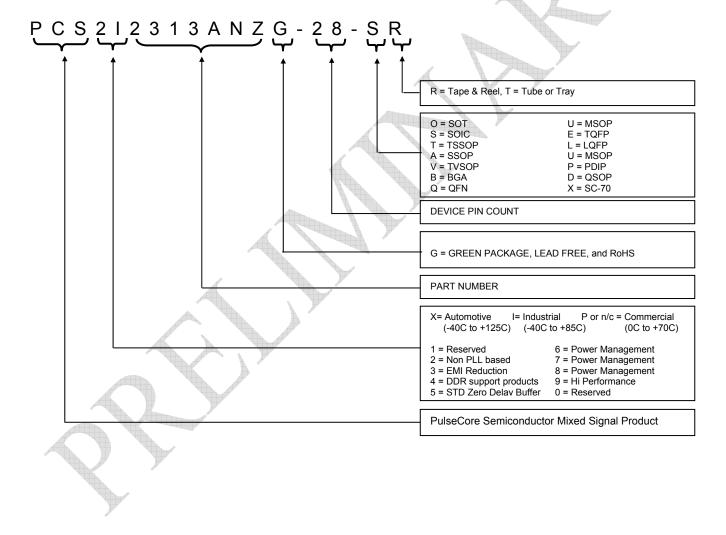
PCS2I2313ANZ

rev 0.5

Package Information

	Dimensions						
Symbol	Inch	ies	Millimeters				
	Min	Max	Min	Max			
Α	0.093	0.104	2.35	2.65			
A1	0.004	0.012	0.10	0.30			
A2	0.088	0.094	2.25	2.40			
D	0.697	0.712	17.70	18.10			
h	0.010	0.029	0.25	0.75			
E	0.291	0.299	7.40	7.60			
Н	0.394	0.419	10.00	10.65			
R1	0.003		0.08				
b	0.013	0.022	0.33	0.56			
b1	0.013	0.020	0.33	0.51			
С	0.009	0.015	0.23	0.38			
c1	0.009	0.013	0.23	0.33			
L	0.016	0.050	0.40	1.27			
е	0.050	BSC	1.27 BSC				
θ	0°	8°	0°	8°			

PCS2I2313ANZ


12 of 13

rev 0.5

Ordering Information

Ordering Code	Marking	Package Type	Operating Range
PCS2P2313ANZG-28-ST	2P2313ANZG	28 Pin SOIC, Tube, Green	Commercial
PCS2P2313ANZG-28-SR	2P2313ANZG	28 Pin SOIC, Tape and Reel, Green	Commercial
PCS2I2313ANZG-28-ST	2I2313ANZG	28 Pin SOIC, Tube, Green	Industrial
PCS2I2313ANZG-28-SR	2I2313ANZG	28 Pin SOIC, Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

PCS2I2313ANZ

rev 0.5

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Preliminary Information Part Number: PCS22313ANZ Document Version: 0.5

13 of 13

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.