# 2-output High-efficiency Step-down Switching Regulators with Built-in Power MOSFET 

 BD9302FP
## - Description

The BD9302FP is a 2-channel step-down switching regulator controller with a $2.5-\mathrm{MHz}, 2-\mathrm{A}$ power switch and available for $2.5-\mathrm{MHz}$ high speed switching operation, which facilitates settings of switching frequency with external resistance, supporting for a wide input voltage range of 6 to 18 V . Furthermore, due to a low reference voltage of 0.6 V , this BD9302FP is an L/C best suited to high-voltage input/low-voltage output applications, for example, to step down a voltage from 12 V to 1.2 V .

- Features

1) A wide input voltage range of 6 V to 18 V
2) Easy switching frequency setting in the range of 200 k to 2.5 MHz .
3) Two built-in power switches of $0.4 \Omega, 2 \mathrm{~A}$.
4) $180^{\circ}$ phase shift
5) Built-in Under Voltage Lock Out circuit
6) Built-in overcurrent protection circuit
7) Built-in Thermal Shutdown circuit

- Use

Power supply for DPS requiring two power sources
ADSL modem/plasma display
Audio devices

- Absolute maximum ratings $\left(\mathrm{Ta}=25^{\circ} \mathrm{C}\right)$

| Item | Symbol | Rating | Unit |
| :--- | :---: | :---: | :---: |
| Power supply voltage | Vcc | 20 | V |
| Power dissipation | Pd | $1450^{*}$ | mW |
| Operating temperature | Topr | $-40 \sim+85$ | ${ }^{\circ} \mathrm{C}$ |
| Storage temperature | Tstg | $-55 \sim+150$ | ${ }^{\circ} \mathrm{C}$ |
| Output current | lo | $2^{* *}$ | A |
| Maximum junction temperature | Tjmax | 150 | ${ }^{\circ} \mathrm{C}$ |

* Should be derated by $11.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ at $\mathrm{Ta}=25^{\circ} \mathrm{C}$ or more. When mounted on a glass epoxy PCB of $70 ¥ 70 ¥ 1.6 \mathrm{~mm}$ )
** Should not exceed Pd-value.

Recommended operating range ( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ )

| Item |  | Symbol | Limits |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  | Typ | Max | Unit |
| Power supply voltage | Vcc |  | 6 |  | 12 | 18 |
| Output current | Io | - | - | 1.8 | A |
| Timing resistance | RT | 10 | - | 100 | $\mathrm{k} \Omega$ |
| Oscillation frequency | Fosc | 100 |  | 2500 | kHz |

- Electrical characteristics

Electrical characteristics (Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12 \mathrm{~V}, \mathrm{RT}=10 \mathrm{k} \Omega$ )

| Item | Symbol | Limits |  |  | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| [Triangular wave oscillator block] |  |  |  |  |  |  |
| Oscillation frequency | Fosc | 1800 | 2000 | 2200 | kHz | $\mathrm{RT}=10 \mathrm{k} \Omega$ |
| Frequency variation | Fovo | - | 1 | - | \% | $\sim 18 \mathrm{~V}$ |
| [Overcurrent protection circuit block] |  |  |  |  |  |  |
| Overcurrent limit | Isw | 2 | 4 | 6 | A | * |
| [Under-voltage malfunction prevention circuit block] |  |  |  |  |  |  |
| Upper limit threshold voltage | VtH | 3.0 | 3.3 | 3.6 | V |  |
| Lower limit threshold voltage | VtL | 2.7 | 3.0 | 3.3 | V |  |
| [Soft start circuit block] |  |  |  |  |  |  |
| Source current | Isso | 6 | 10 | 14 | uA | Vss=1V |
| Sink current | Issı | 0.6 | 1.7 | 5 | mA | Vss=1V, Vcc=3V |
| Clamp voltage | Vcl | 1.75 | 1.95 | 2.15 | V |  |
| Shutdown voltage | Vsdwn | - | - | 0.3 | V | $\mathrm{Vcc}=3 \mathrm{~V}$ |

ONot designed for radiation resistance.

* Design guarantee (No 100\% pre-shipment inspections are conducted.)
- Electrical characteristics

OElectrical characteristics (Unless otherwise specified, $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{Vcc}=12 \mathrm{~V}, \mathrm{RT}=10 \mathrm{k} \Omega$ )

| Item | Symbol | Limits |  |  | Unit | Conditions |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Min | Typ | Max |  |  |
| [Error amplifier block] |  |  |  |  |  |  |
| Input bias current | IIB | - | 0.4 | 1 | uA |  |
| Voltage gain | AV | - | 200 | - | V/V |  |
| COMP maximum output voltage | VoH | 1.75 | 1.95 | - | V | ІсомP $=-0.1 \mathrm{~mA}$ |
| COMP minimum output voltage | Vol | - | 0.8 | 1.0 | V | Icomp $=0.1 \mathrm{~mA}$ |
| Output sink current | IoI | 1 | 2 | 4 | mA | $\mathrm{V}_{\mathrm{FB}}=0.8 \mathrm{~V}$ |
| Output source current | Ioo | -8 | -4 | -1 | mA | VFB $=0.4 \mathrm{~V}$ |
| Feedback voltage | Vfb | 0.588 | 0.600 | 0.612 | V | Buffer |
| [Output block] |  |  |  |  |  |  |
| Upper-side ON resistance | Ronh | - | 0.4 | 0.6 | $\Omega$ | $\mathrm{lo}=1 \mathrm{~A}^{*}$ |
| Low-side ON resistance | Ronl | 0.1 | 2 | 3 | $\Omega$ | $\mathrm{lo}=20 \mathrm{~mA}$ * |
| OFF current | loff |  | 0.2 | 0.4 | mA | SW=0V |
| [Total device] |  | - |  |  |  |  |
| Average supply current | Icc |  | 5 | - | mA | $\mathrm{Rt}=1.0 \mathrm{~V}$ |

ONot designed for radiation resistance.

* Design guarantee (No 100\% pre-shipment inspections are conducted.)
- Measurement circuit diagram


Fig. 1 Typical measurement circuit


Reference characteristics data


Fig. 11
Power supply voltage - Efficiency


Fig. 14
Startup waveform


Fig. 12
Switching frequency - Efficiency


Fig. 15
Load transient response No. 1


Fig. 13
Set capacitance - Delay time


Fig. 16
Load transient response No. 2

Application measurement circuit diagram


Fig. 17 Application measurement circuit diagram

- Pin assignment

- Block diagram


Fig. 18 Pin assignment / Block diagram

- Pin assignment / functions

| Pin No. | Pin name | Function |
| :---: | :---: | :--- |
| 1 | PGND1 | Ground |
| 2 | COMP1 | Error amplifier output |
| 3 | FB1 | Error amplifier inverting input |
| 4 | RT | Frequency setting resistor connection |
| 5 | - | N.C. |
| 6 | SS1/SDWN | Soft start capacitor connection <br> (Shutdown at Low) |
| 7 | VCC | Power supply input |
| 8 | SS2/SDWN | Soft start capacitor connection <br> (Shutdown at Low) |
| 9 | - | N.C. |
| 10 | FB2 | Error amplifier inverting input |
| 11 | COMP2 | Error amplifier output |
| 12 | GND | Ground |


| Pin No. | Pin name | Function |
| :---: | :---: | :--- |
| 13 | PGND2 | Ground |
| 14 | SW2L | Switching output 2 (Low side) |
| 15 | SW2 | Switching output 2 |
| 16 | SW2 | Switching output 2 |
| 17 | BOOT2 | Boot capacitor connection |
| 18 | Pvcc | Power supply input |
| 19 | Pvcc | Power supply input |
| 20 | Pvcc | Power supply input |
| 21 | Pvcc | Power supply input |
| 22 | BOOT1 | Boot capacitor connection |
| 23 | SW1 | Switching output 1 |
| 24 | SW1 | Switching output 1 |
| 25 | SW1L | Switching output 1 (Low side) |



Fig. 19 Typical application circuit
ü Error amplifier (ERR) block
The ERR block is a circuit used to compare between the $0.6-\mathrm{V}$ reference voltage and the feedback voltage of output voltage. The COMP voltage, a result of this comparison, determines the switching Duty. Furthermore, soft start function is activated with the SS voltage while in startup operation. Consequently, the COMP voltage is limited to the SS voltage.
ü Oscillator (OSC) block
The OSC block is a block to determine the switching frequency through the RT pin, which is settable in the range of 100 kHz to 2500 kHz .
ü SLOPE block
The SLOPE block is a block to generate a triangular wave from the clock generated with the OSC and then to transmit the triangular wave to the PWM comparator.
ü PWM block
The PWM block is used to make comparison between the output COMP voltage of the error amplifier block and the triangular wave of the SLOPE block, thus determining the switching Duty. The switching duty is limited with the maximum duty ratio, which is internally determined, and will not reach $100 \%$.
ü Reference voltage (UREF) block
The UREF block is a block to generate a 2.9-V internal reference voltage.
ü Protection circuit (UVLO/TSD) block
The UVLO (Under Voltage Lock Out) circuit is used to shut down the circuit when the voltage falls below approximately 3.3 V, while the TSD (Thermal Shutdown) circuit is used to shut down the circuit at a temperature of $175^{\circ} \mathrm{C}$ and reset it at a temperature of $160^{\circ} \mathrm{C}$.
ü Overcurrent protection circuit (OCP)
This function is used to detect a current passing through the power transistor FET with the CURRENT SENSE and activate the overcurrent protection when the current reaches approximately 4 A . If the overcurrent protection is activated, switching will be turned OFF to discharge the SS pin capacitance.

## Startup sequence



Fig. 20 Startup sequence

## Normal operation



Vo


Fig. 21 While in normal operation
(1) Setting of output $L$ constant

The coil $L$ used for output is determined according to the rated current ILR and the maximum load current value lomax of the coil.


Fig. 22


Fig. 23

Adjust so that (Iomax + DIL) will not conflict with the rating. At this time, DIL can be obtained according to the formula shown below.

Step-down DIL $=\frac{1}{L} ¥(\mathrm{Vcc}-\mathrm{Vo}) ¥ \frac{\mathrm{Vo}}{\mathrm{Vcc}} \neq \frac{1}{f}[\mathrm{~A}] \ldots$ (1.1) $\quad$, where f: Switching frequency

Furthermore, since the coil $L$ value may also vary by approximately $\pm 30 \%$, set this value with an adequate margin. If the coil current IL exceeds the rated coil current ILR, the internal IC element may be damaged. It is recommended to make setting of coil value in the range of $4.7 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$.
(2) Setting of output Co constant

For output capacitor, select the allowable ripple voltage VPP or the allowable drop voltage at a sharp change of load, whichever larger for the capacitor. The output ripple voltage can be obtained according to the formula shown below.

Step-down $\quad$ VVPP $=$ DIL $¥$ RESR $+\frac{\text { DIL }}{2 C o} \neq \frac{V o}{V c c} ¥ \frac{1}{f}[V]$
,where f: Switching frequency

Design the component so that this constant will fall within the allowable ripple voltage.
Furthermore, estimate the drop voltage VDR at a sharp change of load according to the formula shown below.
$\operatorname{VDR}=\frac{\mathrm{DI}}{\mathrm{Co}} \neq 10 \mu \mathrm{sec} \quad[\mathrm{V}]$

However, $10 \mu \mathrm{sec}$ will be the estimated value of the DC/DC converter response speed.

Make setting of capacitance with thorough consideration given to the margin so that these two values will fall into the specified values. It is recommended to make setting of the capacitance in the range of $10 \mu \mathrm{~F}$ to $100 \mu \mathrm{~F}$. if a short circuit occurs, an inverse current passes through the parasitic diode to cause damage to the internal circuits. To prevent that, insert a backflow prevention diode.
(3) Setting of feedback resistance constant

In order to make settings of feedback resistance, refer to the formula shown. It is recommended to make setting of resistance in the range of $10 \mathrm{k} \Omega$ to $330 \mathrm{k} \Omega$. Setting the resistance to $10 \mathrm{k} \Omega$ or less will result in degraded power efficiency, while setting it to $330 \mathrm{k} \Omega$ or more will increase the offset voltage due to the input bias current of $0.4 \mu \mathrm{~A}$ (TYP) of the internal error amplifier.


Fig. 24

$$
\mathrm{Vo}=\frac{\mathrm{R} 8+\mathrm{R} 9}{\mathrm{R} 9} \not \approx 0.6[\mathrm{~V}]
$$

(4) Setting of oscillation frequency

Connecting a resistor to the RT pin (pin 4) will allow for the setting of triangular wave oscillation frequency. The RT determines the charge/discharge current to the internal capacitor, with which the frequency varies. Referring to Figure shown below, make settings of the RT resistor. Recommended setting range is 10 to $100 \mathrm{k} \Omega$. Be noted that any setting outside of this range may turn OFF switching, thus impairing the operation guarantee.


Fig. 25 RT vs. Switching frequency
(5) Setting of soft start time

The soft start function will be required to prevent an excessive increase in the coil current and overshoot of the output voltage, while in startup operation. Figure below shows the relationship between the capacitor and the soft start time. Referring to this Figure, make the capacitor setting.


Fig. 26 SS capacitance vs. Delay time
It is recommended to make setting of capacitance value in the range of 0.01 to $10 \mu \mathrm{~F}$. Setting the capacitance value to $0.01 \mu \mathrm{~F}$ or less may cause overshoot to the output voltage. If any startup-related function (sequence) of other power supply is provided, use a high-accuracy product (e.g. $¥ 5 R$ ) or the like.
Furthermore, since the soft start time varies with the input voltage, output voltage, load, coil, output capacitor, or else, be sure to check to be sure this soft start time on the actual system.
(6) Phase compensation

Phase compensation setting procedure
The phase compensation setting procedure varies with the selection of capacitance used for DC/DC converter application. In this connection, the following section describes the procedure by classifying into the two types. Furthermore, the application stability conditions are described in the "Description" section.

1. Application stability conditions
2. For output capacitors having high ESR, such as electrolytic capacitor
3. For output capacitors having low ESR, such as ceramic capacitor or OS-CON

About application stability conditions
The following section shows the stability conditions of negative feedback system.
ü At a $1(0-\mathrm{dB})$ gain, the phase delay is $150^{\circ}$ or less (i.e., the phase margin is $30^{\circ}$ or more).
Furthermore, since the DC/DC converter application is sampled according to the switching frequency, GBW of the overall system should be set to $1 / 10$ or less of the switching frequency. The following section summarizes the targeted characteristics of this application.
ü At a $1(0-d B)$ gain, the phase delay is $150^{\circ}$ or less (i.e., the phase margin is $30^{\circ}$ or more).
ü The GBW (i.e., frequency at $0-\mathrm{dB}$ gain) for this occasion is $1 / 10$ or less of the switching frequency.
Consequently, in order to upgrade the responsiveness, higher switching frequency should be provided.
A knack for ensuring the stability through the phase compensation is to cancel a secondary phase delay $\left(-180^{\circ}\right)$ resulting from LC resonance with a secondary phase lead (i.e., through inserting two phase leads). Furthermore, the GBW (i.e., frequency at 0-dB gain) is determined according to phase compensation capacitance to be provided for the error amplifier. Consequently, in order to reduce the GBW, increase the capacitor capacitance.
(1) Typical (sun) integrator (Low pass filter)


Fig. 27
(2) Open loop characteristics of integrator


Fig. 28

For output capacitors having high ESR, such as aluminum electrolytic capacitor
For output capacitors having high ESR (i.e., several ohms), the phase compensation setting procedure becomes comparatively simple. Since the DC/DC converter application has surely a LC resonant circuit attached to the output, a $-180^{\circ}$ phase-delay occurs in that area. If ESR component is present there, however, a $+90^{\circ}$ phase-lead occurs to shift the phase delay to $-90^{\circ}$. Since the phase delay is desired to set within $150^{\circ}$, this is a very effective method but has a demerit to increase the ripple component of the output voltage.
(3) LC resonant circuit


At this resonance point, a $-180^{\circ}$ phase-delay occurs.
(4) With ESR provided

$f r=\frac{1}{2 p \sqrt{\text { LC }}}[H z]$ : Resonance point
$\mathrm{fESR}=\frac{1}{2 p R \operatorname{ESRC}}[\mathrm{~Hz}]$ : Phase lead
A -90 ${ }^{\circ}$ phase-delay occurs.

Fig. 29
Fig. 30
According to changes in phase characteristics due to the ESR, only one phase lead should be inserted. For this phase lead, select either of the methods shows below.
(5) Insert feedback resistance in the C.


Phase lead: $f z=\frac{1}{2 p C 1 R 1}[H z]$
Fig. 31
(6) Insert the R3 in integrator.


Phase lead: $\mathrm{fz}=\frac{1}{2 \mathrm{pC} 2 \mathrm{R} 3}[\mathrm{~Hz}]$
Fig. 32

For the purpose of canceling the LC resonance, the frequency to insert the phase lead should be set close to the LC resonant frequency.

For output capacitors having low ESR, such as ceramic capacitor or OS-CON
Unlike the section above, in order to use capacitors having low ESR (i.e., several tens of mW ), two phase-leads should be inserted so that a $-180 \infty$ phase-delay due to LC resonance will be observed. Example (7) blow shows a typical phase compensation procedure.
(7) Phase compensation with secondary phase lead


Fig. 33
For the settings of phase lead frequency, insert both of the phase leads close to the LC resonant frequency.


Fig. 34 Equivalent circuit

- Cautions on use

1) Absolute maximum ratings

Even though thorough attention is exerted to the quality control of this IC, exceeding the absolute maximum ratings, such as applied voltage, operating temperature range, etc., can break down the IC. Should the IC break down, it will be impossible to identify breaking mode such as short circuit mode or an open mode. If any special mode exceeding the absolute maximum ratings is assumed, consideration should be given to take physical safety measures including use of fuses, etc.
2) GND potential

GNDMake setting of the potential of the GND terminal so that it will be maintained at the minimum in any operating state.
3) Thermal design

With consideration given to power dissipation (Pd) in the actual use state, provide the thermal design with an adequate margin.
4) Short circuit between pins and erroneous mounting In order to mount ICs on a set printed circuit board, pay thorough attention to the direction and offset of the ICs. Erroneous mounting can break down the ICs. Furthermore, if a short circuit occurs due to foreign matters entering between pins or between the pin and the power supply or the GND pin, the ICs can break down.
5) Operation in strong electromagnetic field

Be noted that using ICs in the strong electromagnetic field can malfunction them.
6) Inspection with set printed circuit board

On the inspection with the set printed circuit board, if a capacitor is connected to a low-impedance pin, the IC can suffer stress. Therefore, be sure to discharge from the set printed circuit board by each process. For protection against static electricity, establish a ground for the assembly process and pay thorough attention to the transportation and the storage of the set printed circuit board. Furthermore, in order to connect the jig for the inspection process, be sure to turn OFF the power supply and then mount the set printed circuit board to the jig. After the completion of the inspection, be sure to turn OFF the power supply and then dismount the set printed circuit board from the jig.
7) IC pin input

This IC is a monolithic IC, which has $\mathrm{P}+$ isolation and P layer between elements to isolate the elements. $\mathrm{P}-\mathrm{N}$ junction is formed with this P layer and the N layer of each element, thus composing a variety of parasitic elements.
For example, as shown in Fig. 35, if the resistor and the transistor is connected with the pin respectively,
OWhen GND>(Pin A) for the resistor or GND>(Pin B) for the transistor (NPN), P-N junction will operate as a parasitic diode.
OFor the transistor (NPN), when GND>(Pin B), the parasitic NPN transistor will operate with the N layer of other element in the proximity of the said parasitic diode.

In terms of the construction of IC, parasitic elements are inevitably formed in relation to potential. The operation of the parasitic element can cause interference with circuit operation, thus resulting in a malfunction and then breakdown of the IC. Therefore, pay thorough attention not to handle the input pins such as to apply to the input pins a voltage lower than the GND ( P layer) so that any parasitic element will operate.

8) Ground wiring pattern

If small-signal GND and large-current GND are provided, It will be recommended to separate the large-current GND pattern from the small-signal GND pattern and establish a single ground at the reference point of the set PCB so that resistance to the wiring pattern and voltage fluctuations due to a large current will cause no fluctuations in voltages of the small-signal GND. Pay attention not to cause fluctuations in the GND wiring pattern of external parts as well.
9) On the application shown on the right, if the VCC and each output voltage are inverted, for example, if the VCC is short-circuited to the Ground with external diode charged, internal circuits or elements may be damaged. To avoid that, use the output pin capacitor in the range of 10 to $100 \mu \mathrm{~F}$. Furthermore, in order to use a capacitor of $100 \mu \mathrm{~F}$ or more, it is recommended to insert a backflow prevention diode or a bypass diode between the output and VCC.
10) Overcurrent protection circuit

Output has a built-in overcurrent protection circuit according to the current capability, which prevents the destruction of the IC at short-circuiting of load. However, this protection circuit is only effective to prevent destruction due to a sudden accident but does not support for the continuous operation of the protection circuit or use in transition. Furthermore, since the current capability has characteristic negative to temperature, give consideration to the thermal design.
11) Temperature protection circuit

This IC has a built-in temperature protection circuit to prevent the thermal destruction of the IC. As described above, be sure to use this IC within the power dissipation range. Should a condition exceeding the power dissipation range continues, the chip temperature Tj will rise to activate the temperature protection circuit, thus turning OFF the output power element. Then, when the tip temperature Tj falls, the circuit will be automatically reset.
Furthermore, since the temperature protection circuit is activated under the condition exceeding the absolute maximum ratings, NEVER attempt to use the temperature protection circuit for set design or else.
12) Input capacitor

In order to derate a peak noise, which occurs while in switching operation, be sure to insert a capacitor (ceramic capacitor) having a low ESR of 10 to $100 \mu \mathrm{~F}$ as close to the pin as possible between the VCC and Ground.

- Power dissipation


Fig. 37 Thermal derating characteristics


Package specifications
HSOP25
<Outline dimensions>

(Unit : mm)
<Package specifications>

| Package style | Embossed carrier tape |
| :--- | :--- |
| Q'ty per package | 2000 pcs |
| Packaging <br> direction | E2 <br> (When holding a reel by left hand and pulling out the tape by <br> right hand, No. 1 pin appears in the upper left of the reel.) |



* Please place an order for this IC in multiplies of the quantity per package.
- The contents described herein are correct as of December, 2008
- The contents described herein are subject to change without notice. For updates of the latest information, please contact and confirm with ROHM CO.,LTD.
- Any part of this application note must not be duplicated or copied without our permission.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams and information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or otherwise dispose of the same, implied right or license to practice or commercially exploit any intellectual property rights or other proprietary rights owned or controlled by ROHM CO., LTD. is granted to any such buyer.
- The products described herein utilize silicon as the main material.
- The products described herein are not designed to be X ray proof.

The products listed in this catalog are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).
Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

## Excellence in Electronics Contact us for further information about the products.

| San Diego | +1-858-625-3630 | United Kingdom | +44-1-908-272400 |
| :---: | :---: | :---: | :---: |
| Atlanta | +1-770-754-5972 | Denmark | +45-3694-4739 |
| Boston | +1-978-371-0382 | Espoo | +358-9725-54491 |
| Chicago | +1-847-368-1006 | Salo | +358-2-7332234 |
| Dallas | +1-972-473-3748 | Oulu | +358-8-5372930 |
| Denver | +1-303-708-0908 | Barcelona | +34-9375-24320 |
| Detroit | +1-248-348-9920 | Hungary | +36-1-4719338 |
| Nashville | +1-615-620-6700 | Poland | +48-22-5757213 |
| Mexico | +52-33-3123-2001 | Russia | +7-495-739-41-74 |
| Duisseldorf | +49-2154-9210 | Seoul | +82-2-8182-700 |
| Munich | +49-8999-216168 | Masan | +82-55-240-6234 |
| Stuttgart | +49-711-7272-370 | Dalian | +86-411-8230-8549 |
| France | +33-1-5697-3060 | Beijing | +86-10-8525-2483 |


|  |  |
| :--- | :--- |
| Tianjin | $+86-22-23029181$ |
| Shanghai | $+86-21-6279-2727$ |
| Hangzhou | $+86-571-87658072$ |
| Nanjing | $+86-25-8689-0015$ |
| Ningbo | $+86-544-87654201$ |
| Qingdao | $+86-532-8577-9312$ |
| Suzhou | $+86-521-6807-1300$ |
| Wuxi | $+86-510-82702693$ |
| Guangzhou | $+86-20-3888-8100$ |
| Huizhou | $+86-752-205-1054$ |
| Fuzhou | $+86-591-801-8698$ |
| Dongguan | $+86-769-8393-3320$ |
| Shenzhen | $+86-756-8307-3008$ |


| Xiamen | $+86-592-238-5705$ |
| :--- | :--- |
| Zhuhai | $+86-756-3223-480$ |
| Hong Kong | $+852-2-740-626$ |
| Taipei | $+886-2-2500-6956$ |
| Kaohsiung | $+886-7-237-0881$ |
| Singapore | $+65-6332-2322$ |
| Philippines | $+63-2-207-6872$ |
| Thailand | $+66-2-254-4890$ |
| Kuala Lumpur | $+60-3-7958-8355$ |
| Penang | $+60-4-228653$ |
| Kyoto | $+81-75-365-1218$ |
| Yokohama | $+81-45-476-2290$ |


#### Abstract

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM CO.,LTD.

The content specified herein is subject to change for improvement without notice. The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request. Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production. Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information. The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products are not designed to be radiation tolerant. While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons. Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual. The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.


Thank you for your accessing to ROHM product informations
More detail product informations and catalogs are available, please contact your nearest sales office.

[^0]
[^0]:    Copyright © 2008 ROHM CO.,LTD
    ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan

