Xinger,

Ultra Low Profile 0805 Balun 75Ω to 75Ω Balanced

Description

The B0922J7575A50 is a low cost, low profile sub-miniature unbalanced to balanced transformer designed for differential inputs and output locations on modern chipsets in an easy to use surface mount package covering dual polarized commercial Satellite bands $950 \mathrm{MHz}-1450 \mathrm{MHz} \& 1650 \mathrm{MHz}-2150 \mathrm{MHz}$. The B0922J7575A50 is ideal for high volume manufacturing and delivers higher performance than traditional wire wound baluns. The B0922J7575A50 has an unbalanced port impedance of 75Ω and a 75Ω balanced port impedance*. This transformation enables single ended signals to be applied to differential ports on modern integrated chipsets. The output ports have equal amplitude (-3dB) with 180 degree phase differential. The B0922J7575A50 is available on tape and reel for pick and place high volume manufacturing.

Detailed Electrical Specifications: Specifications subject to change without notice.

Features:

- $950-2150 \mathrm{MHz}$
- 0.7 mm Height Profile
- 75 Ohm to 2×37.5 Ohm
- Low Insertion Loss
- Sat LNB Chipset Compliant
- Input to Output DC Isolation
- Surface Mountable
- Tape \& Reel
- Non-conductive Surface
- RoHS Compliant

Parameter	ROOM $\left(25^{\circ} \mathrm{C}\right)$			Unit
	Min.	Typ.	Max	
Frequency	950		2150	MHz
Unbalanced Port Impedance		75		Ω
Balanced Port Impedance		75		Ω
Return Loss	12	15		dB
Insertion Loss*		0.8	1.1	dB
Amplitude Balance		1.0	1.4	dB
Phase Balance		3	9	Degrees
CMRR		25		dB
Power Handling			2	Watts
Operating Temperature	-55		+85	${ }^{\circ} \mathrm{C}$

* Insertion Loss stated at room temperature (Insertion Loss is approximately 0.1 dB higher at $+85^{\circ} \mathrm{C}$)

Outline Drawing

What'll we think of next? *

Dimensions are in Inches [Millimeters] Mechanical Outline

Available on Tape and Reel for Pick and Place Manufacturing.

USA/Canada:
(315) 432-8909

Toll Free:
(800) 411-6596

Europe: \quad +44 2392-232392

Typical Performance: 600 MHz . to $\mathbf{2 6 0 0}$ MHz.

Wide Band Performance: $\mathbf{5 0 0} \mathbf{~ M H z}$. to $\mathbf{8 0 0 0} \mathbf{~ M H z}$.

Mounting Configuration:

In order for Xinger surface mount components to work optimally, the proper impedance transmission lines must be used to connect to the RF ports. If this condition is not satisfied, insertion loss, Isolation and VSWR may not meet published specifications.

All of the Xinger components are constructed from ceramic filled PTFE composites which possess excellent electrical and mechanical stability having X and Y thermal coefficient of expansion (CTE) of $17 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

An example of the PCB footprint used in the testing of these parts is shown below. In specific designs, the transmission line widths need to be adjusted to the unique dielectric coefficients and thicknesses as well as varying pick and place equipment tolerances.

Mounting Footprint

Dimensions are in Inches [Millimeters] Mounting Footprint

Packaging and Ordering Information

Parts are available in reel and are packaged per EIA 481-2. Parts are oriented in tape and reel as shown below. Minimum order quantities are 4000 per reel. See Model Numbers below for further ordering information.

Function	Frequency	Package Dimensions	Unbalanced Impedance	Balanced Impedance + Coupling	Plating Finish	Codes
$\begin{aligned} & \hline B=\text { Balun } \\ & \mathrm{BD}=\text { Balun }+\mathrm{DC} \\ & \mathrm{~F}=\text { Filter } \\ & \mathrm{FB}=\text { Filter } / \text { Balun } \\ & \mathrm{C}=3 \mathrm{~dB} \text { Coupler } \\ & \mathrm{DC}=\text { Directional } \\ & \mathrm{J}=\text { RF Jumper } \\ & \mathrm{X}=\text { RF cross over } \end{aligned}$	$0110=100-1000 \mathrm{MHz}$ $0810=800-1000 \mathrm{MHz}$ $0922=950-2150 \mathrm{MHz}$ $0826=800-2600 \mathrm{MHz}$ $1222=1200-2200 \mathrm{MHz}$ $1416=1400-1600 \mathrm{MHz}$ $1722=1700-2200 \mathrm{MHz}$ $2326=2300-2600 \mathrm{MHz}$ $2425=2400-2500 \mathrm{MHz}$ $3150=3100-5000 \mathrm{MHz}$ $3436=3400-3600 \mathrm{MHz}$ $4859=4800-5900 \mathrm{MHz}$ $5153=5100-5300 \mathrm{MHz}$ $5159=5100-5900 \mathrm{MHz}$ $5759=5700-5900 \mathrm{MHz}$		$\begin{aligned} & 50=50 \mathrm{Ohm} \\ & 75=75 \mathrm{Ohm} \end{aligned}$	$25=25 \Omega$ Balanced $30=30 \Omega$ Balanced $50=50 \Omega$ Balanced $75=75 \Omega$ Balanced $100=100 \Omega$ Balanced $150=150 \Omega$ Balanced $200=200 \Omega$ Balanced $300=300 \Omega$ Balanced $400=400 \Omega$ Balanced $03=3 \mathrm{~dB}$ Hybrid $10=10 \mathrm{~dB}$ Directional $20=20 \mathrm{~dB}$ Directional	$\begin{aligned} & A=\text { Gold } \\ & P=\text { Tin-Lead } \end{aligned}$	

