

PAS109BC QQVGA COLOR CMOS IMAGE SENSOR PAS109BB QQVGA MONO CMOS IMAGE SENSOR

General Description

The PAS109B is a color and monochrome digital CMOS image sensor with resolution of 164(H) x 124(V). The PAS109B outputs 8, 4, 2 or 1-bit digital raw data or 8-bit formatted data per pixel.

The PAS109B performs automatic gain control, automatic exposure control and automatic de-flicker. The PAS109B can also be programmed via I^2C^{TM} serial control bus. By programming the internal register settings, it performs on-chip frame rate adjustment, exposure control, offset correction DAC, programmable gain control as well as output formatting. By proprietary technology, FPN, smear and blooming are drastically reduced.

Key Specification

The PAS109 is available in color or monochrome in 32-pin LCC or 32-pin chip-with-lens package.

Features

- □ 164x124 pixels, 1/11" Lens
- □ Automatic/Manual exposure-gain control
- □ On chip 10-bit ADC
- On chip PGA
- **On chip 9-bit DAC**
- □ User selectable output data formats:
 - 8-bit formatted data
 - 8/4/2/1-bit raw data
- **Output tri-state through /CSB pin or register**
- □ AE report
- □ Horizontal mirror output
- □ Flash light application allowable
- □ Automatic de-flicker
- External oscillator
- □ I²C Interface
- □ Wide operating supply range: 2.4 3.6V
- □ Low power dissipation: 16mW @ 60fps
- □ Low power down dissipation: 200µW

Power Supply	Wide operating supply range 2.4V ~ 3.6V
Array Elements	164 x 124
Optical Format	1/11 "
Pixel Size	7.25µm x 7.25µm
System Clock	Up to 48MHz
Max. Pixel Rate	1.5MHz
FPN	< 0.2% of saturation
Sensitivity	2.0V/Lux-sec
PGA Gain	16X (24dB)
Frame Rate	60fps
Scan Mode	Progressive
S/N ratio	>40dB
Package	32-pin LCC or 32-pin LCC chip with lens

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission. **PixArt Imaging Inc. E-mail:** fae service@pixart.com.tw

1

1. Pin Assignment

Pin#	Name	Туре	Description			
Power Su	pply					
28	VDDD	Р	Digital VDD			
27	GNDD	Р	Digital Ground			
3	VDDA	Р	Analog VDD			
2	GNDA	Р	Analog Ground			
19	VDDQ	Р	Digital VDD			
18	GNDQ	Р	Digital Ground			
1	GNDE	Р	Ground			
Data Inter	rface					
17	D0	0	Pixel data output, LSB			
16	D1	0	Pixel data output			
15	D2	0	Pixel data output			
12	D3	0	Pixel data output			
11	D4	0	Pixel data output			
10	D5	0	Pixel data output			
9	D6	0	Pixel data output			
8	D7	0	Pixel data output, MSB			
22	PXCK	0	Pixel clock output			
23	HSYNC	0	Horizontal Synchronization clock			
24	VSYNC	0	Vertical Synchronization clock			
Analog pi	n	\sim				
6	VRT	I/O	ADC reference voltage, top level			
4	VCM	I/O	Common mode voltage reference			
5	VRB	I/O	ADC reference voltage, bottom level			
7	VDDY1	BYPASS	Reference voltage			
I ² C						
25	SCL	I	I2C interface clock			
26	SDA	I/O	I2C interface bi-direction data			
Misc. Pi	ins	$\sim Z$				
30	CSB (XI	Chip select bar, active low			
20	SYSCLK	I	System clock input pin			
14	VLRST	BIAS	Fixed bias input voltage			
13	NC	-	Not connected			
21	NC		Not connected			
			Not connected			
29	NC		Not connected			
29 31	NC NC	7-/~	Not connected Not connected			

PAS109B

CMOS Image Sensor IC

2. Block Diagram

Fig 2.1 – Block diagram of PAS109

As the block diagram of PAS109 is shown in Figure 1. By pulling the CSB pin to low, the 164x124 sensor starts to produce a signal according to the amount of the light integrated in pixels. An entire raw data is then fed to a CDS readout array to reduce FPN noise and reset noise. A differential signal is then read out serially and fed to a programmable gain amplifier (PGA) followed by a 10-bit A/D converter.

Voltage reference block generates all necessary voltage and current for sensor array and analog circuit.

3. Pixel Array And Pixel Color Pattern

3.1. Pixel array and pixel color pattern

The output image format of PAS109B is QQVGA (164x124 pixel array). To provide the co-processor with the extra information it needs for interpolation at the edges of the pixel array, an border of 2 pixels on all 4 sides of the array are available. Fig 3.1. illustrates the pixel array and pixel color pattern.

PAS109B CMOS Image Sensor IC 4 Output timing: line time = Hs + 4 + 2 + 160 + 2 + 4 = 194 pixclks Hsync=22 PXCK Hsync BBB 2+160+2 raw data BBBB BBBB 2+160+2 raw data BBBB PXCLK Fig. 4.1 Inter-line timing Vsync. Frame time (=126 lines) Vsync Black Blac Black Hsync. `• 4 Hsync Valid frame data (124 lines) Fig. 4.2 Inter-frame timing (frame time=126 lines) Frame time (>126 lines) Vsync Black Blac Hsync Hsync Valid frame data (124 lin Fig. 4.3 Inter-frame timing(frame time>126 lines)

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission. **PixArt Imaging Inc.** E-mail: fae_service@pixart.com.tw

5. I²C Bus

PAS109B supports I2C-bus transfer protocol and is acting as slave device. The 7/bits unique slave address is 1000000 and supports receiving / transmitting speed up to 400kHz.

5.1 I²C bus overview

- Only two wires SDA (serial data) and SCL (serial clock) carry information between the devices connected to the I2C bus. Normally both SDA and SCL lines are open collector structure and pull high by external pull-up resistors.
- Only the master can initiates a transfer (start), generates clock signals, and terminates a transfer (stop).
- Start and stop condition: A high to low transition of the SDA line while SCL is high defines a start condition. A low to high transition of the SDA line while SCL is high defines a stop condition. Please refer to Fig 5.1.
- Valid data: The data on the SDA line must be stable during the high period of the SCL clock. Within each byte, MSB is always transferred first. Read/write control bit is the LSB of the first byte. Please refer to Fig 5.2.
- Both the master and slave can transmit and receive data from the bus.
- Acknowledge: The receiving device should pull down the SDA line during high period of the SCL clock line when a complete byte was transferred by transmitter. In the case of a master received data from a slave, the master does not generate an acknowledgment on the last byte to indicate the end of a master read cycle.

PixArt Imaging Inc. PAS109B CMOS Image Sensor IC SDA DATA DATA CHANGE STABLE ALLOWED SCL **Fig 5.2** Valid Data **5.2 Data Transfer Format** 5.2.1 Master transmits data to slave (write cycle) S : Start A : Acknowledge by slave P: Stop RW : The LSB of 1ST byte to decide whether current cycle is read or write cycle. RW=1 read cycle, RW=0 write cycle. SUBADDRESS : The address values of PAS109B internal control registers (Please refer to PAS109B register description)

During write cycle, the master generates start condition and then places the 1st byte data that are combined slave address (7 bits) with a read/write control bit to SDA line. After slave(PAS109B) issues acknowledgment, the master places 2nd byte (sub-address) data on SDA line. Again follow the PAS109B acknowledgment, the master places the 8 bits data on SDA line and transmit to PAS109B control register (address was assigned by 2nd byte). After PAS109B issue acknowledgment, the master can generate a stop condition to end of this write cycle. In the condition of multi-byte write, the PAS109B sub-address is automatically increment after each DATA byte transferred. The data and A cycles is repeat until last byte write. Every control registers value inside PAS109B can be programming via this way. (Please refer to Fig 5.3.)

V1.1, Mar. 2002

PAS109B

5.2.2 Slave transmits data to master (read cycle)

- The sub-address was taken from previous write cycle
- · The sub-address is automatically increment after each byte read
- Am : Acknowledge by master
- · Note there is no acknowledgment from master after last byte read

During read cycle, the master generates start condition and then place the 1st byte data that are combined slave address (7 bits) with a read/write control bit to SDA line. After issue acknowledgment, 8 bits DATA was also placed on SDA line by PAS109B. The 8 bit data was read from PAS109B internal control register that address was assigned by previous write cycle. Follow the master acknowledgment, the PAS109B place the next 8 bits data (address is increment automatically) on SDA line and then transmit to master serially. The DATA and Am cycles is repeat until the last byte read. After last byte read, Am is no longer generated by master but instead by keep SDA line high. The slave (PAS109B) must releases SDA line to master to generate STOP condition. (Please refer to Fig 5.3.)

CMOS Image Sensor IC

5.3 I²C Bus Timing

Fig 5.4 I²C Bus Timing

5.4 I²C Bus Timing Specification

PARAMETER		STANDAR	UNIT	
TARAVETER	SYMBOL	MIN.	MAX.	
SCL clock frequency	fscl	10	400	kHz
Hold time (repeated) START condition. After this period, the first clock pulse is generated.	thd:sta	4.0	7 -	us
Low period of the SCL clock	tlow	4.7	-	us
HIGH period of the SCL clock	thigh	0.75	-	us
Set-up time for a repeated START condition	tsu;sta	4.7	-	us
Data hold time. For I2C-bus device	thd;dat	$\bigcirc 0$	3.45	us
Data set-up time	tsu;dat	250	-	ns
Rise time of both SDA and SCL signals	tr	30	N.D.	ns(note1)
Fall time of both SDA and SCL signals	tí	30	N.D.	ns(note1)
Set-up time for STOP condition	tsu;sto	4.0	-	us
Bus free time between a STOP and START	t buf	4.7	-	us
Capacitive load for each bus line	Cb	1	15	pF
Noise margin at LOW level for each connected device (including hysteresis)	VnL	0.1 Vdd	-	V
Noise margin at HIGH level for each connected device (including hysteresis)	VnH	0.2 Vdd	-	V

Note: It depends on the "high" period time of SCL.

PAS109B

CMOS Image Sensor IC

1

6. Specifications

Absolute Maximum Ratings						
Symbol	Parameter	Min	Max	Unit		
Vdd	DC supply voltage	-0.5	3.8	v		
Vin	DC input voltage	0.5	Vdd+0.5	V		
Vout	DC output voltage	-0.5	Vdd+0.5	V		
Topt1	Operating temperature (chip functional)	-10	70	°C		
Topt2	Operating temperature (guaranteed performance)	0	40	D°		

DC Electrical Characteristics (VDD=3.0V±20%, Ta=10°C~40°C)

Symbol	Parameter	Min.	Тур.	Max.	Unit
Type :PWF		\sim			7
VDD	Analog and digital operating voltage	2.4	3.0	3.6	V
IDD	Operating Current		8	$\sum_{i=1}^{n}$	mA
Istby	Standby current		100	\sum	uA
Type :IN & I/O Reset and SYSCLK					
VIH	Input voltage HIGH	2.0	$\sum_{i=1}^{n}$	VDD	V
VIL	Input voltage LOW	0		0.8	V
Cin	Input capacitor		\sum	10	pF
Ilkg	Input leakage current		TBD		uA
Type : OUT & I/O for PXD0:7, PXCK, H/VSYNC & SDA, load 10pf, $1.2k\Omega$, 3.0volts					
VOH	Output voltage HIGH	Vdd-0.2			V
VOL	Output voltage LOW			0.2	V

AC Operating Condition

Symbol	Parameter	Min.	Тур.	Max.	Unit
SYSCLK	Master clock frequency	4.5		48	MHz
PXCK	Pixel clock output frequency			1.5	MHz

Sensor Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Unit	Note
Photo response non-uniformity	PRNU		1.18		%	
Saturation output voltage	Vsat.		1.35		V	
Dark output voltage	Vdark		35		mV/sec	
Dark signal non-uniformity	DSNU		2.52		%	
Sensitivity (Red channel)	R		2.0		V/Lux-sec	
Sensitivity (Green channel)	G		2.0		V/Lux-sec	
Sensitivity (Blue channel)	В		1.35		V/Lux-sec	

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission. **PixArt Imaging Inc.**

E-mail: fae_service@pixart.com.tw

CMOS Image Sensor IC

7. Package Information

7.1. 32-pin LCC

7.1.1. Pin Connection Diagram

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission. **PixArt Imaging Inc.** E-mail: fae_service@pixart.com.tw

CMOS Image Sensor IC

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission. **PixArt Imaging Inc.** E-mail: fae_service@pixart.com.tw

PAS109B

CMOS Image Sensor IC

7.2.2. Lens Specification & Package Outline

Lens specification:

EFL	1.7mm
BFL	1.65mm
F no.	2.2
Diagonal Field of View	52°
Distortion	-3%
IR filter cutoff	648nm <u>+</u> 10nm

Note: Customized lens is available upon request.

Package Outline:

All rights strictly reserved any portion in this paper shall not be reproduced, copied or transformed to any other forms without permission. **PixArt Imaging Inc.**

CMOS Image Sensor IC

8. Ordering Information

Part Number	Color/Monochrome	Package
PAS109BCB-32	Color	32-pin LCC (plastic)
PAS109BBB-32	Monochrome	32-pin LCC (plastic)
PAS109BCL-32	Color	32-pin LCC chip with lens
PAS109BBL-32	Monochrome	32-pin LCC chip with lens