

3Northway Lane North Latham, New York 12110.

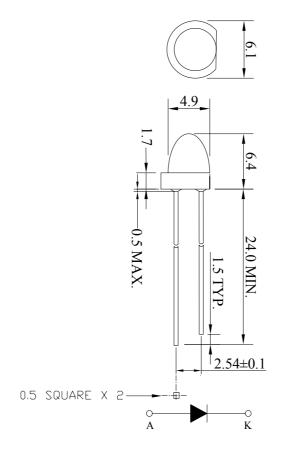
Tollfree:1.800.984.5337 Phone:1.518.956.2980 Fax:1.518.785.4725

Http://www.marktechopto.com

SPECIFICATION

PART NO. : MT430-G-A

4.9mm ROUND LED LAMP



Description

This green lamp is made with GaP/GaP chip and green clear epoxy resin.

Notes:

- 1. All dimensions are in mm.
- 2. Tolerance is \pm 0.25mm unless otherwise noted.

Description

	LED Chip			
Part No.	Material	Emitting Color	Lens Color	
MT430-G-A	GaP/GaP	Green	Green clear	

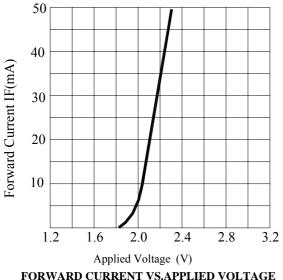
VER.: 01 Date: 2007/10/24 Page: 1/5

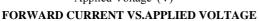
Absolute Maximum Ratings at Ta=25

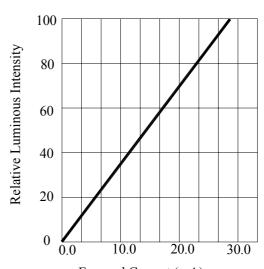
Parameter	Symbol	Rating	Unit
Power Dissipation	PD	78	mW
Reverse Voltage	VR	5	V
D.C. Forward Current	If	30	mA
Reverse (Leakage) Current	Ir	100	μА
Peak Current(1/10Duty Cycle,0.1ms Pulse Width.)	If(Peak)	100	mA
Operating Temperature Range	Topr.	-40 to +95	
Storage Temperature Range	Tstg.	-40 to +100	
Soldering Temperature(1.6mm from body)	Tsol		r 5 sec.

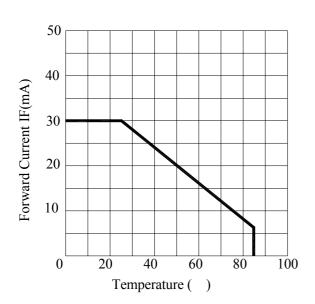
Electrical and Optical Characteristics:

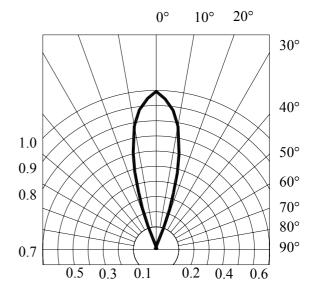
Parameter	Symbol	Condition	Min.	Тур.	Max.	Unit
Luminous Intensity	Iv	If=20mA	37.2	70.0	145	mcd
Forward Voltage	Vf	If=20mA		2.1	2.6	V
Peak Wavelength	λр	If=20mA		567		nm
Dominant Wavelength	λd	If=20mA	564	572	579	nm
Reverse (Leakage) Current	Ir	Vr=5V			100	μΑ
Viewing Angle	2 1/2	If=20mA		30		deg
Spectrum Line Halfwidth	Δλ	If=20mA		35		nm


Notes:1. The datas tested by IS tester.


2. Customer's special requirements are also welcome.


VER.: 01 Date: 2007/10/24 Page: 2/5


Typical Electrical / Optical Characteristics Curves:



Forward Current (mA) FORWARD CURRENT VS. LUMINOUS INTENSITY

FORWARD CURRENT VS. AMBIENT TEMPERATURE

RADIATION DIAGRAM

VER.: 01 Date: 2007/10/24 Page: 3/5

Specifications for Bin Grading:

Iv(mcd)			
BIN	MIN.	MAX.	
Н	37.2	52.0	
J	52.0	72.8	
K	72.8	102	
L	102	145	

Specifications for Vf Group:

Vf(V)			
Group	MIN.	MAX.	
V1	1.6	1.8	
V2	1.8	2.0	
V3	2.0	2.2	
V4	2.2	2.4	
V5	2.4	2.6	

^{*}Majority VF bins are highlighted in Yellow.

Specifications for Wavelength Group:

	D(nm) @20mA			
Group	MIN.	MAX.		
X4	564	567		
X5	567	570		
X6	570	573		
X7	573	576		
X8	576	579		

VER.: 01 Date: 2007/10/24 Page: 4/5

Precautions:

TAKE NOTE OF THE FOLLOWING IN USE OF LED

1. Temperature in use

Since the light generated inside the LED needs to be emitted to outside efficiently, a resin with high light transparency is used; therefore, additives to improve the heat resistance or moisture resistance (silica gel, etc) which are used for semiconductor products such as transistors cannot be added to the resin.

Consequently, the heat resistant ability of the resin used for LED is usually low; therefore, please be careful on the following during use.

Avoid applying external force, stress, and excessive vibration to the resins and terminals at high temperature. The glass transition temperature of epoxy resin used for the LED is approximately 120-130 .

At a temperature exceeding this limit, the coefficient of liner expansion of the resin doubles or more compared to that at normal temperature and the resin is softened.

If external force or stress is applied at that time, it may cause a wire rupture.

2. Soldering

Please be careful on the following at soldering.

After soldering, avoided applying external force, stress, and excessive vibration until the products go to cooling process (normal temperature), <Same for products with terminal leads>

(1) Soldering measurements:

Distance between melted solder side to bottom of resin shall be 1.6mm or longer.

- (2) Solder dip: Preheat: 90 max. (Backside of PCB), Within 60 seconds Solder bath: 260±5 (Solder temperature), Within 5 seconds
- (3) Soldering iron: 350 max. (Temperature of soldering iron tip), Within 3 seconds

3. Insertion

Pitch of the LED leads and pitch of mounting holes need to be same

4. Others

Since the heat resistant ability of the LED resin is low, SMD components are used on the same PCB, please mount the LED after adhesive baking process for SMD components. In case adhesive baking is done after LED lamp insertion due to a production process reason, make sure not to apply external force, stress, and excessive vibration to the LED and follow the conditions below.

Baking temperature: 120 max. Baking time: Within 60 seconds

If soldering is done sequentially after the adhesive baking, please perform the soldering after cooling down the LED to normal temperature.

VER.: 01 Date: 2007/10/24 Page: 5/5