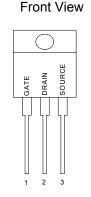
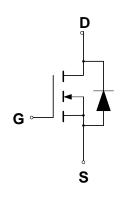


APPLICATION

- DC motor control
- ◆ UPS
- Class D Amplifier


V _{DSS}	R _{DS(ON)} Typ.	I _D			
60V	15.8mΩ	60A			
PIN CONFIGURATION					


TO-220

FEATURES

- ♦ Low ON Resistance
- ◆ Low Gate Charge
- ♦ Peak Current vs Pulse Width Curve
- Inductive Switching Curves

SYMBOL

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Drain to Source Voltage (Note 1)	V_{DSS}	60	V
Drain to Current − Continuous Tc = 25°C, V _{GS} @10V	I _D	60	Α
Continuous Tc = 100°C, V_{GS}@10V	I _D	43	
- Pulsed Tc = 25°ℂ, V _{GS} @10V (Note 2)	I _{DM}	241	
Gate-to-Source Voltage — Continue	V_{GS}	±20	V
Total Power Dissipation	P _D	150	W
Derating Factor above 25°ℂ		1.0	W/°C
Peak Diode Recovery dv/dt (Note 3)	dv/dt	4.5	V/ns
Operating Junction and Storage Temperature Range	T _J , T _{STG}	-55 to 175	$^{\circ}\!\mathbb{C}$
Single Pulse Avalanche Energy L=144µH,I _D =40 Amps	E _{AS}	500	mJ
Maximum Lead Temperature for Soldering Purposes	T_L	300	$^{\circ}\!\mathbb{C}$
Maximum Package Body for 10 seconds	T_{PKG}	260	$^{\circ}\!\mathbb{C}$
Pulsed Avalanche Rating	I _{AS}	60	Α

THERMAL RESISTANCE

Symbol	Parameter	Min	Тур	Max	Units	Test Conditions
$R_{\theta JC}$	Junction-to-case			1.0	°C/W	Water cooled heatsink, PD adjusted for a peak junction
						temperature of +175°C
$R_{\theta JA}$	Junction-to-ambient			62	°C/W	1 cubic foot chamber, free air

ORDERING INFORMATION

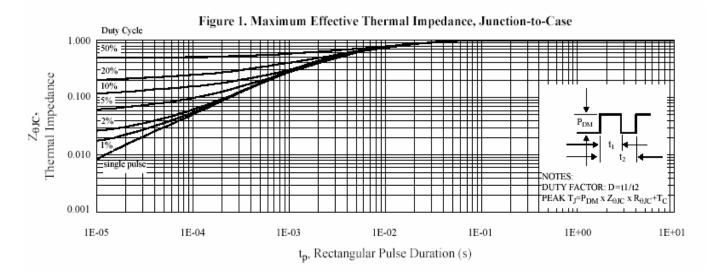
Part Number	Package		
CMT60N06G	TO-220		

ELECTRICAL CHARACTERISTICS

Unless otherwise specified, $T_J = 25^{\circ}C$.

			CMT60N06G			
Cha	Symbol	Min	Тур	Max	Units	
	OFF Characterist	ics				
Drain-to-Source Breakdown Voltage	V_{DSS}	60			V	
$(V_{GS} = 0 \text{ V}, I_D = 250 \mu\text{A})$						
Breakdown Voltage Temperature Co	efficient	$\DeltaV_{DSS}\!/\!\Delta T_{J}$		0.069		mV/°C
(Reference to 25 $^{\circ}$ C , I_D = 250 μ A)						
Drain-to-Source Leakage Current		I _{DSS}				μΑ
$(V_{DS} = 60 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 25^{\circ}\text{C})$					25	
$(V_{DS} = 48 \text{ V}, V_{GS} = 0 \text{ V}, T_{J} = 150^{\circ}C$)				250	
Gate-to-Source Forward Leakage		I_{GSS}			100	nA
(V _{GS} = 20 V)						
Gate-to-Source Reverse Leakage		I_{GSS}			-100	nA
(V _{GS} = -20 V)						
	ON Characterist	ics		1	ı	1
Gate Threshold Voltage		$V_{GS(th)}$	1.0	2.0	3.0	V
$(V_{DS} = V_{GS}, I_D = 250 \mu A)$						
Static Drain-to-Source On-Resistand	e (Note 4)	R _{DS(on)}				mΩ
$(V_{GS} = 10 \text{ V}, I_D = 60\text{A})$			15.8	18		
Forward Transconductance ($V_{DS} = 1$)	g FS		36		S	
	Dynamic Character	istics		1	Γ	1
Input Capacitance	$(V_{DS} = 25 \text{ V}, V_{GS} = 0 \text{ V},$	C _{iss}		1430		pF
Output Capacitance	f = 1.0 MHz)	C _{oss}		420		pF
Reverse Transfer Capacitance	,	C_{rss}		88		pF
Total Gate Charge (V _{GS} = 10 V)	$(V_{DS} = 30 \text{ V}, I_{D} = 60 \text{ A},$	Qg		37.7		nC
Gate-to-Source Charge	V _{GS} = 10 V) (Note 5)	Q_{gs}		8.4		nC
Gate-to-Drain ("Miller") Charge		Q_{gd}		9.8		nC
	Resistive Switching Cha	racteristics		1	ı	1
Turn-On Delay Time	$(V_{DD} = 30 \text{ V}, I_D = 60 \text{ A},$	$t_{d(on)}$		12.1		ns
Rise Time	$V_{GS} = 10 \text{ V},$	t _{rise}		64		ns
Turn-Off Delay Time	$R_G = 9.1\Omega$) (Note 5)	$t_{\sf d(off)}$		69		ns
Fall Time		t _{fall}		39		ns
	Source-Drain Diode Cha			1		1
Continuous Source Current		Is			60	Α
(Body Diode)	Integral pn-diode in MOSFET					
Pulse Source Current (Body Diode)		I _{SM}			241	Α
Diode Forward On-Voltage	(I _S = 60 A, V _{GS} = 0 V)	V _{SD}			1.5	V
Reverse Recovery Time	$(I_F = 60A, V_{GS} = 0 V,$	t _{rr}		55		ns
Reverse Recovery Charge	$d_i/d_t = 100A/\mu s)$	Q_{rr}		110		nC

Note 1: $T_J = +25^{\circ}C$ to $+175^{\circ}C$


Note 2: Repetitive rating; pulse width limited by maximum junction temperature.

Note 3: I_{SD} = 60A, di/dt \leq 100A/ μ s, $V_{DD} \leq BV_{DSS}$, T_{J} = +175 $^{\circ}$ C

Note 4: Pulse width < 250µs; duty cycle<2%

Note 5: Essentially independent of operating temerpature.

Ip, Drain Current (A)

Figure 2. Maximum Power Dissipation vs Case Temperature

(M) uojtadissid 100 100 100 80 60 40 20 0 125 150 175 T_C, Case Temperature (°C)

Figure 3. Maximum Continuous Drain Current vs Case Temperature

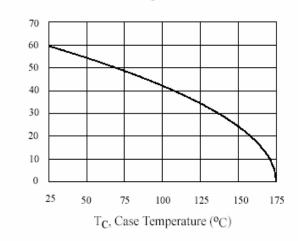


Figure 4. Typical Output Characteristics

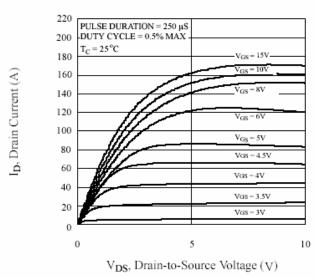
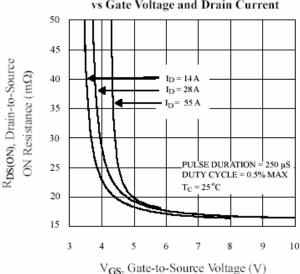
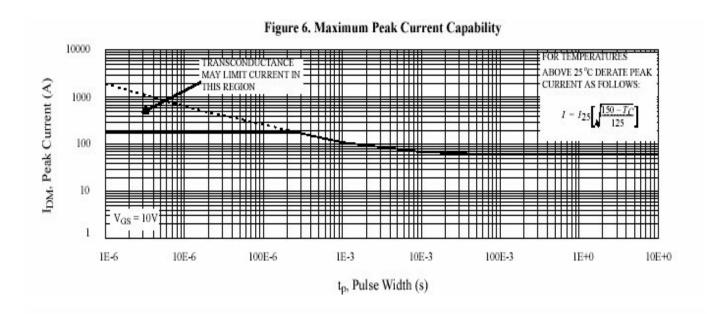
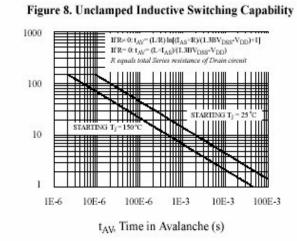
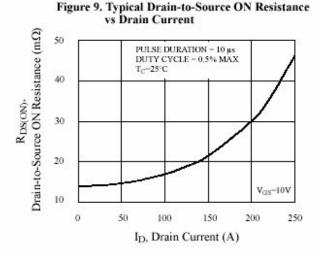




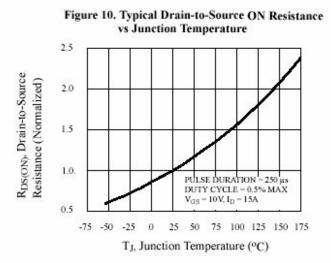
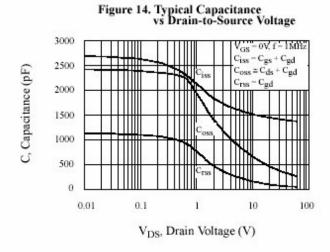
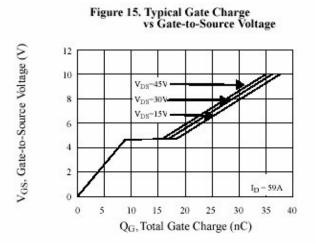
Figure 5. Typical Drain-to-Source ON Resistance vs Gate Voltage and Drain Current





(A) Avalanche Current (A)

Figure 7. Typical Transfer Characteristics 40 ID, Drain-to-Source Current (A) PULSE DURATION - 250 µs DUTY CYCLE = 0.5% MAX V_{DS} = 10 V 35 30 25 20 15 +175°C 10 +25°C -55°C 5 1.5 2.0 3.5 4.0 VGS, Gate-to-Source Voltage (V)

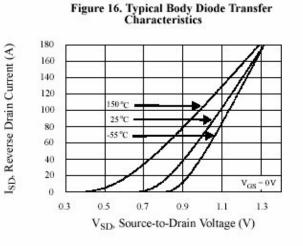
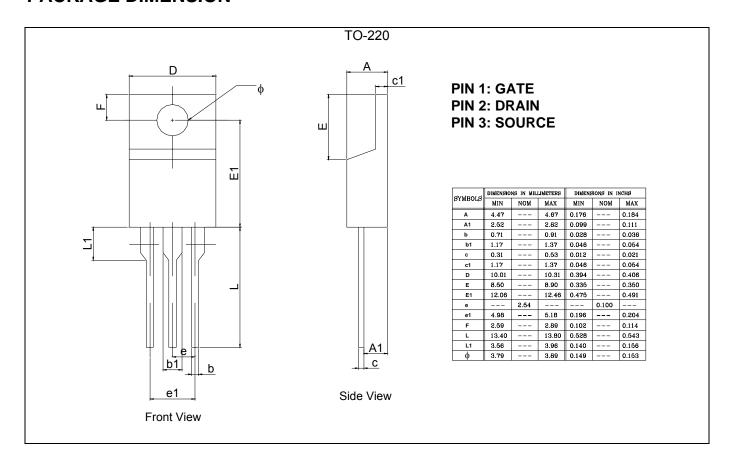


Figure 11. Typical Breakdown Voltage vs Junction Temperature Breakdown Voltage (Normalized) 1.20 BV_{DSS}, Drain-to-Source 1.15 1.10 1.05 $V_{GS} = 0V$ 0.95 $I_D = 250 \, \mu A$ 0.90 50 75 100 125 150 175 -75 -50 25 T_J, Junction Temperature (°C)

Figure 12. Typical Threshold Voltage vs Junction Temperature 1.2 VGS(TH), Threshold Voltage 1.1 1.0 (Normalized) 0.9 0.8 0.7 $V_{GS} = V_{DS}$ 0.6 $I_D = 250 \mu A$ 0.5 -75 -50 -25 0.0 25 50 75 100 125 150 175 T_J, Junction Temperature (°C)



PACKAGE DIMENSION

IMPORTANT NOTICE

Champion Microelectronic Corporation (CMC) reserves the right to make changes to its products or to discontinue any integrated circuit product or service without notice, and advises its customers to obtain the latest version of relevant information to verify, before placing orders, that the information being relied on is current.

A few applications using integrated circuit products may involve potential risks of death, personal injury, or severe property or environmental damage. CMC integrated circuit products are not designed, intended, authorized, or warranted to be suitable for use in life-support applications, devices or systems or other critical applications. Use of CMC products in such applications is understood to be fully at the risk of the customer. In order to minimize risks associated with the customer's applications, the customer should provide adequate design and operating safeguards.

HsinChu Headquarter

Sales & Marketing

5F-1, No. 11, Park Avenue II,	11F, No. 306-3, SEC. 1, Ta Tung Road,
Science-Based Industrial Park,	Hsichih, Taipei Hsien 221, Taiwan
HsinChu City, Taiwan	
TEL: +886-3-567 9979	TEL: +886-2-8692 1591
FAX: +886-3-567 9909	FAX: +886-2-8692 1596