MUR1620CT # GLASS PASSIVATED HIGH EFFICENCY RECTIFIER Reverse Voltage – 50 to 1000 Volts Forward Current – 16.0 Amperes #### **Features** - Low forward voltage, High current capability - Plastic package has Underwriters Laboratory Flammability Classification 94V-O utilizing Flame Retardant Epoxy Molding Compound. - High surge capacity - Low power loss, high efficiency - Ultra fast recovery times, high voltage #### **Mechanical Data** Case: Molded plastic, TO-220 Terminals: leads solderable per MIL-STD-202, method 208 guaranteed Polarity: As markedMounting Position: Any ## **Absolute Maximum Ratings and Characteristics** ### Dimensions in mm Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave,60Hz, resistive or inductive load. For capacitive load, derate current by 20%. | | Symbols | Value | Units | |--|--------------------------------|-------------|----------------------| | Maximum recurrent peak reverse voltage | V_{RRM} | 200 | Volts | | Maximum RMS voltage | V_{RMS} | 140 | Volts | | Maximum DC blocking voltage | V_{DC} | 200 | Volts | | Maximum average forward Rectified current at T_C = 100 $^{\circ}C$ | I _{F(AV)} | 16.0 | Amps | | Peak forward surge current 8.3ms single half-sine-wave superimposed on rated load (JEDEC method) | I _{FSM} | 125 | Amps | | Maximum forward voltage at 8.0A and $T_A = 25^{\circ}C$ | V _F | 1.0 | Volts | | Typical junction Capacitance (Note1) | CJ | 80 | pF | | Maximum reverse recovery time (Note 2) | T _{RR} | 50 | nS | | Typical thermal resistance (Note3) | R _{0JC} | 3.0 | °C/W | | Maximum reverse current at @T _A = 25°C | 1_ | 10 | μAmps | | rated DC blocking voltage @T _C =125°C | I _R | 500 | μAmps | | Operating and storage temperature range | T _J ,T _s | -55 to +150 | $^{\circ}\mathbb{C}$ | Notes :1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC. - 2. Reverse recovery test conditions: $I_F = 0.5A$, $I_R = 1A$, $I_{RR} = 0.25A$ - 3. Thermal resistance from junction to case per leg mounted on heatsink. # SEMTECH ELECTRONICS LTD. (Subsidiary of Semtech International Holdings Limited, acompany listed on the Hong Kong Stock Exchange, Stock Code: 724) Dated : 23/06/2003 FIG.1 Reverse Recovery Time Characteristic and Test Circuit Diagram FIG.4 Maximum Non-repetitive Forward Surge Current Per Leg FIG.5 Typical Junction Capacitance Per Lea 240 Capacitance. (pF) 200 Tj=25°C 160 120 80 40 0 10 20 50 100 200 Reverse Voltage. (V) Characteristics Per Leg 1000 nstantaneous Reverse Current. (μ A) Tj=125°C 100 10 T_j=25°C 1 FIG.3 Typical Reverse Percent of Rated Peak Reverse Voltage. (%) 80 100 120 140 40 60 # SEMTECH ELECTRONICS LTD. Dated: 23/06/2003