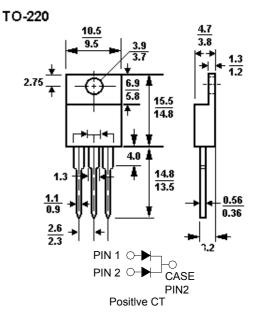
MUR1620CT

GLASS PASSIVATED HIGH EFFICENCY RECTIFIER Reverse Voltage – 50 to 1000 Volts Forward Current – 16.0 Amperes


Features

- Low forward voltage, High current capability
- Plastic package has Underwriters Laboratory Flammability Classification 94V-O utilizing Flame Retardant Epoxy Molding Compound.
- High surge capacity
- Low power loss, high efficiency
- Ultra fast recovery times, high voltage

Mechanical Data

 Case: Molded plastic, TO-220
 Terminals: leads solderable per MIL-STD-202, method 208 guaranteed

Polarity: As markedMounting Position: Any

Absolute Maximum Ratings and Characteristics

Dimensions in mm

Ratings at 25°C ambient temperature unless otherwise specified. Single phase, half wave,60Hz, resistive or inductive load. For capacitive load, derate current by 20%.

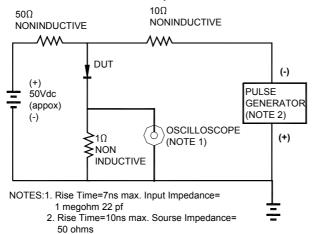
	Symbols	Value	Units
Maximum recurrent peak reverse voltage	V_{RRM}	200	Volts
Maximum RMS voltage	V_{RMS}	140	Volts
Maximum DC blocking voltage	V_{DC}	200	Volts
Maximum average forward Rectified current at T_C = 100 $^{\circ}C$	I _{F(AV)}	16.0	Amps
Peak forward surge current 8.3ms single half-sine-wave superimposed on rated load (JEDEC method)	I _{FSM}	125	Amps
Maximum forward voltage at 8.0A and $T_A = 25^{\circ}C$	V _F	1.0	Volts
Typical junction Capacitance (Note1)	CJ	80	pF
Maximum reverse recovery time (Note 2)	T _{RR}	50	nS
Typical thermal resistance (Note3)	R _{0JC}	3.0	°C/W
Maximum reverse current at @T _A = 25°C	1_	10	μAmps
rated DC blocking voltage @T _C =125°C	I _R	500	μAmps
Operating and storage temperature range	T _J ,T _s	-55 to +150	$^{\circ}\mathbb{C}$

Notes :1. Measured at 1 MHz and applied reverse voltage of 4.0 VDC.

- 2. Reverse recovery test conditions: $I_F = 0.5A$, $I_R = 1A$, $I_{RR} = 0.25A$
- 3. Thermal resistance from junction to case per leg mounted on heatsink.

SEMTECH ELECTRONICS LTD.

(Subsidiary of Semtech International Holdings Limited, acompany listed on the Hong Kong Stock Exchange, Stock Code: 724)



Dated : 23/06/2003

FIG.1 Reverse Recovery Time Characteristic and Test Circuit Diagram

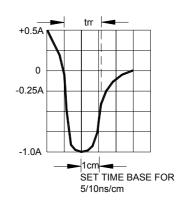


FIG.4 Maximum Non-repetitive Forward Surge Current Per Leg

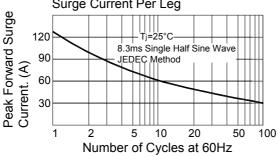


FIG.5 Typical Junction Capacitance Per Lea 240 Capacitance. (pF) 200 Tj=25°C 160 120 80 40 0 10 20 50 100 200 Reverse Voltage. (V)

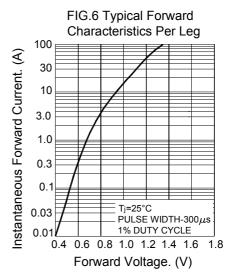

Characteristics Per Leg 1000 nstantaneous Reverse Current. (μ A) Tj=125°C 100 10 T_j=25°C 1

FIG.3 Typical Reverse

Percent of Rated Peak Reverse Voltage. (%)

80 100 120 140

40 60

SEMTECH ELECTRONICS LTD.

Dated: 23/06/2003