

Precision Single and Dual Low Noise Operational Amplifiers

ISL28107 and ISL28207

The ISL28107 and ISL28207 are single and dual amplifiers featuring low noise, low input bias current, and low offset and temperature drift. This makes them the ideal choice for applications requiring both high DC accuracy and AC performance. The combination of precision, low noise, and small footprint provides the user with outstanding value and flexibility relative to similar competitive parts.

Applications for these amplifiers include precision active filters, medical and analytical instrumentation, precision power supply controls, and industrial controls.

The ISL28107 single is available in an 8 Ld SOIC package. The ISL28207 dual amplifier will be offered in an 8 Ld SOIC package. All devices are offered in standard pin configurations and operate over the extended temperature range to -40° C to $+125^{\circ}$ C.

Features

• Low Input Offset 75µV, Max.
Input Bias Current
Superb Temperature Drift
- Voltage Offset 0.65µV/°C, Max.
- Input Current 0.9pA/°C, Max
 Outstanding ESD performance
- Human Body Model 4.5kV
- Machine Model
- Charged Device Model 1.5kV
• Very Low Voltage Noise, 10Hz 14nV/ \sqrt{Hz}
Low Current Consumption (per amp . 0.29mA, Max.
Gain-bandwidth Product 1MHz
• Wide Supply Range 4.5V to 40V
Operating Temperature Range40°C to +125°C

- No Phase Reversal
- Pb-Free (RoHS Compliant)

Applications* (see page 21)

- Precision Instruments
- Medical Instrumentation
- Spectral Analysis Equipment
- Geophysical Analysis Equipment
- Active Filter Blocks
- Microphone Pre-amplifier
- Thermocouples and RTD Reference Buffers
- Data Acquisition
- Power Supply Control

Typical Application

Sallen-Key Low Pass Filter (1kHz)

1

Input Noise Voltage Spectral Density

Ordering Information

PART NUMBER (Notes 1, 3)	PART MARKING	TEMP. RANGE (°C)	PACKAGE (Pb-Free)	PKG. DWG. #
ISL28207FBZ	28207 FBZ	-40 to +125	8 Ld SOIC	M8.15E
ISL28207FBZ-T7 (Note 2)	28207 FBZ	-40 to +125	8 Ld SOIC	M8.15E
ISL28207FBZ-T13 (Note 2)	28207 FBZ	-40 to +125	8 Ld SOIC	M8.15E
ISL28107FBZ	28107 FBZ	-40 to +125	8 Ld SOIC	M8.15E
ISL28107FBZ-T7 (Note 2)	28107 FBZ	-40 to +125	8 Ld SOIC	M8.15E
ISL28107FBZ-T13 (Note 2)	28107 FBZ	-40 to +125	8 Ld SOIC	M8.15E

NOTES:

 These Intersil Pb-free plastic packaged products employ special Pb-free material sets, molding compounds/die attach materials, and 100% matte tin plate plus anneal (e3 termination finish, which is RoHS compliant and compatible with both SnPb and Pb-free soldering operations). Intersil Pb-free products are MSL classified at Pb-free peak reflow temperatures that meet or exceed the Pb-free requirements of IPC/JEDEC J STD-020.

- 2. "-T7" and "-T13" suffix is for tape and reel. Please refer to TB347 for details on reel specifications.
- 3. For Moisture Sensitivity Level (MSL), please see device information page for <u>ISL28107</u> and <u>ISL28207</u>. For more information on MSL please see techbrief <u>TB363</u>.

Pin Configurations

Pin Descriptions

ISL28107 (8 LD SOIC)	ISL28207 (8 LD SOIC)	PIN NAME	EQUIVALENT CIRCUIT	DESCRIPTION		
3	3	+IN_A	Circuit 1	Amplifier A non-inverting input		
4	4	V-	Circuit 3	Negative power supply		
	5	+IN_B	Circuit 1	Amplifier B non-inverting input		
	6	-IN_B	Circuit 1	Amplifier B inverting input		
	7	V _{OUT} B	Circuit 2	Amplifier B output		
7	8	V +	Circuit 3	Positive power supply		
6	1	V _{OUT} A	Circuit 2	Amplifier A output		
2	2	-IN_A	Circuit 1	Amplifier A inverting input		
1, 5, 8		NC	-	No internal connection		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
CI	RCUIT 1		CIRCUIT 2	CIRCUIT 3		

Absolute Maximum Ratings

Maximum Supply Voltage	. 42V
Maximum Differential Input Current	20mA
Maximum Differential Input Voltage (V-) - 0.5V to (V+)	+ 0.5V
Min/Max Input Voltage (V-) - 0.5V to (V+) +	- 0.5V
Max/Min Input current for input voltage >V+ or <v td="" ±<=""><td>20mA</td></v>	20mA
Output Short-Circuit Duration (1 output at a time) Ind	efinite
ESD Tolerance	
Human Body Model	4.5kV
Machine Model	500V

Thermal Information

Thermal Resistance (Typical, Note 4)	θ_{JA} (°C/W)
8 Ld SOIC Package (ISL28107)	120
8 Ld SOIC Package (ISL28207)	115
Storage Temperature Range65°C	C to +150°C
Pb-Free Reflow Profile	e link below
http://www.intersil.com/pbfree/Pb-FreeReflow.a	<u>isp</u>

Operating Conditions

Ambient Operating Temperature Range. . . . -40°C to +125°C Maximum Operating Junction Temperature +150°C

CAUTION: Do not operate at or near the maximum ratings listed for extended periods of time. Exposure to such conditions may adversely impact product reliability and result in failures not covered by warranty.

NOTE:

4. θ_{JA} is measured with the component mounted on a high effective thermal conductivity test board in free air. See Tech Brief TB379 for details.

IMPORTANT NOTE: All parameters having Min/Max specifications are guaranteed. Typical values are for information purposes only. Unless otherwise noted, all tests are at the specified temperature and are pulsed tests, therefore: $T_J = T_C = T_A$

Electrical Specifications $V_{S} \pm 15V$, $V_{CM} = 0$, $V_{O} = 0V$, $R_{L} = Open$, $T_{A} = +25$ °C, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5) TYP		MAX (Note 5)	UNIT
V _{OS}	Offset Voltage Magnitude	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-75	5	75	μV
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-140		140	μV
TCV _{OS}	Offset Voltage Drift		-0.65	0.1	0.65	µV/°C
I _B	Input Bias Current	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-300	15	300	pА
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-600		600	pА
TCIB	Input Bias Current Drift	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-0.9	0.19	0.9	pA/°C
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-3.5	0.26	3.5	pA/°C
I _{OS}	Input Offset Current	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-300	15	300	pА
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-600		600	pА
TCI _{OS}	Input Offset Current Drift	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-0.9	0.19	0.9	pA/°C
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-3.5	0.26	3.5	pA/°C
V _{CM}	Input Voltage Range	Guaranteed by CMRR test	-13		13	V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = -13V \text{ to } +13V$	115	145		dB
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 2.25V$ to $\pm 20V$	115	145		dB
A _{VOL}	Open-Loop Gain	V_{0} = -13V to +13V, R_{L} = 10k Ω to ground	3,000	40,000		V/mV
V _{OH}	Output Voltage High	$R_L = 10k\Omega$ to ground	13.5	13.7		V
			13.2			V
		$R_L = 2k\Omega$ to ground	13.3	13.55		V
			13.1			V
V _{OL}	Output Voltage Low	$R_L = 10k\Omega$ to ground		-13.7	-13.5	V
					-13.2	V
		$R_L = 2k\Omega$ to ground		-13.55	-13.3	V
					-13.1	V

Electrical Specifications $V_S \pm 15V$, $V_{CM} = 0$, $V_O = 0V$, $R_L = Open$, $T_A = \pm 25^{\circ}C$, unless otherwise noted. Boldface limits apply over the operating temperature range, $-40^{\circ}C$ to $\pm 125^{\circ}C$. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5)	ТҮР	MAX (Note 5)	UNIT
۱ _S	Supply Current/Amplifier	R _L = Open		0.21	0.29	mA
					0.35	mA
I _{SC}	Output Short-Circuit Current	Note 3		±40		mA
V _{SUPPLY}	Supply Voltage Range	e Guaranteed by PSRR			±20	V
AC SPECIFIC	ATIONS					
GBW	Gain Bandwidth Product			1		MHz
e _{np-p}	Voltage Noise	0.1Hz to 10Hz, $V_{S} = \pm 19V$		340		nV_{P-P}
e _n	Voltage Noise Density	$f = 10Hz, V_S = \pm 19V$		14		nV/√Hz
e _n	Voltage Noise Density	$f = 100Hz, V_S = \pm 19V$		13		nV/√Hz
e _n	Voltage Noise Density	$f = 1 \text{ Hz}, V_{\text{S}} = \pm 19 \text{ V}$		13		nV/√Hz
e _n	Voltage Noise Density	$f = 10 \text{kHz}, \text{ V}_{\text{S}} = \pm 19 \text{V}$		13		nV/√Hz
in	Current Noise Density	$f = 10 \text{kHz}, \text{ V}_{\text{S}} = \pm 19 \text{V}$		53		fA/√Hz
THD + N	Total Harmonic Distortion + Noise	1kHz, G = 1, V _O = $3.5V_{RMS}$, R _L = $2k\Omega$		0.0035		%
	RESPONSE		1	I		
SR	Slew Rate	$A_V = 10, R_L = 10k\Omega, V_O = 10V_{P-P}$		±0.32		V/µs
t _r , t _f , Small Signal	Rise Time 10% to 90% of V _{OUT}			355		ns
	Fall Time 90% to 10% of V _{OUT}	A_V = 1, V_{OUT} = 100mV_{P-P}, R_f = 0Ω, R_L = 2kΩ to V_{CM}		365		ns
t _s	Settling Time to 0.1% 10V Step; 10% to V _{OUT}			29		μs
	Settling Time to 0.01% 10V Step; 10% to V _{OUT}			31.2		μs
t _{OL}	Output Overload Recovery Time	A_V = 100, V_{IN} = 0.2V , R_L = 2k\Omega to V_{CM}		6		μs

Electrical Specifications $V_S \pm 5V$, $V_{CM} = 0$, $V_O = 0V$, $T_A = +25^{\circ}C$, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization.

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5)	ТҮР	MAX (Note 5)	UNIT
V _{OS}	Offset Voltage Magnitude	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-75	5	75	μV
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-140		140	μV
TCV _{OS}	Offset Voltage Drift		-0.65	0.1	0.65	µV/°C
I _B	Input Bias Current	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-300	15	300	pА
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-600		600	pА
TCIB	Input Bias Current Drift	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-0.9	0.19	0.9	pA/°C
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-3.5	0.26	3.5	pA/°C
I _{OS}	Input Offset Current	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-300	15	300	pА
		$T_A = -40^{\circ}C \text{ to } + 125^{\circ}C$	-600		600	pА

ISL28107, ISL28207

Electrical Specifications $V_S \pm 5V$, $V_{CM} = 0$, $V_O = 0V$, $T_A = +25^{\circ}C$, unless otherwise noted. Boldface limits apply over the operating temperature range, -40°C to +125°C. Temperature data established by characterization. (Continued)

PARAMETER	DESCRIPTION	CONDITIONS	MIN (Note 5)	ТҮР	MAX (Note 5)	UNIT
TCI _{OS}	Input Offset Current Drift	$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	-0.9	0.19	0.9	pA/°C
		$T_A = -40^{\circ}C \text{ to } +125^{\circ}C$	-3.5	0.26	3.5	pA/°C
V _{CM}	Common Mode Input Voltage Range	Guaranteed by CMRR test	-3		3	V
CMRR	Common-Mode Rejection Ratio	$V_{CM} = -3V$ to $+3V$	115	145		dB
PSRR	Power Supply Rejection Ratio	$V_{S} = \pm 2.25V$ to $\pm 5V$	115	145		dB
A _{VOL}	Open-Loop Gain	$V_0 = -3V$ to $+3V$, $R_L = 10k\Omega$ to ground	3,000	40,000		V/mV
V _{OH}	Output Voltage High	$R_L = 10k\Omega$ to ground	3.5	3.7		V
			3.2			V
		$R_L = 2k\Omega$ to ground	3.3	3.55		V
			3.1			V
V _{OL}	Output Voltage Low	$R_L = 10k\Omega$ to ground		-3.7	-3.5	V
					-3.2	V
		$R_L = 2k\Omega$ to ground		-3.55	-3.3	V
					-3.1	V
I _S	Supply Current/Amplifier	R _L = Open		0.21	0.29	mA
					0.35	mA
I _{SC}	Output Short-Circuit Current	Note 3		± 40		mA
AC SPECIFIC	ATIONS					
GBW	Gain Bandwidth Product			1		MHz
THD + N	Total Harmonic Distortion + Noise	1kHz, G = 1, Vo = $2.5V_{RMS}$, R _L = $2k\Omega$		0.0053		%
TRANSIENT F	RESPONSE					
SR	Slew Rate	$A_V = 10, R_L = 2k\Omega$		0.32		V/µs
t _r , t _f , Small Signal	Rise Time 10% to 90% of V _{OUT}			355		ns
	Fall Time 90% to 10% of V _{OUT}			370		ns
ts	Settling Time to 0.1% 4V Step; 10% to V _{OUT}	$ \begin{array}{l} A_V = \text{-1, } V_{OUT} = 4V_{\text{P-P}} \; R_f = R_g = 2k\Omega, \\ R_L = 2k\Omega \; to \; V_{CM} \end{array} $		12.4		μs
	Settling Time to 0.01% 4V Step; 10% to V _{OUT}			22		μs

NOTE:

5. Parameters with MIN and/or MAX limits are 100% tested at +25°C, unless otherwise specified. Temperature limits established by characterization and are not production tested.

6. Output Short Circuit Current is the minimum current (source or sink) when the output is driven into the supply rails with $R_L = 0\Omega$ to ground.

5

specified.

FIGURE 4. INPUT OFFSET VOLTAGE DISTRIBUTION, $V_S = \pm 5V$

FIGURE 3. INPUT OFFSET VOLTAGE DISTRIBUTION, $V_S = \pm 15V$

 $V_S=\pm 15V,\,V_{CM}=0V,\,R_L=$ Open, $T_A=25^\circ C$ unless otherwise specified. (Continued)

100 $V_S = \pm 5V$ 90 NUMBER OF AMPLIFIERS 80 70 60 50 40 30 20 10 0 -1.0 0.2 0.6 -1.4 1 0 TC_{lb-} (pA/°C)

 $V_S=\pm 15V,\,V_{CM}=0V,\,R_L=$ Open, $T_A=25\,^\circ\text{C}$ unless otherwise specified. (Continued)

FIGURE 14. TC_{1b-} vs NUMBER OF AMPLIFIERS, $V_S = \pm 15V$

FIGURE 16. OFFSET CURRENT vs TEMPERATURE, $V_S = \pm 5V$

 V_S = $\pm 15V$, V_{CM} = 0V, R_L = Open, T_A = 25°C unless otherwise specified. (Continued)

FIGURE 20. PSRR vs TEMPERATURE

FIGURE 21. A_{VOL} vs TEMPERATURE

 $R_L = 2k\Omega$

FIGURE 30. NEGATIVE SHORT CIRCUIT CURRENT vs TEMPERATURE

FIGURE 31. INPUT NOISE VOLTAGE 0.1Hz TO 10Hz

 V_S = $\pm 15V$, V_{CM} = 0V, R_L = Open, T_A = 25°C unless otherwise specified. (Continued)

FIGURE 32. INPUT NOISE VOLTAGE SPECTRAL DENSITY

FIGURE 33. INPUT NOISE CURRENT SPECTRAL DENSITY

FIGURE 35. CMRR vs FREQUENCY, $V_S = \pm 2.25, \pm 5V$, ±15V

FIGURE 34. PSRR vs FREQUENCY, $V_S = \pm 5V$, $\pm 15V$

FIGURE 36. INPUT OFFSET VOLTAGE vs INPUT COMMON MODE VOLTAGE, $V_S = \pm 15V$

 V_S = $\pm 15 V\!,~V_{CM}$ = 0V, R_L = Open, T_A = 25°C unless otherwise specified. (Continued)

FIGURE 39. FREQUENCY RESPONSE vs CLOSED LOOP GAIN

FREQUENCY, $R_L = 10k\Omega$, $C_L = 100pF$

FIGURE 40. FREQUENCY RESPONSE vs FEEDBACK RESISTANCE R_f/R_a

FIGURE 41. GAIN vs FREQUENCY vs R_I

FIGURE 43. GAIN vs FREQUENCY vs C₁

 V_S = $\pm 15V$, V_{CM} = 0V, R_L = Open, T_A = 25°C unless otherwise specified. (Continued)

FIGURE 44. GAIN vs FREQUENCY vs OUTPUT VOLTAGE

FIGURE 46. CROSSTALK vs FREQUENCY, $V_S = \pm 5V$, ±15V

100k

1M

10M

FIGURE 48. LARGE SIGNAL TRANSIENT RESPONSE vs $R_L V_S = \pm 5V, \pm 15V$

FIGURE 45. GAIN vs FREQUENCY vs SUPPLY VOLTAGE

FIGURE 47. LARGE SIGNAL 10V STEP RESPONSE, $V_S = \pm 15V$

 $V_S=\pm 15V,\,V_{CM}=0V,\,R_L=$ Open, $T_A=25^\circ C$ unless otherwise specified. (Continued)

FIGURE 49. SMALL SIGNAL TRANSIENT RESPONSE $V_S=\pm 5V,\ \pm 15V,\ \pm 20V$

GURE 50. POSITIVE OUTPUT OVERLOA RESPONSE TIME, $V_S = \pm 15V$

FIGURE 52. % OVERSHOOT vs LOAD CAPACITANCE, $V_S = \pm 15V$

Applications Information

Functional Description

The ISL28107 and ISL28207 are single and dual, very low 1/f noise ($14nV/\sqrt{Hz}$ @ 10Hz) precision op-amps. These amplifiers feature very high open loop gain (50kV/mV) for excellent CMRR (145dB), and gain accuracy. Both devices are fabricated in a new precision 40V complementary bipolar DI process.

The super-beta NPN input stage with bias current cancellation provides bipolar-like levels of AC performance with the low input bias currents approaching JFET levels. The temperature stabilization provided by bias current cancellation removes the high input bias current temperature coefficient commonly found in JFET amplifiers. Figures 7 and 8 show the input bias current variation over temperature.

The input offset voltage (V_{OS}) has an very low, worst case value of 75µV max at +25°C and a maximum T_C of 0.65µV/°C. Figure 36 shows V_{OS} as a function of supply voltage and temperature with the common mode voltage at 0V for split supply operation.

The complimentary bipolar output stage maintains stability driving large capacitive loads (to 10nF) without external compensation. The small signal overshoot vs. load capacitance is shown in Figure 52.

Operating Voltage Range

The devices are designed to operate over the 4.5V $(\pm 2.25V)$ to 40V $(\pm 20V)$ range and are fully characterized at 10V $(\pm 5V)$ and 30V $(\pm 15V)$. Both DC and AC performance remain virtually unchanged over the complete 4.5V to 40V operating voltage range. Parameter variation with operating voltage is shown in the "Typical Performance Curves" beginning on page 6. The input common mode voltage range sensitivity to temperature is shown in Figure 36 $(\pm 15V)$.

Input ESD Diode Protection

The input terminals (IN+ and IN-) each have internal ESD protection diodes to the positive and negative supply rails, a series connected 500Ω current limiting resistor followed by an anti-parallel diode pair across the input NPN transistors (Circuit 1 in "Pin Descriptions" on page 2).

The resistor-ESD diode configuration enables a wide differential input voltage range equal to the lesser of the Maximum Supply Voltage in the "Absolute Maximum Ratings" on page 3 (42V) or, a maximum of 0.5V beyond the V+ and V- supply voltage. The internal protection resistors eliminate the need for external input current limiting resistors in unity gain connections and other circuit applications where large voltages or high slew rate signals are present. Although the amplifier is fully protected, high input slew rates that exceed the amplifier slew rate ($\pm 0.32V/\mu$ s) may cause output distortion.

Output Current Limiting

The output current is internally limited to approximately \pm 40mA at +25°C and can withstand a short circuit to either rail as long as the power dissipation limits are not exceeded. This applies to only 1 amplifier at a time for the dual op-amp. Continuous operation under these conditions may degrade long term reliability.

Output Phase Reversal

Output phase reversal is a change of polarity in the amplifier transfer function when the input voltage exceeds the supply voltage. The ISL28107 and ISL28207 are immune to output phase reversal, even when the input voltage is 1V beyond the supplies.

Using Only One Channel

The ISL28207 is a dual op-amp. If the application only requires one channel, the user must configure the unused channel to prevent it from oscillating. The unused channel will oscillate if the input and output pins are floating. This will result in higher than expected supply currents and possible noise injection into the channel being used. The proper way to prevent this oscillation is to short the output to the inverting input and ground the positive input (as shown in Figure 53).

FIGURE 53. PREVENTING OSCILLATIONS IN UNUSED CHANNELS

Power Dissipation

It is possible to exceed the +150°C maximum junction temperatures under certain load and power supply conditions. It is therefore important to calculate the maximum junction temperature (T_{JMAX}) for all applications to determine if power supply voltages, load conditions, or package type need to be modified to remain in the safe operating area. These parameters are related using Equation 1:

$$T_{JMAX} = T_{MAX} + \theta_{JA} X P D_{MAXTOTAL}$$
(EQ. 1)

where:

- P_{DMAXTOTAL} is the sum of the maximum power dissipation of each amplifier in the package (PD_{MAX})
- PD_{MAX} for each amplifier can be calculated using Equation 2:

$$PD_{MAX} = V_{S} \times I_{qMAX} + (V_{S} - V_{OUTMAX}) \times \frac{V_{OUTMAX}}{R_{L}}$$
(EQ2)

where:

- T_{MAX} = Maximum ambient temperature
- θ_{JA} = Thermal resistance of the package
- PD_{MAX} = Maximum power dissipation of 1 amplifier
- V_S = Total supply voltage
- I_{qMAX} = Maximum quiescent supply current of 1 amplifier
- V_{OUTMAX} = Maximum output voltage swing of the application
- R_L = Load resistance

ISL28107, ISL28207 SPICE Model

Figure 54 shows the SPICE model schematic and Figure 55 shows the net list for the ISL28107, ISL28207 SPICE model. The model is a simplified version of the actual device and simulates important AC and DC parameters. AC parameters incorporated into the model are: 1/f and flatband noise, Slew Rate, CMRR, Gain and Phase. The DC parameters are VOS, IOS, total supply current and output voltage swing. The model uses typical parameters given in the "Electrical Specifications" Table beginning on page 3. The AVOL is adjusted for 155dB with the dominate pole at 0.01Hz. The CMRR is set (145dB, f_{cm} = 100Hz). The input stage models the actual device to present an accurate AC representation. The model is configured for ambient temperature of $+25^{\circ}$ C.

Figures 56 through 66 show the characterization vs simulation results for the Noise Voltage, Closed Loop Gain vs Frequency, Closed Loop Gain vs RL, Large Signal Step Response, Open Loop Gain Phase and Simulated CMRR vs Frequency.

LICENSE STATEMENT

The information in this SPICE model is protected under the United States copyright laws. Intersil Corporation hereby grants users of this macro-model hereto referred to as "Licensee", a nonexclusive, nontransferable licence to use this model as long as the Licensee abides by the terms of this agreement. Before using this macro-model, the Licensee should read this license. If the Licensee does not accept these terms, permission to use the model is not granted.

The Licensee may not sell, loan, rent, or license the macro-model, in whole, in part, or in modified form, to anyone outside the Licensee's company. The Licensee may modify the macro-model to suit his/her specific applications, and the Licensee may make copies of this macro-model for use within their company only.

This macro-model is provided "AS IS, WHERE IS, AND WITH NO WARRANTY OF ANY KIND EITHER EXPRESSED OR IMPLIED, INCLUDING BUY NOT LIMITED TO ANY IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE."

In no event will Intersil be liable for special, collateral, incidental, or consequential damages in connection with or arising out of the use of this macro-model. Intersil reserves the right to make changes to the product and the macro-model without prior notice.

* source ISL28107_SPICEmodel * Revision A, October 28th 2009 LaFontaine * Model for Noise, supply currents, 145dB f=100Hz CMRR, *155dB f=0.01Hz AOL *Copyright 2009 by Intersil Corporation *Refer to data sheet "LICENSE STATEMENT" Use of *this model indicates your acceptance with the *terms and provisions in the License Statement. * Connections: +input -input + +Vsupply * -Vsupply * output .subckt ISL28107subckt Vin+ Vin-V+ V- VOUT * source ISL28127_SPICEMODEL_0_0 * *Voltage Noise IN+ VIN+ 25 0 1 E En 25 0 600 R_R17 D_D12 24 25 DN V_V7 24 0 0.1 * *Input Stage IN+ VIN- DC 15e-12 I_IOS IN+ VIN- 1.2E-12 C_C6 R_R1 VCM VIN- 5ell IN+ VCM 5e11 R_R2 2 VIN- 1 SuperB Q_Q1 3 8 1 SuperB Q_Q2 V-- 1 7 Mirror Q_Q3 Q_Q4 4 6 2 Cascode Q_Q5 5 6 3 Cascode R_R3 4 V++ 4.45e3 5 V++ 4.45e3 R_R4 C_C4 VIN- 0 2e-12 C_C5 8 0 2e-12 6 7 DX D D1 I_IEE 1 V-- DC 200e-6 I IEE1 V++ 6 DC 96e-6 V_VOS 9 IN+ 5e-6 8 9 VC VMID 1 E_EOS *1st Gain Stage V++ 11 4 5 101.6828e-3 G G1 V-- 11 4 5 101.6828e-3 G G2 11 V++ 1 R_R5 R_R6 V-- 11 1 10 V++ DX D_D2 D_D3 V-- 12 DX 10 11 1.86 V_V1 V_V2 11 12 1.86 * *2nd Gain Stage G_G3 V++ VG 11 VMID 2.21e-3 V-- VG 11 VMID 2.21e-3 G_G4

R R7 VG V++ 2.55e10 R R8 V-- VG 2.55e10 VG V++ 6.25e-10 C_C2 C_C3 V-- VG 6.25e-10 D_D4 13 V++ DX D_D5 V-- 14 DX V_V3 13 VG 1.86 V_V4 VG 14 1.86 *Mid supply Ref R_R9 VMID V++ 1 R_R10 V-- VMID 1 I ISY V+ V- DC 0.21E-3 E E2 V + + 0 V + 0 1V-- 0 V- 0 1 E_E3 *Common Mode Gain Stage with Zero G G5 V++ VC VCM VMID 5.62e-8 V-- VC VCM VMID 5.62e-8 G G6 VC 17 1 R_R11 18 VC 1 R_R12 L_L1 17 V++ 1.59e-3 L_L2 18 V-- 1.59e-3 * *Output Stage with Correction Current Sources G_G7 VOUT V++ V++ VG 1.11e-2 G_G8 V-- VOUT VG V-- 1.11e-2 G_G9 22 V-- VOUT VG 1.11e-2 G G10 23 V-- VG VOUT 1.11e-2 D D6 VG 20 DX D_D7 21 VG DX D_D8 V++ 22 DX D_D9 V++ 23 DX D_D10 V-- 22 DY 11ס ס V-- 23 DY 20 VOUT 1.12 V_V5 V_V6 VOUT 21 1.12 VOUT V++ 9E1 R_R15 R_R16 V-- VOUT 9E1 .model SuperB npn + is=184E-15 bf=30e3 va=15 ik=70E-3 rb=50 + re=0.065 rc=35 cje=1.5E-12 cjc=2E-12 + kf=0 af=0 .model Cascode npn + is=502E-18 bf=150 va=300 ik=17E-3 rb=140 + re=0.011 rc=900 cje=0.2E-12 cjc=0.16E-12f + kf=0 af=0 .model Mirror pnp + is=4E-15 bf=150 va=50 ik=138E-3 rb=185 + re=0.101 rc=180 cje=1.34E-12 cjc=0.44E-12 + kf=0 af=0 .model DN D(KF=6.69e-9 AF=1) .MODEL DX D(IS=1E-12 Rs=0.1) .MODEL DY D(IS=1E-15 BV=50 Rs=1) .ends ISL28107subckt

FIGURE 55. SPICE NET LIST

Characterization vs Simulation Results

FIGURE 56. CHARACTERIZED INPUT NOISE VOLTAGE

FIGURE 58. CHARACTERIZED CLOSED LOOP GAIN vs FREQUENCY

FIGURE 60. CHARACTERIZED CLOSED LOOP GAIN vs $$\rm R_L$$

FIGURE 59. SIMULATED CLOSED LOOP GAIN vs FREQUENCY

FIGURE 61. SIMULATED CLOSED LOOP GAIN vs RL

Characterization vs Simulation Results (Continued)

180 C 160 **OPEN LOOP GAIN (dB)/PHASE** 140 PHASE 120 100 80 60 40 20 GAIN 0 -20 R_L = 10k -40 C_L = 10pF -60 SIMULATION -80 -100 0.1m 1m 10m 100m 1 10 100 1k 10k 100k 1M 10M 100M FREQUENCY (Hz)

200

FIGURE 64. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY

FIGURE 65. SIMULATED OPEN-LOOP GAIN, PHASE vs FREQUENCY

Revision History

The revision history provided is for informational purposes only and is believed to be accurate, but not warranted. Please go to Web to make sure you have the latest Rev.

DATE	REVISION	CHANGE
11/10/09	FN6631.1	 Updated VOS, IB, and IOS electrical specifications. Added Typical performance curves, Figures 1 through 30. Output Short Circuit Current test condition has been clarified with Note 6. Updated POD. Added Spice Model, associated text and Figures 56 through 66. Deleted old figures 6, 7, 8, 10, 11 and 12. Added Licence Statement on page 16 and referenced in spice model.
6/5/09	FN6631.0	Initial Release.

Products

Intersil Corporation is a leader in the design and manufacture of high-performance analog semiconductors. The Company's products address some of the industry's fastest growing markets, such as, flat panel displays, cell phones, handheld products, and notebooks. Intersil's product families address power management and analog signal processing functions. Go to <u>www.intersil.com/products</u> for a complete list of Intersil product families.

*For a complete listing of Applications, Related Documentation and Related Parts, please see the respective device information page on intersil.com: <u>ISL28107</u> and <u>ISL28207</u>.

To report errors or suggestions for this datasheet, please go to www.intersil.com/askourstaff

FITs are available from our website at http://rel.intersil.com/reports/search.php

For additional products, see www.intersil.com/product_tree

Intersil products are manufactured, assembled and tested utilizing ISO9000 quality systems as noted in the quality certifications found at www.intersil.com/design/quality

Intersil products are sold by description only. Intersil Corporation reserves the right to make changes in circuit design, software and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Intersil is believed to be accurate and reliable. However, no responsibility is assumed by Intersil or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Intersil or its subsidiaries.

For information regarding Intersil Corporation and its products, see www.intersil.com

Package Outline Drawing

M8.15E

8 LEAD NARROW BODY SMALL OUTLINE PLASTIC PACKAGE Rev 0, 08/09

 0.22 ± 0.03

- 1. Dimensions are in millimeters. Dimensions in () for Reference Only.
- 2. Dimensioning and tolerancing conform to AMSE Y14.5m-1994.
- 3. Unless otherwise specified, tolerance : Decimal ± 0.05
- Dimension does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25mm per side.
- 5. The pin #1 identifier may be either a mold or mark feature.
- 6. Reference to JEDEC MS-012.