

GaAs WLAN Dual SPDT Switch 2.4 - 5.8 GHz

Rev. V2

Features

- 802.11a & b/g, UNII, and Hiperlan Applications
- Optimized for 2.4 5.8 GHz WLAN
- Low Insertion Loss:
- 0.85 dB @ 2.4 GHz
- 1.1 dB @ 5.8 GHz
- High Isolation: 28 dB Typical
- Low Harmonics: <-63 dBc @ 20 dBm
- RoHS* Compliant

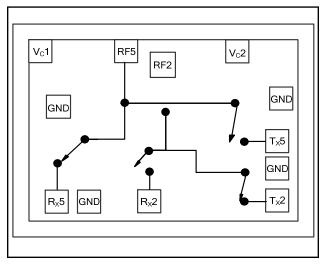
Description

M/A-COM's MASW-008206-000DIE is a WLAN GaAs PHEMT MMIC Dual SPDT switch. One SPDT (RF2) is optimized for 2.4 GHz WLAN and the other (RF5) is optimized for 5.8 GHz WLAN applications. Typical applications are for 802.11a and 802.11b/g PC card and access point applications.

The MASW-008206-000DIE delivers high isolation, low insertion loss, and high linearity up to 5.8 GHz. The MASW-008206-000DIE is fabricated using a 0.5 micron gate length GaAs pHEMT process. The process features full passivation for performance and reliability.

Ordering Information ¹

Part Number	Package	
MASW-008206-000DIE	Separated Die on Grip Ring	


^{1.} Die quantity varies.

Absolute Maximum Ratings ^{2,3}

Parameter	Absolute Maximum
Input Power @ 3 V Control	+32 dBm
Input Power @ 5 V Control	+33 dBm
Operating Voltage	+8 volts
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C

- 2. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 3. M/A-COM does not recommend sustained operation near these survivability limits.

Die Bond Pad Layout

Die Bond Pad Configuration

Pad No.	Name	Description
1	V _c 1	Voltage Control 1
2	GND	Ground
3	R _x 5	5 GHz R _X Port
4	GND	Ground
5	R _X 2	2.4 GHz R _X Port
6	T _X 2	2.4 GHz T _X Port
7	GND	Ground
8	T _X 5	5 GHz T _X Port
9	GND	Ground
10	V _c 2	Voltage Control 2
11	RF2	2.4 GHz Antenna Port
12	RF5	5 GHz Antenna Port

Solutions has a more development. I expended to the state of the state

^{*} Restrictions on Hazardous Substances, European Union Directive 2002/95/EC.

GaAs WLAN Dual SPDT Switch 2.4 - 5.8 GHz

Rev. V2

Electrical Specifications^{4,5}: $T_A = 25$ °C, $Z_0 = 50 \Omega$, $V_C = 0V / 3V$, $P_{IN} = 0 dBm$

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Insertion Loss	RF2 to Tx2/R _x 2, 2.4 GHz RF5 to Tx5/Rx5, 5.0 GHz			0.85 1.1	1.0 1.2
Isolation	RF2 to Tx2/R _x 2, 2.4 GHz RF5 to Tx5/Rx5, 5.0 GHz		25.5 21.0	30.0 25.0	
Return Loss	DC - 6.0 GHz	dB		15	
IP3	RF2 to Tx2/Rx2, 2.4 GHz, 20dBm Total Power, 1MHz Spacing RF5 to Tx5/Rx5, 4.9 GHz, 20dBm Total Power, 1MHz Spacing			54 55	
Input P1dB	RF2 to Tx2, 2.4-2.5 GHz RF5 to Tx5, 4.9-5.9 GHz			28 28	
Harmonics	RF2 to Tx2, 2.4-2.5 GHz, 20 dBc RF5 to Tx5, 4.9-5.9 GHz, 20 dBc		_	-63 -67	_
Control Current	VC = 3 V	μΑ	-	<1	10.0
T _{RISE} / T _{FALL}	10% - 90% RF, 90% - 10% RF	nS		22	_
T _{ON} / T _{OFF}	50% Control - 90% RF, 50% Control - 10% RF	nS		30	_

- 4. External blocking capacitors on all RF ports.
- 5. Electrical min/max are guaranteed in die form only.

Application Schematic

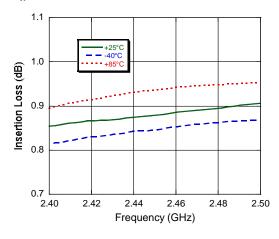
Truth Table 6,7,8

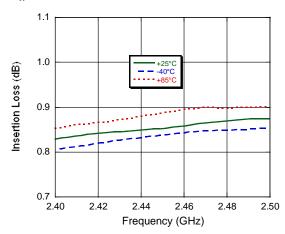
Control V _C 1	Control V _c 2	RF2 - T _X 2 RF5 - R _X 5	RF2 - R _X 2 RF5 - T _X 5
1	0	On	Off
0	1	Off	On

- 6. For positive voltage control, external DC blocking capacitors are required on all RF ports.
- 7. Differential voltage, V (state 1) V (state 0), must be +2.7 V minimum and must not exceed +5 V.
- 8. $0 = 0 \pm 0.3 \text{ V}$, 1 = +2.7 V to +5 V.

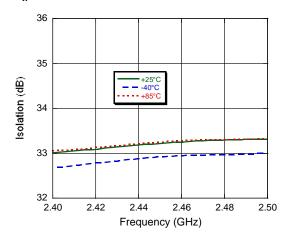
4.8 - 6.0 GHz WLAN applications.

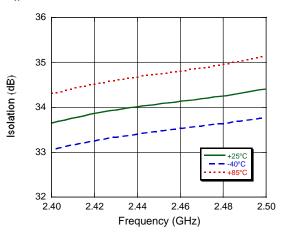
• India Tel: +91.80.43537383


• China Tel: +86.21.2407.1588 Visit www.macomtech.com for additional data sheets and product information.


GaAs WLAN Dual SPDT Switch 2.4 - 5.8 GHz

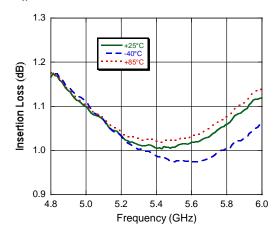
Rev. V2


Typical Performance Curves: 2.4-2.5 GHz (plots = chip on board assembly)

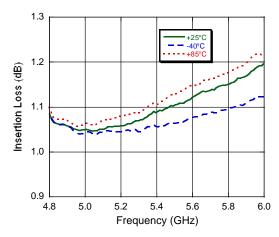

R_x Insertion Loss

T_X Isolation

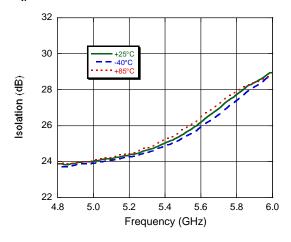
R_x Isolation

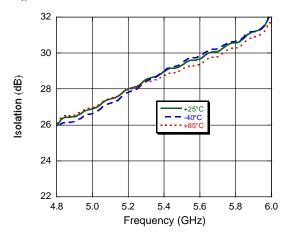


GaAs WLAN Dual SPDT Switch 2.4 - 5.8 GHz


Rev. V2

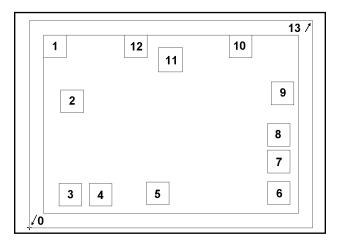
Typical Performance Curves: 4.8-6.0 GHz (plots = chip on board assembly)


Tx Insertion Loss


R_X Insertion Loss

T_X Isolation

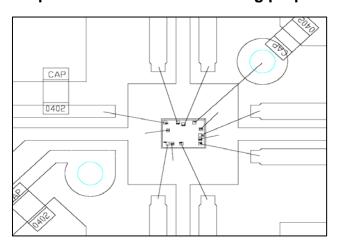
R_x Isolation


typical. Mechanical outline has been fixed. Engineering samples and/or test data may be available. Commitment to produce in volume is not guaranteed.

GaAs WLAN Dual SPDT Switch 2.4 - 5.8 GHz

Rev. V2

Outline Drawing



Pad Configuration 8 Die Size: 890 x 650 µm (nominal)

Pad No.	X (µm) nominal	Υ (μm) nominal	Pad Size (µm)
0	0	0	Lower left edge of die
1	80.5	569.5	71 x 71
2	134.5	397	71 x 71
3	129	104	71 x 71
4	224	104	71 x 71
5	403.75	108	71 x 71
6	783.5	109	71 x 71
7	783.5	208	71 x 71
8	783.5	292	71 x 71
9	795.25	421.75	71 x 71
10	664	569.5	71 x 71
11	443	527	76 x 76
12	334.75	569.5	71 x 71
13	890	650	Upper right edge of die

8. All X,Y dimensions are at bond pad center.

Chip mounted to PWB for testing purposes

Qualification

Qualified to M/A-COM specification REL-201, Process Flow -2.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Arsenide Integrated Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling MASW-008206-000DIE, which are Class Zero (100 V) devices.

[•] India Tel: +91.80.43537383