11-MD218A

Version : A.001 Issue Date : 2008-04-14

File Name : SP-MD218A-A.001.doc

Total Page : 17

130mA, 10Bit Current Sinking VCM Driver with I²C Interface

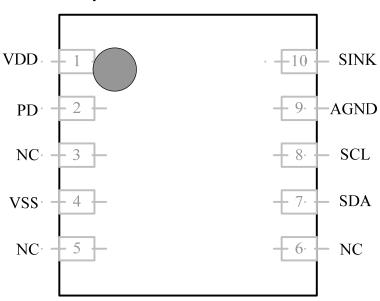
11-MD218A

130mA, 10-Bit Current Sinking VCM Driver with I²C Interface

General Specifications

The 11-MD218A is a VCM driver IC with I²C interface control that is capable of programmable output current sinking. It has a built-in internal voltage reference and operates in a wide supply voltage range from 2.4V to 5.5V. The DAC is controlled by a 2-wire I²C serial interface which operates in I²C fast mode (400 kHz). The 11-MD218A is designed for applications like image stabilization, auto-focus, and optical zoom in camera phones, digital still cameras, and other portable module devices.

Features and Benefits


- Programmable output current sinking
- I²C serial interface
- 10-BIT DAC resolution
- 2.4V 5.5V power supply
- Low voltage control for digital pin PD, SDA, and SCL(i.e., V_{IH} = 1.54V @ VDD = 2.8V)
- Power down operation
- Power on reset
- Constant current control
- Ultra small package: DFN10 (3*3*0.8 mm), WLCSP(0.99*1.87*0.5 mm)

Pin Assignment

Pin Assignment of DFN10 (3*3*0.8 mm)

Top View

Pin Descriptions


Pin NO.	Pin Name	Description
1	VDD	Power Supply Pin
2	PD	Digital Input: Power Down Mode ('H' Operation, 'L' Power Down)
3	NC	
4	VSS	Ground Pin
5	NC	
6	NC	
7	SDA	I ² C Interface Data
8	SCL	I ² C Interface Data
9	AGND	Analog GND
10	SINK	Analog Output : Output Current Sink

1. The I^2C slave 7-bit address of 11-MD218A is $\underline{0001-1xx}$.

Pin Assignment of WLCSP (0.99*1.87*0.5mm)

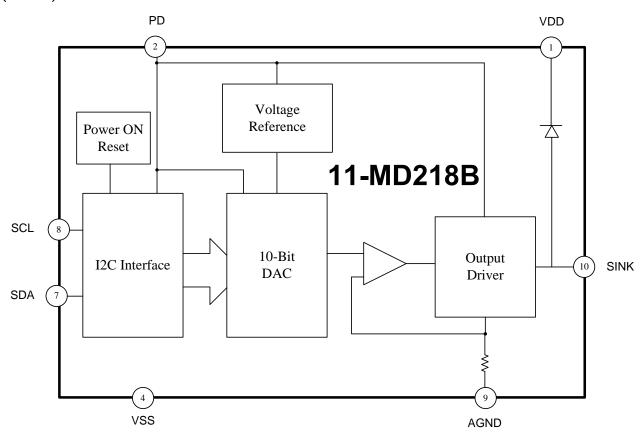
TOP View

Pin NO.	Pin Name	Description
WL1	SINK	Programmable Sink Current
WL2	AGND	Current Sinking GND
WL3	SCL	I ² C Interface Data
WL4	SDA	I ² C Interface Data
WL5	VSS	Ground Pin
WL6	VSS	Ground Pin
WI7	PD	IC Power Down Pin(Logic 'L': power down)
WL8	VDD	IC Power Pin

Absolute Maximum Ratings *Unless otherwise noted*, T_A = 25 $^{\circ}$ C

Characteristic	Symbol	Rating	Unit
Supply Voltage	V_{DD}	5.5	V
Input Voltage	V _{IN}	V _{DD} +0.4	V
Maximum Sink Current	I _{SINK}	150	mA
Operating Temperature Range	T _{OPR}	-40 ~ 125	°C
Storage Temperature Range	T _{STG}	-65 ~ 150	°C

Electrical Characteristic


Unless otherwise noted, $T_{A}\text{=-}25^{\circ}\text{C}$, $V_{DD}\text{=-}2.8~V$ and VCM = 28.5 Ω , 460uH.

Item	Sym.	Condition		Unit			
nom	Oyiii.	Cortainori	Min.	Тур.	Max.		
Power Supply							
Supply Voltage	V_{DD}		2.4	2.8	5.5	V	
Supply Current	I _{PD}	PD = L (Power down mode)	-	-	0.5	uA	
(I _{DD})	I _{DD}	PD = H , I2C= logic H	-	-	0.1	mA	
PD, SDA, SCL digital co	ontrol p	oin					
Input Voltage H	V _{IH}	-	0.55*V _{DD}	-	V _{DD} +0.4	V	
Input Voltage L	V _{IL}	-	-0.4	-	0.2*V _{DD}	V	
Parameters							
DAC Resolution				10		Bits	
DNL				+/-0.8	+/-1	LSB	
INL				+/-1	+/-5	LSB	
Output Offset Current	Ios	PD = H , I2C= logic H			5	uA	
Current Slew Rate	SR			3		mA/us	
Output Constant Current Settling Time	t _s	VDD = 2.8V, I _{SINK} = 100mA		40	80	us	
Voltage Drop		$\Delta V = V_{SINK} - V_{AGND}$ (@ $I_{SINK} = 80 \text{ mA}$)	-	0.32	0.35	V	

Block Diagram

(DFN10)

Terminology

Resolution

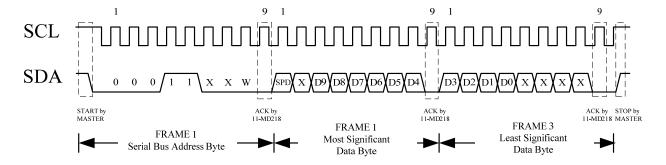
The DAC resolution is defined by the number of distinct analog levels corresponding to the number of bits it uses.

N-bit resolution -> 2^N distinct analog levels

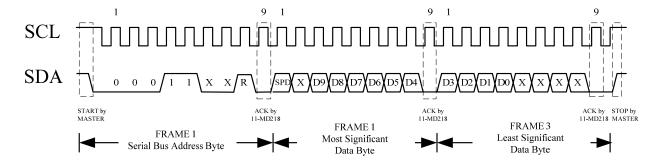
Differential Nonlinearity (DNL) error

The variation in analog step sizes away from 1 LSB by any two adjacent codes. Usually, gain and offset errors have been removed.

Integral Nonlinearity (INL)


It is the deviation of actual transfer response from a straight line. Usually, INL error is referred to as the maximum INL error.

Data Format


11-MD218A Write Mode

When in the write mode, data is written to the 11-MD218A and shifted step-by-step into the 16-bit input register. When all data has been loaded in and master signal receives a STOP condition, the loaded data in the input register is transferred to the DAC.

11-MD218A Read Mode

When 11-MD218A is in the write mode, data is read back from IC to master in the same bit order.

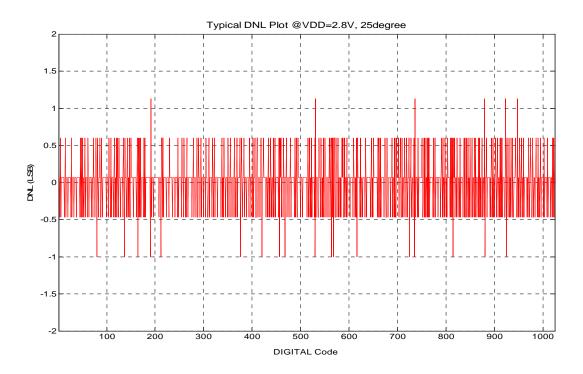
SP-MD218A-A.001.doc Version: A.001 Page:7

<u>Table</u>

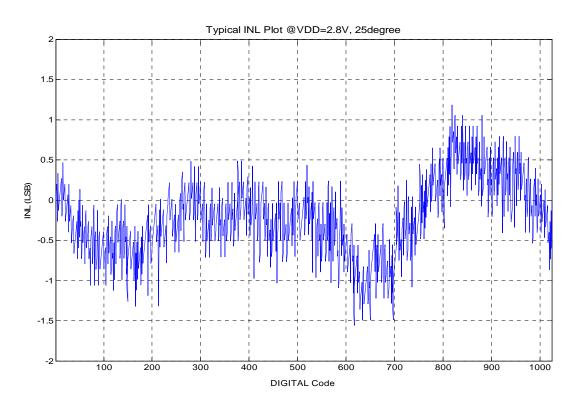
	MSB						LSB									
Serial Data Bits	7	6	5	4	3	2	1	0	7	6	5	4	3	2	1	0
Input Register	R15	R14	R13	R12	R11	R10	R09	R08	R07	R06	R05	R04	R03	R02	R01	R00
Function	SPD	Χ	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0	Χ	Χ	Χ	Χ

SPD (Soft Power Down, 2nd standby mode): IC power down controlled by software.

Regarding to all kinds of IC operation situations please refers to following table.

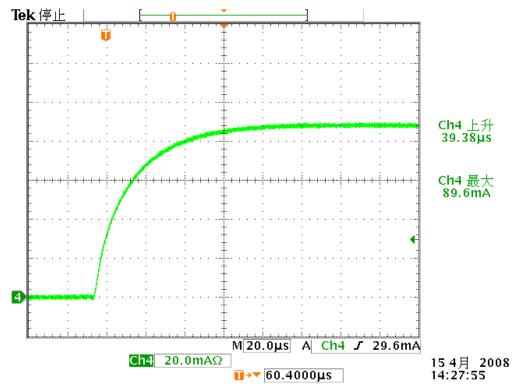

PD	SPD	IC status
Н	-	Power down
L	L	IC Active
	Н	Soft power down

• X denotes "Don't care/Unused".

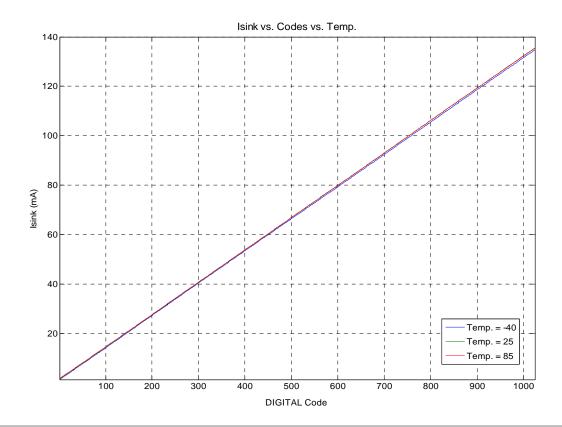


Performance Characteristics

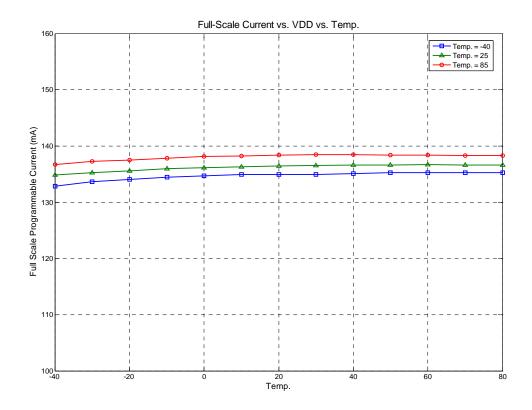
1. DNL Plot



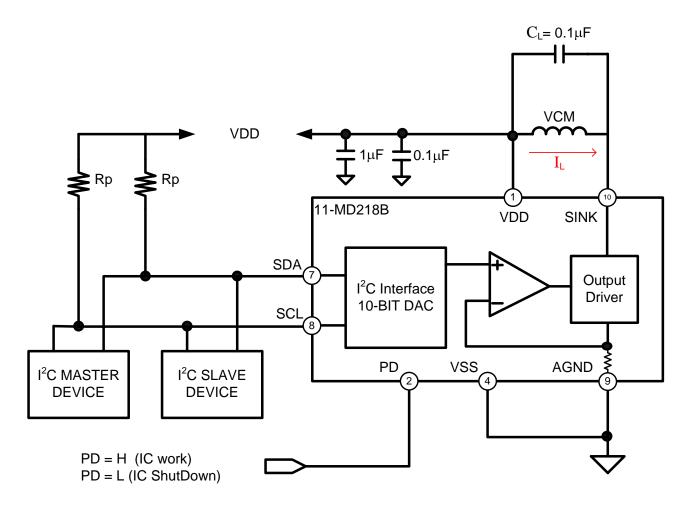
2. INL Plot



3. Settling Time (VDD = 2.8V, VCM = 270hm with 430uH@500Hz, 550uH@1kHz, respectively, $C_L = 0.1uF$ @Temp. = 25)



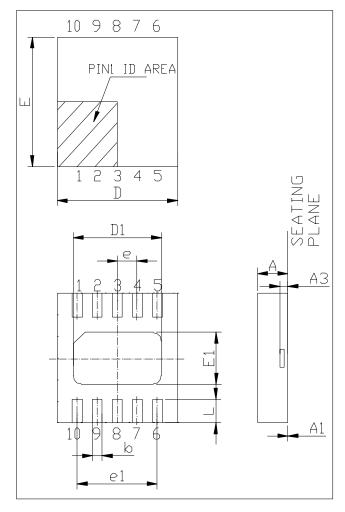
4. Sink Current vs. Codes vs. Temp.



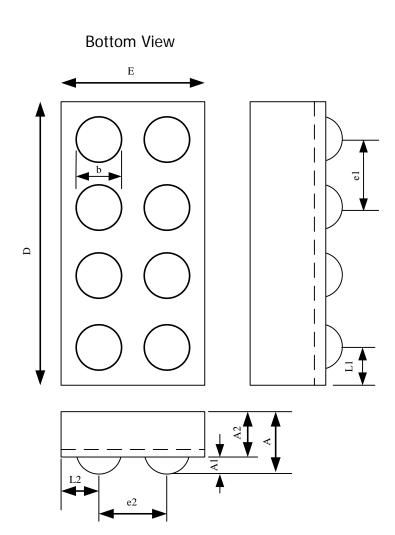
5. Full-Scale Programmable Current vs. Temp. vs. VDD

Application Circuit

Application Notes


- The 11-MD218A is a constant current control IC for application in Auto-Focus. The supply voltage range VDD of 11-MD218A is from 2.4V to 5.5V. The input range of digital control pin PD, and digital I/O pins SCL and SDA, are defined such that logic "H" is from 0.55*VDD to VDD+0.4V and logic "L" is from −0.4V to 0.2*VDD. Therefore, the three digital pins are suitable controlled by 1.8V ISP.
- The PD pin is the power down pin of 11-MD218A. Logic low level (PD = H) is for IC operation. On the other hand, its logic high level (PD = L) puts the chip into power down mode for power saving. It is recommended to keep PD at high level (PD = L) before operation to reach the maximum efficiency of power saving, especially for applications in portable devices.

- The I2C bus would not be well controlled by master if VDD of Driver IC is shutdown(i.e., not applying voltage on VDD pin) because of ESD diode turning on via P-diode of SDA/or SCL. To avoid the application issue, NOT to turn off VDD of driver IC during whole module operation. It could be controlled by PD pin via GPIO of ISP. The power consumption of Driver IC should be 1.4uW in the standby mode (PD = L).
- In order to ensure the stability of output current, a compensation capacitance C_L is suggested placing across the two terminals of VCM. The suggested value of C_L is about 0.1~0.22uF and could be fine tuned for different VCM.


Package Specification (DFN-10)

SYMBOL		DIMENSION (mm)		DIMENSION (mil)			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX.	
Α	0.70	0.75	0.80	28	30	32	
A1	0.00	0.02	0.05	0	0.8	2	
A3		0.203 REF		8 REF			
b	0.18	0.25	0.30	7	10	12	
D	2.90	3.00	3.10	114	118	122	
D1	2.10	2.20	2.30	83	87	91	
E	2.90	3.00	3.10	114	118	122	
E1	1.10	1.20	1.30	86	87	91	
L	0.45	0.55	0.65	18	22	26	
е		0.50 BASIC		20 BASIC			
e1		2.00 BASIC		80 BASIC			

Package Specifications (WLCSP)

SYMBOL	DIMENSION (mm)						
	MIN.	NOM.	MAX.				
А	0.445	0.5	0.555				
A1	0.17	0.20	0.23				
A2	0.275	0.30	0.325				
b	0.24	0.26	0.28				
D	1.83	1.87	1.91				
E	0.95	0.99	1.03				
e1		0.50					
e2		0.50					
L1	0.160	0.185	0.210				
L2	0.220	0.245	0.270				

The products listed herein are designed for ordinary electronic applications, such as electrical appliances, audio-visual equipment, communications devices and so on. Hence, it is advisable that the devices should not be used in medical instruments, surgical implants, aerospace machinery, nuclear power control systems, disaster/crime-prevention equipment and the like. Misusing those products may directly or indirectly endanger human life, or cause injury and property loss.

Silicon Touch Technology, Inc. will not take any responsibilities regarding the misusage of the products mentioned above. Anyone who purchases any products described herein with the above-mentioned intention or with such misused applications should accept full responsibility and indemnify. Silicon Touch Technology, Inc. and its distributors and all their officers and employees shall defend jointly and severally against any and all claims and litigation and all damages, cost and expenses associated with such intention and manipulation.