

FSP2151

FEATURES

- 180mV Typical Dropout with 150mA Load
- ± 2.0% Voltage Accuracy
- High PSRR: 70dB@100Hz
- Low noise output
- Current Limit
- Thermal Shutdown Protection
- Short Circuit Protection
- Very small USP6 Package

APPLICATIONS

- Cellular Handsets
- Portable Electronics, PDA
- Wireless Devices, LAN
- Computer Peripherals
- Camera Module
- GPS Receiver

PIN CONFIGURATION

GENERAL DESCRIPTION

The dual LDO FSP2151 series of positive voltage linear regulators feature high output voltage accuracy, low quiescent current and low dropout voltage, making them ideal for battery powered applications. The line transient response and load transient response are excellent. Their high PSRR make them useful in applications where AC noise on the input power supply must be suppressed. Space-saving USP6 package for 2ch LDOs is attractive for portable and handheld applications. They have both thermal shutdown and a current limit feature to prevent device failure under extreme operating conditions. They are stable with an output capacitance of 2.2uF or greater.

(Bottom View)

PIN DESCRIPTION

Pin Number	Pin Name	Pin Function			
1	EN2	Enable pin for LDO2. Connect EN2 to IN or to a logic high for normal operation, drive EN2 to G or a logic low to disable the regulator. Do not leave EN2 floating.			
2	VDD	Input Voltage. Bypass this pin with a 1μ F capacitor connected to G, placed as close to the IC as possible.			
3	EN1	Enable pin for LDO1. Connect EN1 to IN or to a logic high for normal operation, drive EN1 to G or a logic low to disable the regulator. Do not leave EN1 floating.			
4	GND	Ground.			
5	VOUT1	LDO1 Output. Bypass this pin with a 1μ F capacitor connected to G. OUT1 is actively discharged to G through 800Ω when disabled.			
6	VOUT2	LDO2 Output. Bypass this pin with a 1μ F capacitor connect to G. OUT2 is actively discharged to G through 800Ω when disabled.			

FSP2151

ABSOLUTE MAXIMUM RATINGS

Parameter	Rating	Unit
Input Voltage	6	V
Output Pin Voltage	GND-0.3 to VIN + 0.3	V
Output Current	150/150	mA
Internal Power Dissipation)	100	mW
ESD Rating(HBM)	2000	V
Operating Junction Temperature	-40 to 125	°C
Operating Ambient Temperature	-40 to 85	°C
Storage Temperature	-40 to 125	°C
Lead Temperature (Soldering, 5 sec)	300	°C

Note: Absolute Maximum Ratings are those values beyond which the life of a device may be impaired

ELECTRICAL CHARACTERISTICS

($V_{IN} = V_{OUT} + 1V$, EN1 =EN2= IN, $C_{IN} = 2.2F$, $C_{OUT} = 2.2F$, $T_A = 25^{\circ}C$ unless otherwise specified.)

Parameter	Test Conditions		Min	Тур	Max	Unit
Input Supply Range			Note 1		5.5	V
EN Input Voltage			0		VIN	V
Output Voltage Accuracy	I _O =1mA		-2.0		+2.0	%
Output Current			150		Note 2	mA
Quiescent Current	I _O =0mA			175	250	μA
Shutdown Supply Current	Both outputs disabled			0.1	1	μA
Short Circuit Current	V _o = 0V			150		mA
Ground Pin Current	I _o =0mA to 150mA			200	250	μA
	I_0 =50mA V _{IN} = 3.0V to 4.0V	V ₀ = 1.8V	-0.15 0.1		0.15	%/V
Line Regulation	I_{O} =50mA V_{IN} = 3.5V to 4.5V	V _O = 2.5		0.1		
	I_0 =50mA V _{IN} = 3.8V to 4.8V	V ₀ = 2.8V				
Load Regulation	Load Regulation $I_{OUT} = 1$ mA to 150mA $V_{IN} = 3.3$ V		-2	1.0	2	%/mA
Dawaa Gwaalu Diaala	I _o =50mA V _o = 1.8V	f= 100Hz		70		dB
Power Supply Ripple Rejection		f= 1KHz		63		
Rejection		f= 10KHz		45		
	V _{OUT} = 1.8V, I _{OUT} = 150mA			950		
Dropout Voltage	V _{OUT} = 2.5V, I _{OUT} = 150mA			350		mV
	V _{OUT} = 2.8V, I _{OUT} = 150mA			180		
Current Limit	V _{OUT} ≥1.2V			200		mA
Output Noise f= 10Hz to 1				35		uVrms
Over Temperature Hystersis I _o =1n				40		°C
Over Temperature Shutdown	I _o =1mA			155		°C
EN_ Logic Low Threshold					0.3	V
EN_ Logic High Threshold			1.5			V
EN Pull-up Resistance			1.7	5	15	mΩ
Temperature Coefficient				40		ppm/°C

Note 1: The minimum input voltage of the FSP2151 is determined by output voltage and dropout voltage. The minimum input voltage is defined as: V_{IN(MIN)}=V_O+V_{DROP}

Note 2: Output current is limited by P_D , maximum $I_0 = P_D/(V_{IN(MAX)} - V_O)$

FSP2151

■ FUNCTIONAL BLOCK DIAGRAM

TYPICAL APPLICATION CIRCUIT

■ APPLICATION INFORMATION

Capacitor Selection and Regulator Stability

Similar to any low dropout regulator, the external capacitors used with the FSP2151 must be carefully selected for regulator stability and performance.

Using a capacitor, C_{IN} , whose value is > 2.2 μ F at the FSP2151 input pin, the amount of the capacitance can be increased without limit. Please note that the distance between C_{IN} and the input pin of the FSP2151 should not exceed 0.5 inch. Ceramic capacitors are suitable for the FSP2151. Capacitors with larger values and lower ESR provide better PSRR and line-transient response.

The FSP2151 is designed specifically to work with low ESR ceramic output capacitors in order to save space and improve performance. Using an output ceramic capacitor whose value is $> 2.2 \,\mu$ F with ESR $> 5m\Omega$ ensure stability. **Shutdown Input Operation**

The FSP2151 is shutdown by pulling the EN input low, and is turned on by tying the EN input to VIN or leaving the EN input floating.

Dropout Voltage

A regulator's minimum dropout voltage determines the lowest usable supply voltage. The FSP2151 has a typical 180mV dropout voltage. In battery powered systems, this will determine the useful end-of-life battery voltage.

Current Limit and Short Circuit Protection

The FSP2151 features a current limit, which monitors and controls the gate voltage of the pass transistor. The output current can be limited to 300mA by regulating the gate voltage. The FSP2151 also has a built-in short circuit current limit.

FSP2151

TYPICAL PERFORMANCE CHARACTERISTICS

(C_{IN} = 2.2uF, C_O = 2.2uF, T_A = 25°C unless otherwise specified.)

FSP2151

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

(C_{IN} = 2.2 μ F, C_O = 2.2 μ F, T_A = 25°C unless otherwise specified.)

FSP2151

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

(C_{IN} = 2.2 μ F, C_{O} = 2.2 μ F, T_{A} = 25°C unless otherwise specified.)

note 1: 2 channels total output current

Quiescent Current vs Input Voltage

Dropout Voltage vs Output Current

Quiescent Current vs Temperature

2007-7-4

6/9

FSP2151

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

(C_{IN} = 2.2 μ F, C_{O} = 2.2 μ F, T_{A} = 25°C unless otherwise specified.)

FSP2151

■ TYPICAL PERFORMANCE CHARACTERISTICS (CONTINUED)

(C_{IN} = 2.2uF, C_O = 2.2uF, T_A = 25°C unless otherwise specified.)

Line Transient Response

Turn-on Response

ORDERING INFORMATION

MARKING INFORMATION

PACKAGE INFORMATION

FSP2151

