MULTI-RATE GIGABIT ETHERNET & FIBRE CHANNEL SFP CWDM TRANSCEIVERS WITH DIGITAL DIAGNOSTICS

TRXAG1ZXM CWDM

Product Description

The TRXAG1ZXM CWDM SFP series of multi-rate fiber optic transceivers with integrated digital diagnostics monitoring functionality provide a quick and reliable interface for 1000BASE-LX Gigabit Ethernet and 1.062GBd Fibre Channel applications. The transceivers are designed to support data rates ranging from 1.25Gb/s down to 125Mb/s. Diagnostics monitoring functionality (alarm and warning features) is integrated into the design via an I²C serial interface per the Multi-Source Agreement (MSA) SFF-8472, Rev. 9.4.

There are eight center wavelengths available: 1471nm, 1491nm, 1511nm, 1531nm, 1551nm, 1571nm, 1591nm and 1611nm. The transceivers use a high power DFB laser to provide a minimum optical link power budget of 24dB, which corresponds to a transmission distance of 70km (assuming a total connector/splice/CWDM mux and demux loss of 4.5dB, allocated system penalty of 2dB and fiber loss of 0.25dB/km). All modules satisfy Class I Laser Safety requirements in accordance with the U.S. FDA/CDRH and international IEC-60825 standards.

The TRXAG1ZXM CWDM transceivers connect to standard 20-pad SFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different types of transceivers without removing the power supply from the host system.

The transceivers have colored bail-type latches, which offer an easy and convenient way to release the modules. The latch is compliant with the SFP MSA.

The transmitter and receiver DATA interfaces are ACcoupled internally. LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers operate from a single +3.3V power supply over an operating case temperature range of -5° C to $+70^{\circ}$ C ("B" option) or -5° C to $+85^{\circ}$ C ("E" option). The housing is made of metal for EMI immunity.

Features

- ☑ Lead Free Design & Fully RoHS Compliant
- ☑ Eight (8) Wavelength CWDM Transceivers
- ☑ Compatible with SFP MSA
- ☑ Compatible with IEEE 802.3z Gigabit Ethernet 1000BASE-LX PMD Specifications
- ☑ Compatible with 1.062GBd Fibre Channel 100-SM-LC-L FC-PI Standards
- ☑ Digital Diagnostics through Serial Interface
- ☑ Internal Calibration for Digital Diagnostics
- ☑ 24dB Optical Link Power Budget to Support 70km
- ☑ Eye Safe (Class I Laser Safety)
- ☑ Duplex LC Optical Interface
- ☑ Loss of Signal Output & TX Disable Input
- ☑ Hot-pluggable
- ☑ Single +3.3V Power Supply

Absolute Maximum Ratings

Parameter		Symbol	Minimum	Maximum	Units	
Storage Temperature		T_{st}	- 40	+ 85	°C	
On avating Case Tananavature 1	"B" option	T	- 5	+ 70	°C	
Operating Case Temperature 1	"E" option	T_{op}	- 5	+ 85		
Supply Voltage		V_{cc}	0	+ 4.5	V	
Input Voltage		$V_{_{in}}$	0	V_{cc}	V	
Lead Terminal Finish, Reflow Profile Limits and MSL		-	-	NA	-	
¹ Measured on top side of SFP module	at the front center vent	hole of the cage.				

Transmitter Performance Characteristics (Over Operating Case Temperature, V_{CC} = 3.13 to 3.47V)

Parameter Operating Data Rate		Symbol	Minimum	Typical	Maximum	Units
		В	125	-	1250	Mb/s
Optical Output Power ¹		P_{o}	0	-	+ 5.0	dBm
	1471		1464.5	1471	1477.5	nm
	1491		1484.5	1491	1497.5	
	1511		1504.5	1511	1517.5	
	1531	1	1524.5	1531	1537.5	
Center Wavelength	1551	λ_{c}	1544.5	1551	1557.5	
	1571		1564.5	1571	1577.5	
	1591		1584.5	1591	1597.5	
	1611		1604.5	1611	1617.5	
Spectral Width (-20dB)		$\Delta\lambda_{20}$	-	-	1.0	nm
Side Mode Suppression Ratio		SMSR	30	-	-	dB
Extinction Ratio		P_{hi}/P_{lo}	9	-	-	dB
Deterministic Jitter	Deterministic Jitter		-	-	80	ps
Total Jitter		TJ	-	-	227	ps
Optical Rise/Fall Time (20% to 80%)		t_r , t_f	-	-	0.32	ns
Relative Intensity Noise		RIN	-	-	- 120	dB/Hz
Dispersion Penalty ²		-	-	-	1.5	dB
Transmitter Output Eye			Compliant	with IEEE 802.3z & F	C-PI Eye Mask	•

¹ Measured average power coupled into single mode fiber.

Receiver Performance Characteristics (Over Operating Case Temperature, $V_{\rm CC}$ = 3.13 to 3.47V)

Parameter		Symbol	Minimum	Typical	Maximum	Units	
Operating Data Rate		В	125	-	1250	Mb/s	
Minimum Input Optical Po	Minimum Input Optical Power (10 ⁻¹² BER) ¹		- 24.0	-	-	dBm	
Maximum Input Optical Po	ower (10 ⁻¹² BER) ¹	P_{max}	- 3.0	-	-	dBm	
LOC Through olds	Increasing Light Input	P_{los+}	-	-	- 24.0	al Duna	
LOS Thresholds	Decreasing Light Input	P_{los}	- 35.0	-	-	dBm	
LOS Timing Delay	Increasing Light Input	t_loss_off	-	-	100	μs	
	Decreasing Light Input	t_loss_on	-	-	100		
LOS Hysteresis		-	0.5	-	-	dB	
Deterministic Jitter		DJ	-	-	170	ps	
Total Jitter		TJ	-	-	266	ps	
Wavelength of Operation		λ	1260	-	1620	nm	
Optical Return Loss		ORL	12	-	-	dB	
Electrical 3dB Upper Cutoff Frequency		-	-	-	1500	MHz	
¹ Measured with 2 ⁷ -1 PRBS at 125Mb/s, 1062.5Mb/s and 1250Mb/s.							

² Specified at 1540ps/nm dispersion, which corresponds to the approximate worst-case dispersion for 70km G.652 fiber over the wavelength range of 1464.5 to 1617.5nm

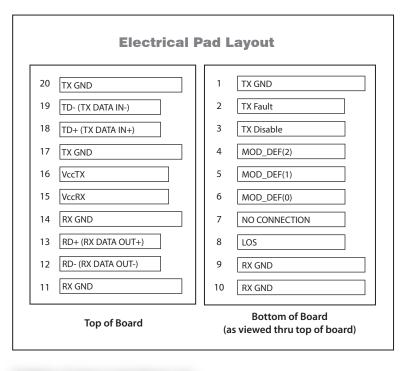
Transmitter Electrical Interface (Over Operating Case Temperature, $V_{CC} = 3.13$ to 3.47V)

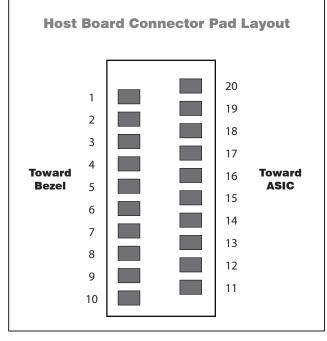
Parameter	Symbol	Minimum	Typical	Maximum	Units
Input Voltage Swing (TD+ & TD-) 1	$V_{_{PP ext{-}DIF}}$	0.50	-	2.4	V
Input HIGH Voltage (TX Disable) ²	$V_{_{I\!H}}$	2.0	-	V_{cc}	V
Input LOW Voltage (TX Disable) ²	$V_{_{I\!L}}$	0	-	0.8	V
Output HIGH Voltage (TX Fault) ³	$V_{_{OH}}$	2.0	-	V _{CC} + 0.3	V
Output LOW Voltage (TX Fault) ³	$V_{\scriptscriptstyle OL}$	0	-	0.8	V

¹ Differential peak-to-peak voltage.

Receiver Electrical Interface (Over Operating Case Temperature, $V_{CC} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Output Voltage Swing (RD+ & RD-) 1	$V_{_{PP\text{-}DIF}}$	0.6	-	2.0	V
Output HIGH Voltage (LOS) ²	V_{OH}	2.0	-	V _{CC} + 0.3	V
Output LOW Voltage (LOS) ²	$V_{\scriptscriptstyle OL}$	0	-	0.5	V

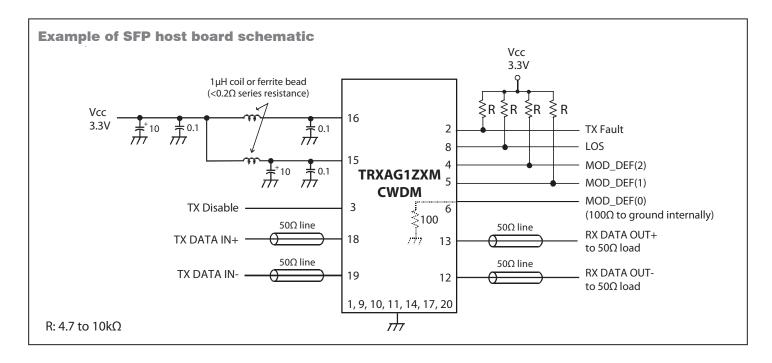

 $^{^{1}}$ Differential peak-to-peak voltage across external 100 Ω load.


Electrical Power Supply Characteristics (Over Operating Case Temperature, V_{CC} = 3.13 to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Supply Voltage	V_{cc}	3.13	3.3	3.47	V
Supply Current	I_{cc}	-	200	300	mA

Module Definition

MOD_DEF(0)	MOD_DEF(1)	MOD_DEF(2)	Interpretation by Host
pin 6	pin 5	pin 4	
TTL LOW	SCL	SDA	Serial module definition protocol



² There is an internal 4.7 to $10k\Omega$ pull-up resistor to *VccT*.

 $^{^3}$ Open collector compatible, 4.7 to $10k\Omega$ pull-up resistor to *Vcc* (Host Supply Voltage).

 $^{^2}$ Open collector compatible, 4.7 to $10k\Omega$ pull-up resistor to *Vcc* (Host Supply Voltage).

Application Notes

Electrical Interface: All signal interfaces are compliant with the SFP MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a 4.7 - $10k\Omega$ resistor on the host board.

Loss of Signal (LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates a logic HIGH when an insufficient photocurrent is produced.

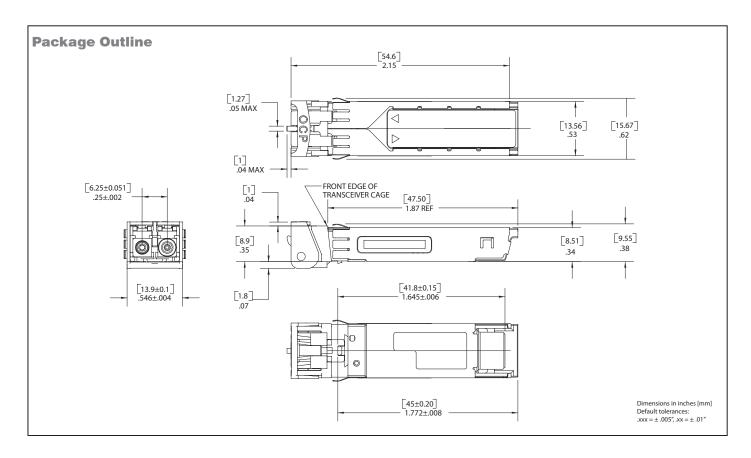
TX Fault: The output indicates LOW when the transmitter is operating normally, and HIGH with a laser fault including laser end-of-life. TX Fault is an open collector/drain output and should be pulled up with a $4.7 - 10 \text{k}\Omega$ resistor on the host board. TX Fault is non-latching (automatically deasserts when fault goes away).

TX Disable: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled (less than -35dBm). Optical output is disabled from cold start until operating wavelength is within specified range.

Serial Identification and Monitoring: The module definition of SFP is indicated by the three module definition pins,

MOD_DEF(0), MOD_DEF(1) and MOD_DEF(2). Upon power up, MOD_DEF(1:2) appear as NC (no connection), and MOD_DEF(0) is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I²C serial interface) and generates the serial clock signal (SCL). The positive edge clocks data into the EEPROM segments of the SFP that are not write protected, and the negative edge clocks data from the SFP.

The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The supported monitoring functions are temperature, voltage, bias current, transmitter power, average receiver signal, all alarms and warnings, and software monitoring of TX Fault/LOS. The device is internally calibrated.


The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the SFP MSA, and SFF-8472, Rev. 9.4.

Power Supply and Grounding: The power supply line should be well-filtered. All $0.1\mu F$ power supply bypass capacitors should be as close to the transceiver module as possible.

Laser Safety: All transceivers are Class I Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.

Ordering Information

Oplink can provide a remarkable range of customized optical solutions. For detail, please contact Oplink's Sales and Marketing for your requirements and ordering information (510) 933-7200 or Sales@oplink.com.

Model Name					Nominal	Optical	
Oplink Order Number	For Reference (OCP order number)	Oplink Order Number	For Reference (OCP order number)	Latch Color	-	Link Power Budget	Distance 1
- 5°C to +70°C - 5°C to +85°C				, ,			
TRC1G1JC1C000F6G	TRXAG1ZXIBAM1	TRC1G1JC1E000F6G	TRXAG1ZXIEAM1	Gray	1471	24dB	70km
TRC1G1JC2C000F6G	TRXAG1ZXIBVM2	TRC1G1JC2E000F6G	TRXAG1ZXIEVM2	Violet	1491	24dB	70km
TRC1G1JC3C000F6G	TRXAG1ZXIBBM3	TRC1G1JC3E000F6G	TRXAG1ZXIEBM3	Blue	1511	24dB	70km
TRC1G1JC4C000F6G	TRXAG1ZXIBGM4	TRC1G1JC4E000F6G	TRXAG1ZXIEGM4	Green	1531	24dB	70km
TRC1G1JC5C000F6G	TRXAG1ZXIBYM5	TRC1G1JC5E000F6G	TRXAG1ZXIEYM5	Yellow	1551	24dB	70km
TRC1G1JC6C000F6G	TRXAG1ZXIBOM6	TRC1G1JC6E000F6G	TRXAG1ZXIEOM6	Orange	1571	24dB	70km
TRC1G1JC7C000F6G	TRXAG1ZXIBRM7	TRC1G1JC7E000F6G	TRXAG1ZXIERM7	Red	1591	24dB	70km
TRC1G1JC8C000F6G	TRXAG1ZXIBNM8	TRC1G1JC8E000F6G	TRXAG1ZXIENM8	Brown	1611	24dB	70km

¹ The indicated transmission distance is for guidelines only, not guaranteed. It assumes a total connector/splice/CWDM mux and demux loss of 4.5dB, allocated system penalty of 2dB and fiber loss of 0.25dB/km. Longer distances can be supported if the optical link power budget is satisfied..

Oplink Communications, Inc. reserves the right to make changes in equipment design or specifications without notice. Information supplied by Oplink Communications, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by Oplink Communications, Inc. for its use nor for any infringements of third parties, which may result from its use. No license is granted by implication or otherwise under any patent right of Oplink Communications, Inc.