FPF2000-FPF2007

IntelliMAX ${ }^{\text {TM }}$ Advanced Load Management Products

Features

- 1.8 to 5.5 V Input Voltage Range
- Controlled Turn-On
- 50 mA and 100 mA Current Limit Options
- Undervoltage Lockout
- Thermal Shutdown
- $<1 \mu \mathrm{~A}$ Shutdown Current
- Auto restart
- Fast Current limit Response Time
- 3μ s to Moderate Over Currents
- 20ns to Hard Shorts
- Fault Blanking
- RoHS Compliant

Applications

- PDAs
- Cell Phones
- GPS Devices
- MP3 Players
- Digital Cameras
- Peripheral Ports

General Description

The FPF2000 through FPF2007 is a family of load switches which provide full protection to systems and loads which may encounter large current conditions. These devices contain a 0.7Ω currentlimited P-channel MOSFET which can operate over an input voltage range of $1.8-5.5 \mathrm{~V}$. Switch control is by a logic input (ON) capable of interfacing directly with low voltage control signals. Each part contains thermal shutdown protection which shuts off the switch to prevent damage to the part when a continuous overcurrent condition causes excessive heating.

When the switch current reaches the current limit, the part operates in a constant current mode to prohibit excessive currents from causing damage. For the FPF2000-FPF2002 and FPF2004FPF2006, if the constant current condition still persists after 10ms, these parts will shut off the switch and pull the fault signal pin (FLAGB) low. The FPF2000, FPF2001, FPF2004 and FPF2005, have an auto-restart feature which will turn the switch on again after 80 ms if the ON pin is still active. The FPF2002 and FPF2006 do not have this auto-restart feature so the switch will remain off until the ON pin is cycled. For the FPF2003 and FPF2007, a current limit condition will immediately pull the fault signal pin low and the part will remain in the constant-current mode until the switch current falls below the current limit. For the FPF2000 through FPF2003, the minimum current limit is 50 mA while that for the FPF2004 through FPF2007 is 100 mA .

These parts are available in a space-saving 5 pin SC-70 package.

Ordering Information

Part	Current Limit [mA]	Current Limit Blanking Time [ms]	Auto-Restart Time [ms]	ON Pin Activity	Top Mark
FPF2000	50	10	80	Active HI	200
FPF2001	50	10	80	Active LO	201
FPF2002	50	10	NA	Active HI	202
FPF2003	50	0	NA	Active HI	203
FPF2004	100	10	80	Active HI	204
FPF2005	100	10	80	Active LO	205
FPF2006	100	10	NA	Active HI	206
FPF2007	100	0	NA	Active HI	207

Typical Application Circuit

Functional Block Diagram

Pin Configuration

Pin Description

Pin	Name	Function
1	V OUT	Switch Output: Output of the power switch
2	GND	Ground
3	FLAGB	Fault Output: Active LO, open drain output which indicates an over current, supply under voltage or over temperature state.
4	ON	On Control Input
5	$\mathrm{~V}_{\text {IN }}$	Supply Input: Input to the power switch and the supply voltage for the IC

Absolute Maximum Ratings

Parameter		Min	Max
$\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$, ON, FLAGB to GND	-0.3	6	Unit
Power Dissipation @ $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$ (note 1)		250	VW
Operating Junction Temperature	-40	125	${ }^{\circ} \mathrm{C}$
Storage Temperature	-65	150	${ }^{\circ} \mathrm{C}$
Thermal Resistance, Junction to Ambient			400
Electrostatic Discharge Protection	HBM	4000	

Recommended Operating Range

Parameter	Min	Max	Unit
$\mathrm{V}_{\mathbb{I N}}$	1.8	5.5	V
Ambient Operating Temperature, T_{A}	-40	85	${ }^{\circ} \mathrm{C}$

Electrical Characteristics

$\mathrm{V}_{\text {IN }}=1.8$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions		Min	Typ	Max	Units
Basic Operation							
Operating Voltage	$\mathrm{V}_{\text {IN }}$			1.8		5.5	V
Quiescent Current	I_{Q}	$I_{\text {OUT }}=0 \mathrm{~mA}$ V_{ON} active	$\mathrm{V}_{\text {IN }}=1.8$ to 3.3 V		60		$\mu \mathrm{A}$
			$\mathrm{V}_{\text {IN }}=3.3$ to 5.5 V			100	
Shutdown Current	$\mathrm{I}_{\text {SHDN }}$					1	$\mu \mathrm{A}$
Latch-Off Current (note 2)	ILATChoff	$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$, after an overcurrent fault			40		$\mu \mathrm{A}$
On-Resistance	R_{ON}	$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{l}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			0.7	1	Ω
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$			0.85	1.2	
		$\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=20 \mathrm{~mA}, \mathrm{~T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		0.27		1.2	
ON Input Logic High Voltage	V_{IH}	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$		0.8			V
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$		1.5			
ON Input Logic Low Voltage	$\mathrm{V}_{\text {IL }}$	$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}$				0.5	V
		$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$				0.9	
ON Input Leakage		$\mathrm{V}_{\text {ON }}=\mathrm{V}_{\text {IN }}$ or GND				1	$\mu \mathrm{A}$
Off Switch Leakage	$I_{\text {SWOFF }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{OUT}}=0 \mathrm{~V} \\ & @ \mathrm{~V}_{\mathrm{IN}}=5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=85^{\circ} \mathrm{C} \end{aligned}$				1	$\mu \mathrm{A}$
		$\begin{aligned} & \mathrm{V}_{\mathrm{ON}}=0 \mathrm{~V}, \mathrm{~V}_{\text {OUT }}=0 \mathrm{~V} \\ & @ \mathrm{~V}_{\text {IN }}=3.3 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C} \end{aligned}$			10	100	nA
FLAGB Output Logic Low Voltage		$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$			0.1	0.2	V
		$\mathrm{V}_{\text {IN }}=1.8 \mathrm{~V}, \mathrm{I}_{\text {SINK }}=10 \mathrm{~mA}$			0.1	0.3	
FLAGB Output High Leakage Current		$\mathrm{V}_{\mathbb{I N}}=5 \mathrm{~V}$, Switch on				1	$\mu \mathrm{A}$
Protections							
Current Limit	$\mathrm{I}_{\text {LIM }}$	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=3.3 \mathrm{~V}, \\ & \mathrm{~V}_{\text {OUT }}=3.0 \mathrm{~V} \end{aligned}$	FPF2000, FPF2001, FPF2002, FPF2003	50	75	100	mA
			FPF2004, FPF2005, FPF2006, FPF2007	100	150	200	
Thermal Shutdown		Shutdown Threshold			140		${ }^{\circ} \mathrm{C}$
		Return from Shutdown			130		
		Hysteresis			10		

Electrical Characteristics Cont.

$\mathrm{V}_{\text {IN }}=1.8$ to $5.5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=-40$ to $+85^{\circ} \mathrm{C}$ unless otherwise noted. Typical values are at $\mathrm{V}_{\text {IN }}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$.

Parameter	Symbol	Conditions	Min	Typ	Max	Units
Protections						
Under Voltage Shutdown	UVLO	$\mathrm{V}_{\text {IN }}$ Increasing	1.5	1.6	1.7	V
Under Voltage Shutdown Hysteresis				50		mV
Dynamic						
Turn On Time	t_{ON}	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		50		$\mu \mathrm{s}$
Turn Off Time	$\mathrm{t}_{\text {OFF }}$	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		0.5		$\mu \mathrm{s}$
$\mathrm{V}_{\text {Out }}$ Rise Time	t_{R}	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		10		$\mu \mathrm{s}$
$\mathrm{V}_{\text {Out }}$ Fall Time	t_{F}	$\mathrm{R}_{\mathrm{L}}=500 \Omega, \mathrm{C}_{\mathrm{L}}=0.1 \mu \mathrm{~F}$		0.1		$\mu \mathrm{s}$
Over Current Blanking Time	$\mathrm{t}_{\text {blank }}$	$\begin{aligned} & \text { FPF2000, FPF2001, FPF2002, FPF2004, } \\ & \text { FPF2005, FPF2006 } \end{aligned}$	5	10	20	ms
Auto-Restart Time	$\mathrm{t}_{\text {RSTRT }}$	FPF2000, FPF2001, FPF2004, FPF2005	40	80	160	ms
Short Circuit Response Time		$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{ON}}=3.3 \mathrm{~V}$. Moderate Over-Current Condition.		3		$\mu \mathrm{s}$
		$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {ON }}=3.3 \mathrm{~V}$. Hard Short.		20		ns

Note 1: Package power dissipation on 1 square inch pad, 2 oz. copper board.
Note 2: Applicable only to FPF2002 and FPF2006. Latchoff current does not include current flowing into FLAGB.

Typical Characteristics

Figure 1. Quiescent Current vs. Input Voltage

Figure 3. I ${ }_{\text {SHUTDOwn }}$ Current vs. Temperature

Figure 5. ILAtchoff vs. Temperature

Figure 2. Quiescent Current vs. Temperature

Figure 6. V_{IH} vs. V_{IN}

Typical Characteristics

Figure 7. Current Limit vs. Output Voltage

Figure 9. R_{ON} vs. V_{IN}

Figure 11. $\mathrm{T}_{\mathrm{ON}} / \mathrm{T}_{\text {OFF }}$ vs. Temperature

Figure 8. Current Limit vs. Temperature

Figure 10. R_{ON} vs. Temperature

Figure 12. $\mathrm{T}_{\text {RISE }} / \mathrm{T}_{\text {FALL }}$ vs. Temperature

Typical Characteristics

Figure 13. TBlank vs. Temperature

Figure 15. TBLANK Response

Figure 17. T_{ON} Response

Figure 14. $\mathrm{T}_{\text {RESTART }}$ vs. Temperature

Figure 16. $\mathrm{T}_{\text {REStart }}$ Response

Figure 18. $\mathrm{T}_{\text {OFF }}$ Response

Typical Characteristics

Figure 19. Short Circuit Response Time (Output Shorted to GND)

Figure 21. Current Limit Response Time

Figure 20. Current Limit Response (Switch power up to hard short)

Description of Operation

The FPF2000-FPF2007 are current limited switches that protect systems and loads which can be damaged or disrupted by the application of high currents. The core of each device is a 0.7Ω P-channel MOSFET and a controller capable of functioning over a wide input operating range of $1.8-5.5 \mathrm{~V}$. The controller protects against system malfunctions through current limiting, undervoltage lockout and thermal shutdown. The current limit is preset for either 50 mA or 100 mA .

On/Off Control

The ON pin controls the state of the switch. Active HI and LO versions are available. Refer to the Ordering Information for details. Activating ON continuously holds the switch in the on state so long as there is no fault. For all versions, an undervoltage on VIN or a junction temperature in excess of $150^{\circ} \mathrm{C}$ overrides the ON control to turn off the switch. In addition, excessive currents will cause the switch to turn off in FPF2000FPF2002 and FPF2004-FPF2007. The FPF2000, FPF2001, FPF2004 and FPF2005 have an Auto-Restart feature which will automatically turn the switch on again after 80 ms . For the FPF2002 and FPF2006, the ON pin must be toggled to turn-on the switch again. The FPF2003 and FPF2007 do not turn off in response to a over current condition but instead remain operating in a constant current mode so long as ON is active and the thermal shutdown or under-voltage lockout have not activated.

Fault Reporting

Upon the detection of an over-current, an input under-voltage, or an over-temperature condition, the FLAGB signals the fault mode by activating LO. For the FPF2000-FPF2002 and FPF2004-FPF2006, the FLAGB goes LO at the end of the blanking time while FLAGB goes LO immediately for the FPF2003 and FPF2007. FLAGB remains LO through the AutoRestart Time for the FPF2000, FPF2001 FPF2004 and FPF2005. For the FPF2002 and FPF2006, FLAGB is latched LO and ON must be toggled to release it. With the FPF2003 and FPF2007, FLAGB is LO during the faults and immediately returns HI at the end of the fault condition. FLAGB is an opendrain MOSFET which requires a pull-up resistor between V_{IN} and FLAGB. During shutdown, the pull-down on FLAGB is disabled to reduce current draw from the supply.

Current Limiting

The current limit ensures that the current through the switch doesn't exceed a maximum value while not limiting at less than a minimum value. For the FPF2000-FPF2003 the minimum current is 50 mA and the maximum current is 100 mA and for the FPF2004-FPF2007 the minimum current is 100 mA and the maximum current is 200 mA . The FPF2000-FPF2002 and the FPF2004-FPF2006, have a blanking time of 10 ms , nominally, during which the switch will act as a constant current source. At the end of the blanking time, the switch will be turned-off and the FLAGB pin will activate to indicate that current limiting has occurred. The FPF2003 and FPF2007 have no current limit blanking period so immediately upon a current limit condition FLAGB is activated. These parts will remain in a constant current state until the ON pin is deactivated or the thermal shutdown turns-off the switch.

Reverse Voltage

If the voltage at the $\mathrm{V}_{\text {OUT }}$ pin is larger than the V_{IN} pin, large currents may flow and can cause permanent damage to the device. FPF2000-FPF2007 is designed to control current flow from $\mathrm{V}_{\text {IN }}$ to $\mathrm{V}_{\text {OUT }}$.

Under-Voltage Lockout

The under-voltage lockout turns-off the switch if the input voltage drops below the under-voltage lockout threshold. With the ON pin active the input voltage rising above the undervoltage lockout threshold will cause a controlled turn-on of the switch which limits current over-shoots.

Thermal Shutdown

The thermal shutdown protects the die from internally or externally generated excessive temperatures. During an overtemperature condition the FLAGB is activated and the switch is turned-off. The switch automatically turns-on again if temperature of the die drops below the threshold temperature.

Application Information

Typical Application

Input Capacitor

To limit the voltage drop on the input supply caused by transient in-rush currents when the switch turns-on into a discharged load capacitor or a short-circuit, a capacitor needs to be placed between $\mathrm{V}_{\mathbb{I N}}$ and GND. A $4.7 \mu \mathrm{~F}$ ceramic capacitor, $\mathrm{C}_{\mathrm{IN}_{\mathrm{N}}}$, must be placed close to the $\mathrm{V}_{\mathbb{I N}}$ pin. A higher value of C_{IN} can be used to further reduce the voltage drop experienced as the switch is turned on into a large capacitive load.

Output Capacitor

A $0.1 \mu \mathrm{~F}$ capacitor $\mathrm{C}_{\text {OUt }}$, should be placed between $\mathrm{V}_{\text {OUT }}$ and GND. This capacitor will prevent parasitic board inductances from forcing $\mathrm{V}_{\text {OUT }}$ below GND when the switch turns-off. For the FPF2000-FPF2002 and the FPF2004-FPF2006, the total output capacitance needs to be kept below a maximum value, $\mathrm{C}_{\text {OUt }}(\mathrm{max})$, to prevent the part from registering an over-current condition and turning-off the switch. The maximum output capacitance can be determined from the following formula,

$$
\begin{equation*}
\mathrm{C}_{\text {OUT }}=\frac{\mathrm{I}_{\mathrm{LIM}}(\max) \times \mathrm{t}_{\text {BLANK }}(\min)}{\mathrm{V}_{\text {IN }}} \tag{1}
\end{equation*}
$$

Due to the integral body diode in the PMOS switch, a $\mathrm{C}_{\text {IN }}$ greater than $\mathrm{C}_{\text {OUT }}$ is highly recommended. A $\mathrm{C}_{\text {OUT }}$ greater than $\mathrm{C}_{\text {IN }}$ can cause $\mathrm{V}_{\text {OUT }}$ to exceed $\mathrm{V}_{\text {IN }}$ when the system supply is removed. This could result in current flow through the body diode from $\mathrm{V}_{\text {OUT }}$ to $\mathrm{V}_{\text {IN }}$.

Power Dissipation

During normal operation as a switch, the power dissipation is small and has little effect on the operating temperature of the part. The parts with the higher current limits will dissipate the most power and that will only be,

$$
\begin{equation*}
P=\left(I_{\text {LIM }}\right)^{2} \times R_{D S}=(0.2)^{2} \times 0.7=28 \mathrm{~mW} \tag{2}
\end{equation*}
$$

If the part goes into current limit the maximum power dissipation will occur when the output is shorted to ground. For the FPF2000, FPF2001, FPF2004 and FPF2005, the power dissipation will scale by the Auto-Restart Time, $\mathrm{t}_{\text {RESTART }}$, and the Over Current Blanking Time, $\mathrm{t}_{\text {BLANK, }}$, so that the maximum power dissipated is,

$$
\begin{align*}
P(\text { max }) & =\frac{t_{\text {BLANK }}}{\mathrm{t}_{\text {RESTART }}+\mathrm{t}_{\text {BLANK }}} \times\left(\mathrm{V}_{\mathrm{IN}(\text { max })}\right) \times \mathrm{I}_{\mathrm{LIM}(\text { max })} \\
& =\frac{10}{80+10} \times 5.5 \times 0.2=1.22 \mathrm{~mW} \tag{3}
\end{align*}
$$

When using the FPF2002 and FPF2006 attention must be given to the manual resetting of the part. Continuously resetting the part at a high duty cycle when a short on the output is present can cause the temperature of the part to increase. The junction temperature will only be allowed to increase to the thermal shutdown threshold. Once this temperature has been reached, toggling ON will not turn-on the switch until the junction temperature drops. For the FPF2003 and FPF2007, a short on the output will cause the part to operate in a constant current state dissipating a worst case power as calculated in (3) until the thermal shutdown activates. It will then cycle in and out of thermal shutdown so long as the ON pin is active and the short is present.

Board Layout

For best performance, all traces should be as short as possible. To be most effective, the input and output capacitors should be placed close to the device to minimize the effects that parasitic trace inductances may have on normal and short-circuit operation. Using wide traces for $\mathrm{V}_{\text {IN }}, \mathrm{V}_{\text {OUT }}$ and GND will help minimize parasitic electrical effects along with minimizing the case to ambient thermal impedance.

Dimensional Outline and Pad Layout

NOTES:
A. THIS PACKAGE CONFORMS TO EIAJ SC-88A, 1996.
B. DIMENSIONS ARE IN MILLIMETERS.
C. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH

FAIRCHILD

SEMICONDUCTOR*

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidianries, and is not intended to be an exhaustive list of all such trademarks.

Build it $\mathrm{Now}^{\text {TM }}$	FRFET ${ }^{\circledR}$	Programmable Active Droop ${ }^{\text {TM }}$	
CorePLUS ${ }^{\text {T }}$	Global Power Resource ${ }^{\text {SM }}$	QFET ${ }^{\circledR}$	Pranci
CorePOWER ${ }^{\text {m }}$	Green FPS ${ }^{\text {™ }}$	QS ${ }^{\text {TM }}$	franchise
CROSSVOLT ${ }^{\text {TM }}$	Green FPS ${ }^{\text {TM }}$ e-Series ${ }^{\text {™ }}$	Quiet Series ${ }^{\text {TM }}$	
CTL ${ }^{\text {TM }}$	$\mathrm{GTO}^{\text {™ }}$	RapidConfigure ${ }^{\text {TM }}$	TinyBuck ${ }^{\text {TM }}$
Current Transfer Logic ${ }^{\text {TM }}$	IntelliMAX ${ }^{\text {TM }}$	ค)	TINYOPTO™
EcoSPARK ${ }^{\circledR}$	ISOPLANAR $^{\text {TM }}$	$\mathrm{J}^{\text {TM }}$	TinyPower ${ }^{\text {TM }}$
EfficentMax ${ }^{\text {TM }}$	MegaBuck ${ }^{\text {TM }}$	Saving our world, $1 \mathrm{~mW} / \mathrm{W} / \mathrm{kW}$ at a time ${ }^{\text {TM }}$	$\text { TinyPWM }{ }^{\text {M }}$
EZSWITCH ${ }^{\text {TM }}$ *	MICROCOUPLER ${ }^{\text {M }}$	SmartMax ${ }^{\text {TM }}$	TinyPWM ${ }^{\text {M }}$ TinyWire ${ }^{\text {TM }}$
$\underline{E}]^{\text {тм }}$	MicroFET ${ }^{\text {TM }}$	SMART START ${ }^{\text {TM }}$	TinyWire ${ }^{\text {TM }}$ μ SerDes ${ }^{\text {TM }}$
$\square=$	MicroPak ${ }^{\text {™ }}$	SPM	\%
E^{\circledR}	MillerDrive ${ }^{\text {TM }}$	STEALTH ${ }^{\text {M }}$	ν
7	MotionMax ${ }^{\text {TM }}$	SuperFET ${ }^{\text {тм }}$	SerDes"
Fairchild ${ }^{\circledR}$	Motion-SPM ${ }^{\text {TM }}$	SuperSOT ${ }^{\text {TM }}$-3	UHC^{\circledR}
Fairchild Semiconductor ${ }^{\circledR}$	OPTOLOGIC ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-6	Ultra FRFET ${ }^{\text {™ }}$
FACT Quiet Series ${ }^{\text {TM }}$	OPTOPLANAR ${ }^{\circledR}$	SuperSOT ${ }^{\text {TM }}$-8	UniFET ${ }^{\text {TM }}$
$\mathrm{FACT}^{\circledR}$	${ }^{\text {® }}$	SupreMOS ${ }^{\text {™ }}$	VCX ${ }^{\text {™ }}$
$\mathrm{FAST}^{\circledR}$		SyncFET ${ }^{\text {тм }}$	VisualMax ${ }^{\text {TM }}$
FastvCore ${ }^{\text {TM }}$	PDP SPM ${ }^{\text {™ }}$	E SYSTEM ${ }^{\circledR}$	XS ${ }^{\text {тM }}$
FlashWriter ${ }^{\circledR}$ *	Power-SPM ${ }^{\text {™ }}$	\square GENERAL	
FPS ${ }^{\text {TM }}$	PowerTrench ${ }^{\circledR}$	The Power Franchise ${ }^{\circledR}$	
F-PFS ${ }^{\text {TM }}$	PowerXS ${ }^{\text {T }}$		

* EZSWITCH ${ }^{\text {TM }}$ and FlashWriter ${ }^{\circledR}$ are trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
2. A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Farichild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Farichild strongly encourages customers to purchase Farichild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Farichild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Farichild is committed to committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.

