

Description

The TRXNFEMM series of fiber optic transceivers provide a quick and reliable interface for 100BASE-FX Fast Ethernet multimode applications.

The transceivers connect to standard 20-pad SFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different types of transceivers without removing the power supply from the host system.

The transceivers have bail-type latches, which offer an easy and convenient way to release the modules. The latch is compliant with the SFP MSA.

TRXNFEMM

Fast Ethernet SFP Multimode Transceivers

Features

- ☑ Lead Free Design & Fully RoHS Compliant
- ☑ Compatible with SFP MSA
- ☑ Designed for Fast Ethernet 100BASE-FX Applications
- ☑ 1310nm LED Transmitter
- ☑ Hot-pluggable
- Direction Excellent EMI & ESD Protection
- ☑ Loss of Signal Output
- ☑ Distances up to 2km
- IX Disable Input
- ☑ Duplex LC Optical Interface
- ☑ Single +3.3V Power Supply

The transmitter design incorporates a highly reliable 1310nm LED and a driver circuit. The receiver features a low noise transimpedance amplifier IC for high sensitivity and wide dynamic range. The transmitter and receiver DATA interfaces are AC-coupled internally. LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers operate from a single +3.3V power supply over three operating case temperature ranges of -5° C to +70°C ("B" option), -5° C to +85°C ("E" option) or -40°C to +85°C ("A" option). The housing is made of plastic and metal for EMI immunity.

Parameter		Symbol	Minimum	Maximum	Units
Storage Temperature		T_{st}	- 40	+ 85	°C
	"B" option		- 5	+ 70	
Operating Case Temperature ¹	"E" option	T_{op}	- 5	+ 85	°C
	"A" option		- 40	+ 85	
Supply Voltage		V _{CC}	0	+ 5.0	V
Input Voltage		V _{in}	0	V_{CC}	V
Lead Terminal Finish, Reflow Profile Limits and MSL		-	-	NA	-
¹ Measured on top side of SFP module at the front center vent hole of the cage.					

Absolute Maximum Ratings

TRXNFEMM

Transmitter Performance Characteristics (over Operating Case Temperature, V_{cc} = 3.13 to 3.47V) All parameters guaranteed only at typical data rate

Symbol	Minimum	Typical	Maximum	Units
В	-	125	-	Mb/s
Po	- 19.0	- 16.0	- 14.0	dBm
λ_c	1270	-	1380	nm
$\Delta \lambda_{FWHM}$	-	140	-	nm
$t_{r,} t_{f}$	0.6	-	3.0	ns
P_{hi}/P_{lo}	10	-	-	dB
P _{OFF}	-	-	- 45.0	dBm
DCD	-	-	1.0	ns
DDJ	-	-	0.6	ns
RJ	-	-	0.76	ns
	Typically compliant with OC-3/STM-1 eye mask (GR-253-CORE and G. 957) without filter, but not guaranteed and not tested for.			
	$\begin{array}{c c} & B \\ & P_o \\ & \lambda_c \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline & & & \\ & & & \\ \hline \end{array} \\ \hline \\ \hline & & & \\ \hline \end{array} \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \end{array} \\ \hline \\ \hline$	B - P_o - 19.0 λ_c 1270 $\Delta\lambda_{FWHM}$ - t_r, t_f 0.6 P_{hi}/P_{lo} 10 P_{OFF} - DCD - DDJ - RJ - Typically compliant with OU -	B - 125 P_o -19.0 -16.0 λ_c 1270 - $\Delta\lambda_{FWHM}$ - 140 t_r, t_f 0.6 - P_{hi}/P_{lo} 10 - P_{OFF} - - DCD - - DDJ - - RJ - - Typically compliant with OC-3/STM-1 eye - -	B - 125 - P_o - 19.0 - 16.0 - 14.0 λ_c 1270 - 1380 $\Delta \lambda_{FWHM}$ - 140 - t_r, t_f 0.6 - 3.0 P_{hi}/P_{lo} 10 - - P_{OFF} - - 45.0 DCD - 1.0 - DDJ - 0.6 - RJ - 0.76 - Typically compliant with OC-3/STM-1 eye mask (GR-253) - - -

¹Data rate ranges from 50Mb/s to 266Mb/s. However, some degradation may be incurred in overall performance.

²Measured average power coupled into $62.5/125\mu$ m, 0.275 NA graded-index multimode fiber. The minimum power specified is at Beginning-of-Life. ³The Center Wavelength, Spectral Width and Optical Rise/Fall Time satisfy the trade-off curves in FDDI PMD document as shown in Figure 1. ⁴Defined as 12.6 times the rms value per FDDI PMD.

⁵Compliance with the Optical Pulse Envelope in FDDI PMD is not specified and is not claimed.

Receiver Performance Characteristics (over Operating Case Temperature, V_{cc} = 3.13 to 3.47V) All parameters guaranteed only at typical data rate

neter	Symbol	Minimum	Typical	Maximum	Units
	В	-	125	-	Mb/s
Minimum Input Optical Power (2.5 x 10 ⁻¹⁰ BER) ²		- 32.5	- 34.5	-	dBm
(2.5 x 10 ⁻¹⁰ BER) ²	P _{max}	- 14.0	0	-	dBm
LOS Thresholds		P _{los-} + 1.5dB	-	- 32.5	dDm
Decreasing Light Input	P _{los-}	- 45.0	-	-	dBm
	-	1.5	-	-	dB
Increasing Light Input	t_loss_off	-	-	100	
LOS Timing Delay Decreasing Light Input		-	-	350	μs
Contributed Duty Cycle Distortion Jitter (peak-to-peak)		-	-	0.4	ns
Contributed Data Dependent Jitter (peak-to-peak)		-	-	1.0	ns
Contributed Random Jitter (peak-to-peak) ³		-	-	2.14	ns
Wavelength of Operation		1100	-	1600	nm
	(2.5 x 10 ⁻¹⁰ BER) ² Increasing Light Input Decreasing Light Input Increasing Light Input Decreasing Light Input ion Jitter (peak-to-peak) itter (peak-to-peak)	B $2.5 \times 10^{-10} \text{ BER})^2$ P_{min} $(2.5 \times 10^{-10} \text{ BER})^2$ P_{max} Increasing Light Input P_{los+} Decreasing Light Input P_{los-} Increasing Light Input t_{loss_off} Decreasing Light Input t_{loss_off}	B 2.5 x 10 ⁻¹⁰ BER) ² P_{min} - 32.5(2.5 x 10 ⁻¹⁰ BER) ² P_{max} - 14.0Increasing Light Input P_{los+} P_{los-} + 1.5dBDecreasing Light Input P_{los-} - 45.0-1.5Increasing Light Input t_{loss_off} -1.5Increasing Light Input t_{loss_off} -1.5Increasing Light Input t_{loss_off} Decreasing Light Input t_{loss_off} ion Jitter (peak-to-peak)DCDak-to-peak) ³ RJ	B - 125 $2.5 \times 10^{-10} \text{ BER}$) ² P_{min} - 32.5 - 34.5 $(2.5 \times 10^{-10} \text{ BER})^2$ P_{max} - 14.0 0 Increasing Light Input P_{los+} $P_{los-} + 1.5 \text{dB}$ - Decreasing Light Input P_{los-} - 45.0 - Increasing Light Input P_{los-} - 45.0 - Decreasing Light Input t_loss_off - - Increasing Light Input t_loss_off - - Increasing Light Input t_loss_on - - Increasing Light Input DCD - - Increasing Light Input DCD - - Increasing Light Input t_loss_on - - Increasing Light Input DCD - - Increasing Light Input T_loss_on - - Increasing Light Input DCD - - Increasing Light Input DCD - - Increasing Light Input DCD - - Increasing Light Input <td< td=""><td>B - 125 - 2.5 x 10⁻¹⁰ BER)² P_{min} - 32.5 - 34.5 - (2.5 x 10⁻¹⁰ BER)² P_{max} - 14.0 0 - Increasing Light Input P_{los+} $P_{los-} + 1.5$dB - - 32.5 Decreasing Light Input P_{los-} - 45.0 - - Increasing Light Input P_{los-} - 45.0 - - Increasing Light Input t_{loss-} - 45.0 - - Increasing Light Input t_{loss-} - 45.0 - - Increasing Light Input t_{loss-} - 45.0 - - Increasing Light Input t_{loss-} off - - - Increasing Light Input t_{loss_off} - - 100 Decreasing Light Input t_{loss_off} - - 0.4 itter (peak-to-peak) DCD - - 1.0 ak-to-peak)³ RJ - - 2.14</td></td<>	B - 125 - 2.5 x 10 ⁻¹⁰ BER) ² P_{min} - 32.5 - 34.5 - (2.5 x 10 ⁻¹⁰ BER) ² P_{max} - 14.0 0 - Increasing Light Input P_{los+} $P_{los-} + 1.5$ dB - - 32.5 Decreasing Light Input P_{los-} - 45.0 - - Increasing Light Input P_{los-} - 45.0 - - Increasing Light Input t_{loss-} off - - - Increasing Light Input t_{loss_off} - - 100 Decreasing Light Input t_{loss_off} - - 0.4 itter (peak-to-peak) DCD - - 1.0 ak-to-peak) ³ RJ - - 2.14

¹Data rate ranges from 50Mb/s to 266Mb/s. However, some degradation may be incurred in overall performance.

²Specified in average optical input power and measured with 2^{23} -1 PRBS at 125Mb/s and 1310nm wavelength with optical input rise/fall time of 2.5ns and optimum sampling.

³Defined as 12.6 times the rms value per FDDI PMD.

TRXNFEMM

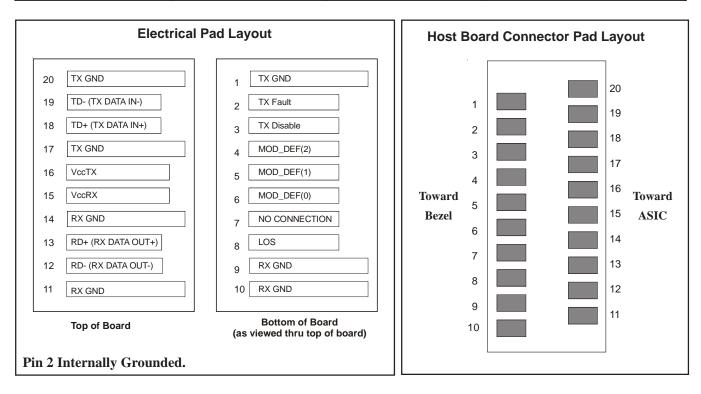
Transmitter Electrical Interface (over Operating Case Temperature, $V_{cc} = 3.13$ to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units
Input Voltage Swing (TD+ & TD-) ¹	V _{PP-DIF}	0.50	-	2.4	V
Input HIGH Voltage (TX Disable) ²	V _{IH}	2.0	-	V_{CC}	V
Input LOW Voltage (TX Disable) ²	V _{IL}	0	-	0.8	V
¹ Differential peak-to-peak voltage.	-	-		-	-

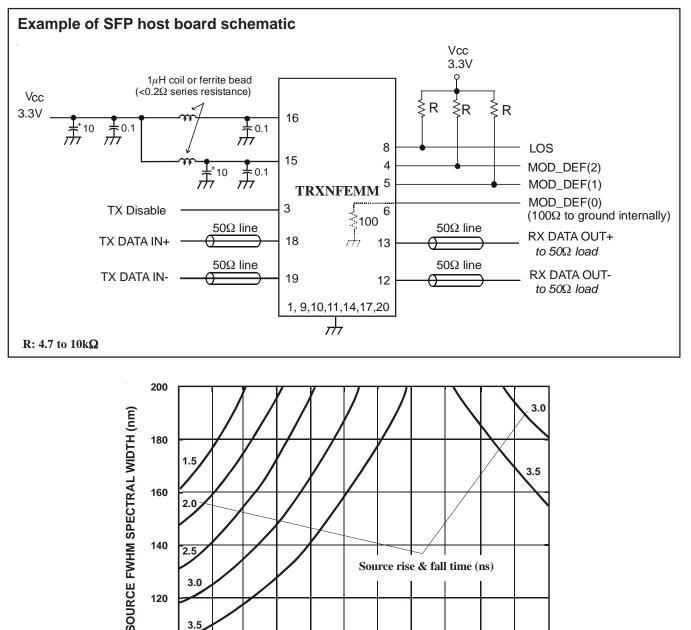
²There is an internal 4.7 to $10k\Omega$ pull-up resistor to *VccT*.

Receiver Electrical Interface (over Operating Case Temperature, V_{cc} = 3.13 to 3.47V)

			66			
Parameter	Symbol	Minimum	Typical	Maximum	Units	
Output Voltage Swing (RD+ & RD-) ¹	V_{PP-DIF}	0.6	-	2.0	V	
Output HIGH Voltage (LOS) ²	V _{OH}	2.0	-	<i>V_{CC}</i> + 0.3	V	
Output LOW Voltage (LOS) ²	V _{OL}	0	-	0.5	V	
¹ Differential peak-to-peak voltage across external 100 Ω load.						


²Open collector compatible, 4.7 to $10k\Omega$ pull-up resistor to Vcc (Host Supply Voltage).

Electrical Power Supply Characteristics (over Operating Case Temperature, V_{cc} = 3.13 to 3.47V)


Parameter	Symbol	Minimum	Typical	Maximum	Units
Supply Voltage	Vcc	3.13	3.3	3.47	V
Supply Current	Icc	-	222	245	mA

Module Definition

MOD_DEF(0)	MOD_DEF(1)	MOD_DEF(2)	Interpretation by Host
pin 6	pin 5	pin 4	
TTL LOW	SCL	SDA	Serial module definition protocol

TRXNFEMM

SOURCE CENTER WAVELENGTH (nm)

1320

Source rise & fall time (ns)

1340

Figure 1 - Trade-off curves in FDDI PMD document

Application Notes

Electrical interface: All signal interfaces are compliant with the SFP MSA specification. The high speed DATA interface is differential AC-coupled internally and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a 4.7 - $10k\Omega$ resistor on the host board.

3.0

3

1280

1300

120

100

Loss of Signal (LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates a logic HIGH when an insufficient photocurrent is produced.

TX Fault: Per SFP MSA, pin 2 is TX Fault. This transceiver is LED based and does not support TX Fault. Pin 2 is internally connected to transmitter circuit ground (TX GND) to indicate normal operation.

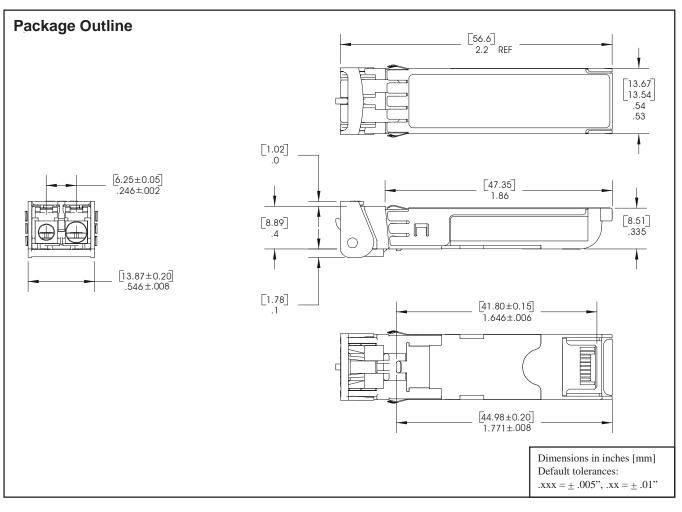
1380

1360

TX Disable: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled (less than -45dBm).

Serial Identification: The module definition of SFP is indicated by the three module definition pins, MOD_DEF(0), MOD_DEF(1) and MOD_DEF(2). Upon power up, MOD DEF(1:2) appear as NC (no connection),

Application Notes (Cont.)


and MOD_DEF(0) is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I²C serial interface) and generates the serial clock signal (SCL). The negative edge clocks data from the SFP EEPROM.

The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start

and end of serial protocol activation.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the SFP MSA.

Power supply and grounding: The power supply line should be well-filtered. All 0.1μ F power supply bypass capacitors should be as close to the transceiver module as possible.

Ordering Information

Model Name	Operating Case Temperature	Latch Color	Nominal Wavelength
TRXNFEMM4BSS	- 5°C to +70°C	Silver	1310nm
TRXNFEMM4ESS	- 5°C to +85°C	Silver	1310nm
TRXNFEMM4ASS	- 40°C to +85°C	Silver	1310nm

Optical Communication Products, Inc.

6101 Variel Avenue, Woodland Hills, CA 91367, Tel.: 818-251-7100, FAX: 818-251-7111, www.ocp-inc.com

Optical Communication Products, Inc. reserves the right to make changes in equipment design or specifications without notice. Information supplied by Optical Communication Products, Inc. is believed to be accurate and reliable. However, no responsibility is assumed by Optical Communication Products, Inc. for its use nor for any infringements of third parties, which may result from its use. No license is granted by implication or otherwise under any patent right of Optical Communication Products, Inc. © 2006, Optical Communication Products, Inc.