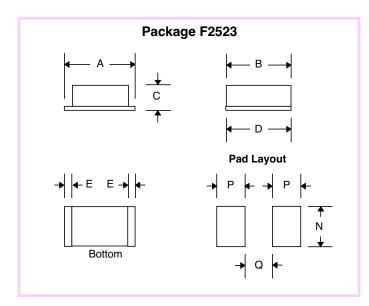


Miniature SMT Power Inductor EPI F2523 Series


Features of the EPI "F2523" Series of Miniature SMT Power Inductors

- Virtually no limit on V $\mu {
 m Sec}$ as long as max. RMS Current Limit and Temperature Rise Limit are not exceeded
- Low loss material ensures operation in high frequency switching converters, such as Buck, Boost or as output averaging filter inductor
- Low cost Robust construction to withstand most SMT processes
 - · Also suitable for use in high quality filter applications ·

Primary Specification

Part Number	Inductance (µH ± 20%) @ 0 Adc	DCR (Ω Max.)	
EPI0L5272F2523	.47	0.058	
EPI1L0192F2523	1.0	0.062	
EPI1L5162F2523	1.5	0.075	
EPI2L2132F2523	2.2	0.093	
EPI3L3112F2523	3.3	0.10	
EPI4L7901F2523	4.7	0.11	
EPI6L8751F2523	6.8	0.13	
EPI100621F2523	10	0.14	
EPI150501F2523	15	0.22	
EPI220411F2523	22	0.26	
EPI270371F2523	27	0.35	
EPI330341F2523	33	0.38	
EPI470281F2523	47	0.58	

landa atau a	I Saturation			
Inductance		l rms		
(μH Min.)	(mA)	(mA Max.)		
@ I Sat.				
0.33	2700	2100		
0.7	1900	2000		
1.05	1600	1800		
1.54	1300	1500		
2.31	1100	1300		
3.29	900	1100		
4.76	750	950		
7.00	620	800		
10.5	500	700		
15.4	410	600		
18.9	370	500		
23.1	340	450		
33.0	280	400		

Dimensions

	(Inches)			(Millimeters)		
Dim.	Min.	Max.	Nom.	Min.	Max.	Nom.
Α		.248			6.30	
В			.228			5.80
С			.080			2.03
D		.228			5.80	
E			.026			.660
F		.220			5.60	
N			.138			3.50
Р			.118			3.00
Q			.079			2.00

Note:

1. Temperature Rise: 40°C Typ.

2. Inductance Change at I Saturation: 30% Max.