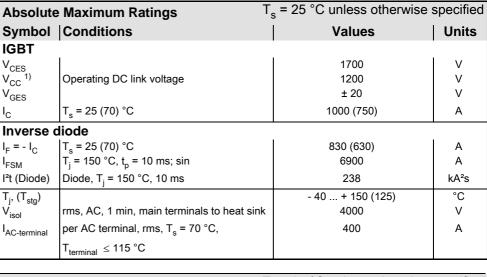
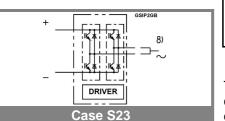

SKiiP 1013GB172-2DL


2-pack-integrated intelligent Power System

Power Section SKiiP 1013GB172-2DL


Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- · Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request

Characteristics		T_s = 25 °C unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT								
V _{CEsat}	I_C = 600 A, T_j = 25 (125) °C; measured at terminal		1,9 (2,2)	2,4	V			
V_{CEO}	T _i = 25 (125) °C; at terminal		1 (0,9)	1,2 (1,1)	V			
r _{CE}	T _i = 25 (125) °C; at terminal		1,5 (2,1)	1,9 (2,5)	mΩ			
I _{CES}	$V'_{GE} = 0 \text{ V, } V_{CE} = V_{CES},$ $T_i = 25 (125) \text{ °C}$		2,4 (144)		mA			
E _{on} + E _{off}	$I_C^3 = 600 \text{ A}, V_{CC} = 900 \text{ V}$		390		mJ			
	T _j = 125 °C, V _{CC} = 1200 V		575		mJ			
R _{CC+EE}	terminal chip, T _i = 25 °C		0,25		mΩ			
L _{CE}	top, bottom		6		nH			
C _{CHC}	per phase, AC-side		3,4		nF			
Inverse o	liode							
$V_F = V_{EC}$	$I_F = 600 \text{ A}, T_j = 25 \text{ (125) }^{\circ}\text{C}$ measured at terminal		2 (1,8)	2,15	V			
V_{TO}	T _i = 25 (125) °C		1,1 (0,8)	1,2 (0,9)	V			
r _T	T _i = 25 (125) °C		1,5 (1,7)		mΩ			
E _{rr}	I _C = 600 A, V _{CC} = 900 V		72		mJ			
	T _j = 125 °C, V _{CC} = 1200 V		86		mJ			
Mechanic	cal data							
M_{dc}	DC terminals, SI Units	6		8	Nm			
M_{ac}	AC terminals, SI Units	13		15	Nm			
W	SKiiP® 3 System w/o heat sink		1,7		kg			
w	heat sink		5,4		kg			
Thermal characteristics (PX 16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)								
	<i>•</i>	ı						
th(i-s)I	per IGBT			0,03	K/W			
$R_{th(j-s)I}$ $R_{th(j-s)D}$	per IGBT per diode			0,03 0,058	K/W K/W			
R _{th(j-s)D}			tau	0,058				

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

0

36

2,3

0,37

50

160

0,06

5

53

0,01

0,25

0,04

0,4

16,4

24

20,3

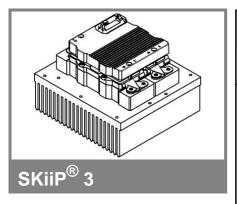
3,8

24

7,1

9,8

10


4,3

 $Z_{th(i-r)I}$

 $\boldsymbol{Z}_{th(j-r)D}$

 $Z_{th(r-a)}$

SKiiP 1013GB172-2DL

2-pack-integrated intelligent Power System

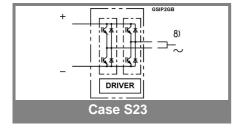
2-pack integrated gate driver SKiiP 1013GB172-2DL

Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protection against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute	Maximum Ratings T	T _a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, rms,)	4000	V	
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} pC;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms,)	1500	V	
f _{sw}	switching frequency	14	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	14	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	ristics T	_a = 25 °C unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	320+23*f/kHz+0,00022*(I _{AC} /A) ²			mA
V_{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1000		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analoa} OUT = 10 V)		1250		Α
T_{tp}	over temperature protection	110		120	°C
UDCTRIP	U _{DC} -protection (U _{analog OUT} = 9 V);		not implemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

