32-bit Microcontroller

CMOS

FR60 MB91350A Series

MB91F355A/F353A/F356B/F357B/355A/354A/ MB91353A/352A/351A/V350A

■ DESCRIPTION

The FR family* is a series of standard single-chip microcontrollers that feature a variety of built-in I/O resources and bus control functions, and that employ a high-performance 32-bit RISC CPU for embedded control applications that demand powerful and fast CPU processing capabilities.
This product is one of the FR60 family based on the FR30/40 family CPU with enhanced bus access. The FR60 family is a line of single-chip oriented microcontrollers that incorporate a wealth of peripheral resources.
The FR60 family is optimized for embedded control applications that require high CPU processing power, such as DVD players, navigation equipment, high performance fax machines, and printer controllers.

* : FR, the abbreviation of FUJITSU RISC controller, is a line of products of FUJITSU Limited.

■ FEATURES

1. FR CPU

- 32-bit RISC, load/store architecture with a five-stage pipeline
- Maximum operating frequency : 50 MHz (using the PLL at an oscillation frequency of 12.5 MHz)
- 16-bit fixed length instructions (basic instructions), 1 instruction per cycle
- Instruction set optimized for embedded applications : Memory-to-memory transfer, bit manipulation, barrel shift etc.
- Instructions adapted for high-level languages : Function entry/exit instructions, multiple-register load/store instructions
- Register interlock functions : Facilitate coding in assemblers
(Continued)

Be sure to refer to the "Check Sheet" for the latest cautions on development.

[^0]
MB91350A Series

- On-chip multiplier supported at the instruction level.

Signed 32-bit multiplication : 5 cycles
Signed 16-bit multiplication: 3 cycles

- Interrupt (PC, PS save) : 6 cycles, 16 priority levels
- Harvard architecture allowing program access and data access to be executed simultaneously
- Instructions compatible with the FR family

2. Bus interface

- Maximum operating frequency : 25 MHz
- 24 -bit address full output (16 Mbyte address space) capability (21-bit address full output (2 Mbyte address space) capability : MB91F353A/353A/352A/351A)
- 8,16-bit data output
- Built-in prefetch buffer
- Unused data and address pins can be used as general I/O ports.
- Able to output chip-select for 4 completely independent areas that can be configured in units of 64 Kbytes
- Support for various memory interfaces :

SRAM, ROM/Flash
page mode Flash ROM, page mode ROM interface

- Basic bus cycle : 2 cycles
- Programmable automatic wait cycle generator capable of inserting wait cycles for each area
- RDY input for external wait cycles
- DMA support of fly-by transfer capable of wait control for independent I/O
(The MB91F353A/353A/352A/351A does not support fly-by transfer.)

3. Built-in memory

D-bus memory	MB91V350A	MB91F353A MB91F355A MB91F357B	MB91F356B	MB91353A MB91355A	MB91352A MB91354A	MB91351A
ROM	No	512 Kbytes	256 Kbytes	512 Kbytes	384 Kbytes	384 Kbytes
RAM (Stack)	16 Kbytes	16 Kbytes	16 Kbytes	16 Kbytes	8 Kbytes	16 Kbytes
RAM (Execute instruction)	16 Kbytes	8 Kbytes				

4. DMAC (DMA Controller)

- Capable of simultaneous operation of up to 5 channels (external \rightarrow external : 3 channels)
- 3 transfer sources (external pin, internal peripheral or software) :

Activation sources are software-selectable (transfer can be activated by UART0/1/2).

- Addressing using 32-bit full addressing mode (increment, decrement, fixed)
- Transfer modes (demand transfer, burst transfer, step transfer, block transfer)
- Fly-by transfer support (between external I/O and memory)
- Selectable transfer data size : 8,16 , or 32 -bit
- Multi-byte transfer capability (selected by software)
- DMAC descriptor in IO areas (200н to $240 \mathrm{H}, 1000$ н to 1024 H$)$
(The MB91F353A/353A/352A/351A does not have an external interface.)
External pin transfer is not supported. Demand transfer and fly-by transfer cannot be used.

5. Bit search module (for REALOS)

- Search a single word starting from the MSB for the position of the first bit changed from 1 to 0 .
(Continued)

MB91350A Series

6. Various timers

- 4 channels of 16 -bit reload timer (including 1 channel for REALOS) : Internal clock frequency divider selectable from 2/8/32 (division by 64/128 selectable only for ch.3)
- 16-bit free-run timer : 1 channel

Output compare : 8 channels (MB91F353A/353A/352A/351A : 2 channels)
Input capture : 4 channels

- 16 -bit PPG timer : 6 channels (MB91F353A/353A/352A/351A : 3 channels)

7. UART

- UART full duplex double buffer : 5 channels (MB91F353A/353A/352A/351A : 4 channels)
- Selectable parity on/off
- Asynchronous (start-stop synchronized) or CLK-synchronous communications selectable
- Built-in dedicated baud rate timer
- External clock can be used as transfer clock
- Assorted error detection functions (for parity, frame, and overrun errors)
- Support for 115 kbps

8. SIO

- 8 -bit data serial transfer : 3 channels (MB91F353A/353A/352A/351A : 2 channels)
- Shift clock selectable from among three internal and one external
- Shift direction selectable (transfer from LSB or MSB)

9. Interrupt controller

- Total number of external interrupts : 17 (MB91F353A/353A/352A/351A : 9)
(One non-maskable interrupt pin and 16/8 ordinary interrupt pins that can be used for wakeup in stop mode.)
- Interrupts from internal peripherals
- Programmable priorities (16 levels) for all interrupts except the non-maskable interrupt

10. D/A converter

- 8 -bit resolution : 3 channels (MB91F353A/353A/352A/351A : 2 channels)

11. A/D converter

- 10-bit resolution : 12 channels (MB91F353A/353A/352A/351A : 8 channels)
- Serial/parallel conversion type Conversion time : $1.48 \mu \mathrm{~s}$
- Conversion mode (one shot conversion mode, continuous conversion mode)
- Activation source (software, external trigger, peripheral interrupt)

12. Other interval timer/counter

- 8/16-bit up/down counter

The MB91F353A/353A/352A/351A supports only an 8 -bit up/down counter.

- 16-bit timer (U-TIMER) : 5 channels (MB91F353A/353A/352A/351A : 4 channels)
- Watch dog timer

13. ${ }^{2}{ }^{2}$ bus interface* (supports 400 kbps)

- 1 channel master/slave transmission and reception
- Arbitration and clock synchronization functions

14. I/O ports

- 3 V I/O ports
(5 V input is supported for those ports that are also used for external interrupts (16 ports, MB91F353A/353A/ 352A/351A : 8 ports).
- Up to 126 ports (MB91F353A/353A/352A/351A : Up to 84 ports)

MB91350A Series

(Continued)

15. Other features

- Internal oscillator circuit as clock source, and PLL multiplication can be selected
- INIT pin provided as a reset pin (the oscillation stabilization wait time when the INIT pin is reset is clock cycle $\times 2$.)
- Watch dog timer reset and software reset are also provided.
- Support for stop and sleep modes for low power consumption, capable of saving power by operating the CPU at 32 kHz .
- Gear function
- Built-in time base timer
- Package : MB91F355A/F356B/355A/354A/F357B : LQFP-176 (lead pitch 0.50 mm)

MB91F353A/353A/352A/351A : LQFP-120 (lead pitch 0.50 mm)

- CMOS technology ($0.35 \mu \mathrm{~m}$)
- Power supply voltage : $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$
2.7 V to 3.6 V (MB91F356B/F357B only)
*: Purchase of Fujitsu ${ }^{2} \mathrm{C}$ components conveys a license under the Philips ${ }^{12} \mathrm{C}$ Patent Rights to use these components in an ${ }^{2} \mathrm{C}$ C system provided that the system conforms to the ${ }^{12} \mathrm{C}$ Standard Specification as defined by Philips.

MB91350A Series

PIN ASSIGNMENTS

- MB91F353A/353A/352A/351A
(TOP VIEW)

(FPT-120P-M21)

MB91350A Series

- MB91F355A/F356B/F357B/355A/354A
(TOP VIEW)

(FPT-176P-M02)

MB91350A Series

PIN DESCRIPTION

Pin no.		Pin name	I/O circuit type*3	Function
LQFP*1	LQFP*2			
1 to 8	1 to 8	D16 to D23	C	Bit 16 to bit 23 of the external data bus. Valid only in external bus mode.
		P20 to P27		Can be used as ports while in external bus 8-bit mode.
9 to 16	9 to 16	D24 to D31	C	Bit 24 to bit 31 of the external data bus. Valid only in external bus mode.
		P30 to P37		Can be used as ports while in single-chip mode.
19 to 26	17, 20 to 26	A00 to A07	C	Bit 0 to bit 7 of the external address bus. Valid only in external bus mode.
		P40 to P47		Can be used as ports while in single-chip mode.
27 to 34	27 to 34	A08 to A15	C	Bit 8 to bit 15 of the external address bus. Valid only in external bus mode.
		P50 to P57		Can be used as ports while in single-chip mode.
37 to 41	35 to 39	A16 to A20	C	Bit 16 to bit 20 of the external address bus. Valid only in external bus mode.
		P60 to P64		Can be used as ports while in single-chip mode or when the external address bus is not used.
42 to 44	-	A21 to A23	C	Bit 21 to bit 23 of the external address bus. Valid only in external bus mode.
		P65 to P67		Can be used as ports while in single-chip mode or when the external address bus is not used.
47, 48	106,105	DA0, DA1	-	D/A converter output pins
49	-	DA2	-	D/A converter output pin
50 to 57	113 to 120	AN0 to AN7	G	Analog input pins
58 to 61	-	AN8 to AN11	G	Analog input pins
67 to 70	-	TOT0 to TOT3	D	Reload timer output ports. This pin is valid when timer output is enabled.
		PP0 to PP3		General-purpose I/O ports. This pin is valid when the timer output function is disabled.
71	97	OC0	D	Output compare output pin
		POO		General-purpose I/O port. This pin can be used as a port when the output compare output is not used.

(Continued)

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type }{ }^{\star 3} \end{gathered}$	Function
LQFP*1	LQFP*2			
72	-	OC1	D	Output compare output pin
		PO1		General-purpose I/O port. This pin can be used as a port when the output compare output is not used.
73	98	OC2	D	Output compare output pin
		PO2		General-purpose I/O port. This pin can be used as a port when the output compare output is not used.
74 to 78	-	OC3 to OC7	D	Output compare output pins
		PO3 to PO7		General-purpose I/O ports. These pins can be used as ports when the output compare outputs are not used.
81	70	PPG0	D	PPG timer output pin
		PN0		General-purpose I/O port. This pin can be used as a port when the PPG timer output is not used.
82	-	PPG1	D	PPG timer output pin
		PN1		General-purpose I/O port. This pin can be used as a port when the PPG timer output is not used.
83	71	PPG2	D	PPG timer output pin
		PN2		General-purpose I/O port. This pin can be used as a port when the PPG timer output is not used.
84	-	PPG3	D	PPG timer output pin
		PN3		General-purpose I/O port. This pin can be used as a port when the PPG timer output is not used.
85	72	PPG4	D	PPG timer output pin
		PN4		General-purpose I/O port. This pin can be used as a port when the PPG timer output is not used.
86	-	PPG5	D	PPG timer output pin
		PN5		General-purpose I/O port. This pin can be used as a port when the PPG timer output is not used.

(Continued)

MB91350A Series

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type }{ }^{\star 3} \end{gathered}$	Function
LQFP**	LQFP*2			
87	73	SI6	D	Data input for serial I/O6. Since this input is always used when serial I/O6 input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		AINO		Input for the up/down counter. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		TRGO		External trigger input for PPG timer 0. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		PM0		General-purpose I/O port. This pin can be used as a port when serial I/O, up/down counter, and PPG timer output are not used.
88	74	SO6	D	Data output from serial I/O6. This function is valid when data output from serial I/O6 is enabled.
		BINO		Input for the up/down counter. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		TRG1		External trigger input for PPG timer 1. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		PM1		General-purpose I/O port. This pin can be used as a port when serial I/O, up/down counter, and PPG timer output are not used.
89	75	SCK6	D	Clock I/O for serial I/O 6. This function is valid when clock output from serial I/O6 is enabled or when an external shift clock input is used.
		ZINO		Input for the up/down counter. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		TRG2		External trigger input for PPG timer 2. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		PM2		General-purpose I/O port. This pin can be used as a port when serial I/O, up/down counter, and PPG timer output are not used.

(Continued)

Pin no.		Pin name	$\underset{\substack{I / O \\ \text { circuit } \\ \text { type } \\ \hline}}{ }$	Function
LQFP*1	LQFP*2			
90	78	SI7	D	Data input for serial I/O7. Since this input is always used when serial I/O7 input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		AIN1*4		Input for the up/down counter. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		TRG3		External trigger input for PPG timer 3. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		PM3		General-purpose I/O port. This pin can be used as a port when serial I/O, up/down counter, and PPG timer output are not used.
91	79	S07	D	Data output from serial I/O7. This function is valid when data output from serial I/O7 is enabled.
		BIN1*4		Input for the up/down counter. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		TRG4		External trigger input for PPG timer 4. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		PM4		General-purpose I/O port. This pin can be used as a port when serial I/O, up/down counter, and PPG timer output are not used.
92	80	SCK7	D	Clock I/O for serial I/O7. This function is valid when clock output from serial I/O7 is enabled or when an external shift clock input is used.
		ZIN1*4		Input for the up/down counter. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		TRG5*4		External trigger input for PPG timer 5. Since this input is always used when input is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		PM5		General-purpose I/O port. This pin can be used as a port when serial I/O, up/down counter, and PPG timer output are not used.

(Continued)

MB91350A Series

Pin no.		Pin name	I/O circuit type*3	Function
LQFP*1	LQFP*2			
94	42	SDA	F	DATA I/O pin for the $I^{2} \mathrm{C}$ bus. This pin is valid when standard mode $I^{2} \mathrm{C}$ operation is enabled. Output using the port must be stopped beforehand unless this operation is intended (open drain output).
		PLO		General-purpose I/O port. This pin can be used as a port when $I^{2} \mathrm{C}$ operation is disabled (open drain output).
95	41	SCL	F	Clock I/O pin for the $I^{2} \mathrm{C}$ bus. This pin is valid when standard mode $I^{2} \mathrm{C}$ operation is enabled. Output using the port must be stopped beforehand unless this operation is intended (open drain output).
		PL1		General-purpose I/O port. This pin can be used as a port when $I^{2} \mathrm{C}$ operation is disabled (open drain output).
98 to 103	81 to 86	INT0 to INT5	E	External interrupt inputs. Since these inputs are always used when the corresponding external interrupts are enabled, output using the ports must be stopped beforehand unless this operation is the intended operation.
		PK0 to PK5		General-purpose I/O ports
104	87	INT6	E	External interrupt input. Since this input is always used when the corresponding external interrupt is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		FRCK		External clock input pin for the free-run timer. Since this input is always used when it is selected as the external clock input for the free-run timer, output using the port must be stopped beforehand unless this operation is the intended operation.
		PK6		General-purpose I/O port
105	88	INT7	E	External interrupt input. Since this input is always used when the corresponding external interrupt is enabled, output using the port must be stopped beforehand unless this operation is the intended operation.
		$\overline{\text { ATG }}$		External trigger for the A/D converter. Since this input is always used when it is selected as the A/D activation source, output using the port must be stopped beforehand unless this operation is the intended operation.
		PK7		General-purpose I/O port

(Continued)

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type }{ }^{\star 3} \end{gathered}$	Function
LQFP*1	LQFP*2			
106 to 113	-	INT8 to INT15	E	External interrupt inputs. Since these inputs are always used when the corresponding external interrupts are enabled, output using the ports must be stopped beforehand unless this operation is the intended operation.
		PJ0 to PJ7		General-purpose I/O ports
116	89	SIO	D	Data input for UARTO. Since this input is always used when UARTO input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		PIO		General-purpose I/O port
117	90	SOO	D	Data output from UARTO. This function is valid when UARTO data output is enabled.
		PI1		General-purpose I/O port. This function is valid when UARTO data output is disabled.
118	91	SCKO	D	Clock I/O for UARTO. This function is valid when UARTO clock output is enabled or when an external clock input is used.
		PI2		General-purpose I/O port. This function is valid when UARTO clock output is disabled or when an external clock input is not used.
119	92	SI1	D	Data input for UART1. Since this input is always used when UART1 input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		PI3		General-purpose I/O port
120	93	SO1	D	Data output from UART1. This function is valid when UART1 data output is enabled.
		PI4		General-purpose I/O port. This function is valid when UART1 data output is disabled.
121	94	SCK1	D	Clock I/O for UART1. This function is valid when UART1 clock output is enabled or when an external clock input is used.
		PI5		General-purpose I/O port. This function is valid when UART1 clock output is disabled or when an external clock input is not used.
122	99	SI2	D	Data input for UART2. Since this input is always used when UART2 input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		PH0		General-purpose I/O port

(Continued)

MB91350A Series

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type }{ }^{\star 3} \end{gathered}$	Function
LQFP*1	LQFP*2			
123	100	SO2	D	Data output from UART2. This function is valid when UART2 data output is enabled.
		PH1		General-purpose I/O port. This function is valid when UART2 data output is disabled or when an external shift clock input is used.
124	101	SCK2	D	Clock I/O for UART2. This function is valid when UART2 clock output is enabled or when an external clock input is used.
		PH2		General-purpose I/O port. This function is valid when UART2 clock output is disabled or when an external clock input is not used.
125	102	SI3	D	Data input for UART3. Since this input is always used when UART3 input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		PH3		General-purpose I/O port
126	103	SO3	D	Data output from UART3. This function is valid when UART3 data output is enabled.
		PH4		General-purpose I/O port. This function is valid when UART3 data output is disabled.
127	104	SCK3	D	Clock I/O for UART3. This function is valid when UART3 clock output is enabled or when an external clock input is used.
		PH5		General-purpose I/O port. This function is valid when UART3 clock output is disabled or when an external clock input is not used.
128	-	SI4	D	Data input for UART4. Since this input is always used when UART4 input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		PGO		General-purpose I/O port
129	-	SO4	D	Data output from UART4. This function is valid when serial I/O4 data output is enabled.
		PG1		General-purpose I/O port. This function is valid when serial I/O4 data output is disabled.

(Continued)

Pin no.		Pin name	$\begin{array}{c\|} \hline \text { I/O } \\ \begin{array}{c} \text { circuit } \\ \text { type* } \end{array} \\ \hline \end{array}$	Function
LQFP*1	LQFP*2			
130	-	SCK4	D	Clock I/O for UART4. This function is valid when serial I/O4 clock output is enabled or when an external clock input is used.
		PG2		General-purpose I/O port. This function is valid when serial I/O4 clock output is disabled or when an external clock input is not used.
131	-	SI5	D	Data input for serial I/O5. Since this input is always used when serial I/O5 input is operating, output using the port must be stopped beforehand unless this operation is the intended operation.
		PG3		General-purpose I/O port
132	-	SO5	D	Data output from serial I/O5. This function is valid when serial I/O5 data output is enabled.
		PG4		General-purpose I/O port. This function is valid when serial I/O5 data output is disabled.
133	-	SCK5	D	Clock I/O for serial I/O5. This function is valid when serial I/O5 clock output is enabled or when an external shift clock input is used.
		PG5		General-purpose I/O port. This function is valid when serial I/O5 clock output is disabled or when an external clock input is not used.
134	51	$\overline{\mathrm{NMI}}$	H	NMI (non-maskable interrupt) input
135	61	X1A	B	Clock (oscillation) output (sub clock)
137	60	X0A	B	Clock (oscillation) input (sub clock)
138 to 140	52 to 54	MD2 to MD0	H	Mode pins 2 to 0.
			J	These pins set the basic operating mode. Connect the pins to Vcc or Vss. Input circuit type : The production version (MASK ROM version) is the " H " type. The Flash ROM version is the "J" type.
141	58	X0	A	Clock (oscillation) input (main clock)
143	57	X1	A	Clock (oscillation) output (main clock)
144	55	$\overline{\text { INIT }}$	1	External reset input
147	-	DREQ2	C	DMA external transfer request input. Since this input is always used when it is selected as the DMA activation source, output using the port must be stopped beforehand unless this operation is the intended operation.
		PC0		General-purpose I/O port

(Continued)

MB91350A Series

Pin no.		Pin name	$\begin{gathered} \text { I/O } \\ \text { circuit } \\ \text { type }{ }^{\star 3} \end{gathered}$	Function
LQFP**	LQFP*2			
148	-	DACK2	C	DMA external transfer request acceptance output. This function is valid when DMA transfer request acceptance output is enabled.
		PC1		General-purpose I/O port. This function is valid when DMA transfer request acceptance output is enabled.
149	-	DEOP2	C	DMA external transfer end output. This function is valid when DMA external transfer end output is enabled.
		DSTP2		DMA external transfer stop input. This function is valid when DMA external transfer stop input is enabled.
		PC2		General-purpose I/O port. This function is valid when DMA external transfer end output and external transfer stop input are disabled.
150	-	DREQ0	C	DMA external transfer request input. Since this input is always used when it is selected as the DMA activation source, output using the port must be stopped beforehand unless this operation is the intended operation.
		PB0		General-purpose I/O port
151	-	DACKO	C	DMA external transfer request acceptance output. This function is valid when DMA transfer request acceptance output is enabled.
		PB1		General-purpose I/O port. This function is valid when DMA transfer request acceptance output is disabled.
152	-	DEOP0	C	DMA external transfer end output. This function is valid when DMA external transfer end output is enabled.
		DSTP0		DMA external transfer stop input. This function is valid when DMA external transfer stop input is enabled.
		PB2		General-purpose I/O port. This function is valid when DMA external transfer end output and external transfer stop input are disabled.
153	-	DREQ1	C	DMA external transfer request input. Since this input is always used when it is selected as the DMA activation source, output using the port must be stopped beforehand unless this operation is the intended operation.
		PB3		General-purpose I/O port.

Pin no.		Pin name	I/O circuit type*3	Function
LQFP**	LQFP*2			
154	-	DACK1	C	DMA external transfer request acceptance output. This function is valid when DMA transfer request acceptance output is enabled.
		PB4		General-purpose I/O port. This function is valid when DMA external transfer request acceptance output is disabled.
155	-	DEOP1	C	DMA external transfer end output. This function is valid when DMA external transfer end output is enabled.
		DSTP1		DMA external transfer stop input. This function is valid when DMA external transfer stop input is enabled.
		PB5		General-purpose I/O port. This function is valid when DMA external transfer end output and external transfer stop input are disabled.
156	-	$\overline{\text { IOWR }}$	C	Write strobe output for DMA fly-by transfer. This function is valid when write strobe output for DMA fly-by transfer is enabled.
		PB6		General-purpose I/O port. This function is valid when write strobe output for DMA fly-by transfer is disabled.
157	-	$\overline{\text { IORD }}$	C	Read strobe output for DMA fly-by transfer. This function is valid when read strobe output for DMA fly-by transfer is enabled.
		PB7		General-purpose I/O port. This function is valid when read strobe output for DMA fly-by transfer is disabled.
158	66	$\overline{\mathrm{CSO}}$	C	Chip select 0 output. This function is valid in external bus mode.
		PAO		General-purpose I/O port. This function is valid in single-chip mode.
159	67	$\overline{\mathrm{CS1}}$	C	Chip select 1 output. This function is valid when chip select 1 output is enabled.
		PA1		General-purpose I/O port. This function is valid when chip select 1 output is disabled.
160	68	CS2	C	Chip select 2 output. This function is valid when chip select 2 output is enabled.
		PA2		General-purpose I/O port. This function is valid when chip select 2 output is disabled.

(Continued)

MB91350A Series

Pin no.		Pin name	I/Ocircuittype ${ }^{* 3}$	Function
LQFP*1	LQFP*2			
161	69	CS3	C	Chip select 3 output. This function is valid when chip select 3 output is enabled.
		PA3		General-purpose I/O port. This function is valid when chip select 3 output is disabled.
164	45	RDY	D	External ready input. This function is valid when external ready input is enabled.
		INO		Input capture input pin. Since this input is always used when it is selected for input capture input, output using the port must be stopped beforehand unless this operation is the intended operation.
		P80		General-purpose I/O port. This function is valid when external ready input is disabled.
165	46	$\overline{\text { BGRNT }}$	D	External bus open acceptance output. Outputs an " L " level when the external bus is open. This function is valid when output is enabled.
		IN1		Input capture input pin. Since this input is always used when it is selected for input capture input, output using the port must be stopped beforehand unless this operation is the intended operation.
		P81		General-purpose I/O port. This function is valid when external bus open acceptance is disabled.
166	47	BRQ	D	External bus open request input. A high level is input to this pin to request for the external bus to be made open. This function is valid when input is enabled.
		IN2		Input capture input pin. Since this input is always used when it is selected for input capture input, output using the port must be stopped beforehand unless this operation is the intended operation.
		P82		General-purpose I/O port. This function is valid when external bus open request is disabled.
167	48	$\overline{\mathrm{RD}}$	D	External bus read strobe output. This function is valid in external bus mode.
		P83		General-purpose I/O port. This function is valid in single-chip mode.

(Continued)

MB91350A Series

(Continued)

Pin no.		Pin name	$\begin{gathered} \text { l/O } \\ \text { circuit } \\ \text { type }{ }^{\star 3} \end{gathered}$	Function
LQFP*1	LQFP*2			
168	49	WRO	D	External bus write strobe output. This function is valid in external bus mode.
		P84		General-purpose I/O port. This function is valid in single-chip mode.
169	50	WR1	D	External bus write strobe output. This function is valid when $\overline{W R 1}$ output in external bus mode is enabled.
		IN3		Input capture input pin. Since this input is always used when it is selected for input capture input, output using the port must be stopped beforehand unless this operation is the intended operation.
		P85		General-purpose I/O port. This function is valid when external bus write enable output is disabled.
170	62	SYSCLK	C	System clock output. This function is valid when system clock output is enabled. A clock having the same frequency as the external bus operating frequency is output (stopped in stop mode).
		P90		General-purpose I/O port. This function is valid when system clock output is disabled.
171	63	P91	C	General-purpose I/O port
172	-	MCLK	C	Memory clock output. This function is valid when memory clock output is enabled. A clock having the same frequency as the external bus operating frequency is output (stopped in sleep mode).
		P92		General-purpose I/O port. This function is valid when memory clock output is disabled.
173	64	P93	C	General-purpose I/O port
174	65	$\overline{\text { AS }}$	C	Address strobe output. This function is valid when address strobe output is enabled.
		P94		General-purpose I/O port. This function is valid when address load output is disabled.

*1: FPT-176P-M02
*2 : FPT-120P-M21
*3 : Refer to "■ I/O CIRCUIT TYPE" for details on the I/O circuit types.
*4 : These functions are not supported on the FPT-120P-M21.

MB91350A Series

[Power supply and GND pins]

Pin number		Pin name	Function
LQFP*1	LQFP*2		
$\begin{aligned} & 17,35,65,79,93,96 \\ & 114,136,145,162,175 \end{aligned}$	$\begin{aligned} & 18,40,43,59 \\ & 76,96,112 \end{aligned}$	Vss	GND pins. Use the same potential for all pins.
$\begin{aligned} & 18,36,66,80,97,115 \\ & 142,146,163,176 \end{aligned}$	$\begin{aligned} & 19,44,56,77, \\ & 95 \end{aligned}$	Vcc	3.3 V power supply pins. Use the same potential for all pins.
45	107	DAVS	D/A converter GND pin
46	108	DAVC	D/A converter power supply pin
62	109	AV ${ }_{\text {cc }}$	A/D converter analog power supply pin
63	110	AVRH	A/D converter reference power supply pin
64	111	AVss/AVRL	A/D converter analog GND pin

*1 : FPT-176P-M02
*2 : FPT-120P-M21

MB91350A Series

I/O CIRCUIT TYPE

Type	Circuit type	Remarks
A		Oscillation feedback resistance : approx. $1 \mathrm{M} \Omega$
B		Oscillation feedback resistance for low speed (sub clock oscillation) : approx. $7 \mathrm{M} \Omega$
C		- CMOS level output - CMOS level input With standby control With pull-up control
D		- CMOS level output - CMOS level hysteresis input With standby control With pull-up control

(Continued)

MB91350A Series

Type	Circuit type	Remarks
E		- CMOS level output - CMOS level hysteresis input Withstand voltage of 5 V
F		- N -ch (Open drain input) - CMOS level hysteresis input With standby control Withstand voltage of 5 V
G		Analog input With switch
H		CMOS level hysteresis input
1		CMOS level hysteresis input With pull-up resistor

(Continued)

MB91350A Series

(Continued)

Type	Circuit type	Remarks
J		- CMOS level input - MB91F353A/F355A/F356B/F357B only

MB91350A Series

HANDLING DEVICES

- Preventing Latch-up

Latch-up may occur in a CMOS IC if a voltage greater than V_{cc} or less than V ss is applied to an input or output pin or if an above-rating voltage is applied between Vcc and Vss. A latch-up,if it occurs, significantly increases the power supply current and may cause thermal destruction of an element. When you use a CMOS IC, don't exceed the absolute maximum rating.

- Treatment of Unused Pins

Do not leave unused input pins open, as this may cause a malfunction. Handle by using a pull-up or pull-down resistor.

- Power Supply Pins

In products with multiple V_{cc} and $\mathrm{V}_{\text {ss }}$ pins, the pins of the same potential are internally connected in the device to avoid abnormal operations including latch-up. However, you must connect the pins to the external power supply and ground lines in order to lower the electro-magnetic emission level, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating. Moreover, connect the current supply source to the Vcc and V ss pins of this device at the low impedance.
It is also advisable to connect a ceramic bypass capacitor of approximately $0.1 \mu \mathrm{~F}$ between V cc and V ss pins near this device.

- Crystal Oscillator Circuit

Noise near the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A pins may cause the device to malfunction. Design the printed circuit board so that X0, X1, X0A, X1A, the crystal oscillator (or ceramic oscillator), and the bypass capacitor to ground are located close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the $\mathrm{X} 0, \mathrm{X} 1, \mathrm{X} 0 \mathrm{~A}$ and X 1 A pins are surrounded by ground plane, as stable operation can be obtained by using this layout.
Please ask the crystal maker to evaluate the oscillational characteristics of the crystal and this device.

- Notes on Using an External Clock

When using an external clock, as a general rule you should simultaneously supply the clock signal to X0 and a clock signal with the reverse phase to X1. However, the stop mode (oscillator stop mode) must not be used under this configuration (This is because the X 1 pin stops at High level output in STOP mode).

Using an external clock (normal)

Note : STOP mode (oscillation stop mode) cannot be used.

- Clock Control Block

Hold the signal for the oscillation stabilization wait time when inputting a Low level to the $\overline{\mathrm{NNIT}}$ pin.

MB91350A Series

- Notes on Using the Sub Clock

When the X0A and X1A pins are not connected to an oscillator, pull down the X0A pin and leave the X1A pin open.
Using an external clock (normal)

- Treatment of NC and OPEN Pins

Pins marked as NC and OPEN must be left open.

- Mode Pins (MDO to MD2)

These pins should be connected directly to the V_{cc} or $\mathrm{V}_{\text {ss }}$ pins.
To prevent the device erroneously switching to test mode due to noise, design the printed circuit board such that the distance between the mode pins and V_{cc} or V_{ss} pins is as short as possible and the connection impedance is low.

- Operation at Start-up

The INIT pin must be at Low level when the power supply is turned on.
Immediately after the power supply is turned on, the Low level input needs to be held to the INIT pin for the oscillation stabilization wait time of the oscillator circuit to ensure that the oscillator has time to settle (For INIT via the INIT pin, the oscillation stabilization wait time setting is initialized to the minimum value).

- Oscillation Input at Power On

When the power is turned on, maintain the clock input until the device is released from the oscillation stabilization wait state.

- Precautions While Operating in PLL Clock Mode

On this microcontroller, if the crystal oscillator is disconnected or the external reference clock input stops while PLL clock mode is selected, the microcontroller may continue to operate at the free-run frequency of the selfoscillating circuit within the PLL. However, Fujitsu does not guarantee this operation.

- External Bus Setting

This model guarantees an external bus frequency of 25 MHz .
If the base clock frequency is set to 50 MHz when the DIVR1 (external bus base clock division setting register) register is still set to the default value, the external bus frequency will be set to 50 MHz . When you change the base clock frequency, change the base clock frequency after setting the external bus within 25 MHz .

- MCLK and SYSCLK

The difference between MCLK and SYSCLK is that MCLK stops in SLEEP/STOP mode but SYSCLK stops only in STOP mode. Use the clock that is appropriate for each application.
Upon initialization, MCLK is disabled (PORT) and SYSCLK is enabled. To use MCLK, the port function register (PFR) needs to be set to enable the use of the clock.

MB91350A Series

- Pull-up Control

If a pull-up resistor is provided to a pin that is used as an external bus pin, there is no guarantee that the pin will conform to the specifications given in "■ ELECTRICAL CHARACTERISTICS 4. AC Characteristics (4) Normal Bus Access Read/Write Operation, (5) Multiplex Bus Access Read/Write operation and (7) Hold Timing". Furthermore, even if a port has been configured to use a pull-up resistance, this setting is invalid during stop mode with $\mathrm{HIZ}=1$ and during hardware standby mode.

- Sub Clock Select

At least one NOP instruction needs to be executed immediately after switching the clock source from main clock mode to sub clock mode.

(Idi	\#OxOb, r0)	
(Idi	\#_CLKR, r12)	
stb	r0, @r12	// sub-clock mode
nop		// Must insert NOP instruction

- Bit Search Module

The BSDO, BSD1, and BDSC registers can only be accessed in words.

- D-bus Memory

Do not set the code area to memory on the D-bus because instructions cannot be fetched from the D-bus. Executing an instruction fetch to the D-bus area will cause incorrect data to be interpreted as code, possibly causing the device to run out of control.

- Low Power Consumption Mode

When entering sleep or stop mode, be sure to read the standby control register (STCR) immediately after writing to it.
More specifically, use the following sequence.
Furthermore, after recovering from standby mode, set the I flag, ILM, and ICR registers such that the CPU branches to the interrupt handler for the interrupt that triggered the controller to recover from standby mode.
(Idi \#value_of_standby, rO)
(Idi \#_STCR, r12)
stb r0, @r12 // set STOP/SLEEP bit
Idub @r12, r0 // Must read STCR
Idub @r12, r0 // after reading, go into standby mode
NOP // Must insert NOP $\times 5$
NOP
NOP
NOP
NOP

- Switching the Function of Shared Ports

Use the Port Function Register (PFR) to switch between using an external pin as a port or a shared pin. Note, however, that bus pins are switched depending on the external bus settings.

MB91350A Series

- Prefetch

If prefetch is enabled in a area that is configured as little endian, limit access to the corresponding area to word-length (32-bit) access.
Byte or halfword does not allow a proper access to data.

- I/O Port Access

Ports can only be accessed in bytes.

- Built-in RAM

Immediately after a reset is released, the internal RAM capacity restriction function begins operating, allowing only 4 Kbytes to be used for both data and program execution irrespective of the on-chip RAM capacity. Update the setting to clear the restriction function.
At least one NOP instruction is required immediately after updating this setting.
Please refer to the "MB91350A Series HARDWARE MANUAL CHAPTER 19 DATA INTERNAL RAM/INSTRUCTION INTERNAL RAM ACCESS RESTRICTION FUNCTIONS" for the details.

- Flash Memory

In programming mode, Flash memory cannot be used for the interrupt vector table (However, a reset can be performed).

- Notes on the PS Register

As the PS register is processed in advance by some instructions, when the debugger is being used, the following exception handling may result in execution breaking in an interrupt handling routine or the displayed values of the flags in the PS register being updated.

As the microcontroller is designed to carry out reprocessing correctly upon returning from such an EIT event, the operation before and after the EIT always proceeds according to specification.

1. The following behavior may occur if any of the following occurs in the instruction immediately after a DIVOU/ DIVOS instruction :
(a) a user interrupt or NMI is accepted; (b) single-step execution is performed; or (c) execution breaks due to a data event or from the emulator menu.

- The D0 and D1 flags are updated in advance.
- An EIT handling routine (user interrupt, NMI, or emulator) is executed.
- Upon returning from the EIT, the DIVOU/DIVOS instruction is executed and the D0 and D1 flags are updated to the same values as in (1).

2. The following behavior occurs when an ORCCR, STILM, MOV Ri or PS instruction is executed to enable a user interrupt or NMI source while that interrupt is in the active state.

- The PS register is updated in advance.
- The EIT handling routine (user interrupt, NMI, or emulator) is executed.
- Upon returning from the EIT, the above instructions are executed and the PS register is updated to the same value as in (1).

MB91350A Series

[Note on Debugger]

- Single-Step Execution of the RETI Command

If single-step execution is used in an environment where an interrupt occurs frequently, the corresponding interrupt handling routine will be executed repeatedly to the exclusion of other processing. This will prevent the main routine and the handlers for low priority level interrupts from being executed (For example, if the time-base timer interrupt is enabled, stepping over the RETI instruction will always break on the first line of the time-base timer interrupt handler) .
Disable the corresponding interrupt when the corresponding interrupt handling routine no longer needs debugging.

- Break Function

If the range of addresses that cause a hardware break (including event breaks) is set to the address of the current system stack pointer or to an area that contains the stack pointer, execution will break after each instruction regardless of whether the user program actually contains data access instructions.
To prevent this, do not set (word) access to the area containing the address of the system stack pointer as the target of the hardware break (including event breaks).

- Internal ROM area

Do not set DMAC transfer destination to an address in the internal ROM area.

- Simultaneous Occurrence of a Software Break (INTE instruction) and a User Interrupt/NMI

When a software break and a user interrupt/NMI occur simultaneously, the emulator debugger may react as follows.

- The debugger stops pointing to a location other than a programmed breakpoint.
- The program does not resume execution correctly after breaking.

If this symptom occurs, use a hardware break in place of the software break. When using a monitor debugger, do not set a break at the relevant location.

- A malfunction may occur if the stack pointer is in an area that is configured for DSU operand break. Do not set a data event breaks that apply to accesses to an area that contains the address of the system stack pointer.

MB91350A Series

BLOCK DIAGRAMS

MB91350A Series

MB91350A Series

CPU AND CONTROL UNIT

Internal architecture

The FR family CPU is a high performance core based on a RISC architecture while incorporating advanced instructions for embedded controller applications.

1. Features

- RISC architecture

Basic instructions: Executed at 1 instruction per cycle

- 32-bit architecture

General-purpose registers : 32-bit $\times 16$ registers

- 4GB linear memory space
- Built-in multiplier

32-bit $\times 32$-bit multiplication : 5 cycles
16 -bit $\times 16$-bit multiplication: 3 cycles

- Enhanced interrupt handling

Fast response speed (6 cycles)
Multiple interrupts supported
Level masking (16 levels)

- Enhanced I/O manipulation instructions

Memory-to-memory transfer instructions
Bit manipulation instructions

- High code efficiency

Basic instruction word length : 16-bit

- Low-power consumption

Sleep mode and stop mode

- Gear function

MB91350A Series

2. Internal architecture

The FR-family CPU has a Harvard architecture in which the instruction and data buses are separated. A 32 -bit $\leftrightarrow 16$-bit bus converter is connected to the 32 -bit bus (F-bus), providing an interface between the CPU and peripheral resources. A Harvard \leftrightarrow Princeton bus converter is connected to both the I-bus and D-bus, providing an interface between the CPU and the bus controller.

MB91350A Series

3. Programming model

- Basic programming model

MB91350A Series

4. Registers

- General purpose registers

	32-bit	[Initial Value]
Ro		Xxxx $\mathrm{xxxx}^{\text {H }}$
R1		...
...	\ldots	...
R12		...
R13	AC	\ldots
R14	FP	
R15	SP	00000000 H

Registers R0 to R15 are general-purpose registers. The registers are used as the accumulator and memory access pointers for CPU operations.

Of these 16 registers, the registers listed below are intended for special applications. Some instructions have been enhanced for this purpose.

R13: Virtual accumulator

R14: Frame pointer
R15: Stack pointer
The initial values of R0 to R14 after a reset are indeterminate. R15 is initialized to 00000000 н (SSP value).

- PS (Program Status)

This register holds the program status and is divided into the ILM, SCR, and CCR.
The undefined bits in the following illustration are all reserved bits. Reading these bits always returns " 0 ". Writing to them has no effect.

MB91350A Series

- CCR (Condition Code Register)

CCR									
	-	-	S	1	N	z	v	c	- -00XXXX

S : Stack flag. Cleared to "0" by a reset.
I : Interrupt enable flag. Cleared to "0" by a reset.
N : Negative flag. The initial value after a reset is indeterminate.
Z : Zero flag. The initial value after a reset is indeterminate.
V : Overflow flag. The initial value after a reset is indeterminate.
C : Carry flag. The initial value after a reset is indeterminate.

- SCR (System Condition Code Register)

Initial Value
XXOв

Flag for stepwise division
Stores intermediate data for stepwise division operations.
Step trace trap flag
A flag specifying whether the step trace trap function is enabled or not.
The step trace trap function is used by the emulator. This function cannot be used by a user program while using the emulator.

- ILM

	bit 20 bit 19 bit 18 bit 17 bit 16					al Value
ILM	ILM4	ILM3	ILM2	ILM1	ILMO	01111в

This register stores the interrupt level mask value. The value in the ILM register is used as the level mask. Initialized to "15" (01111в) by a reset.

- PC (Program Counter)
\square
The program counter contains the address of the instruction currently being executed.
The initial value after a reset is indeterminate.
- TBR (Table Base Register)

The table base register contains the start address of the vector table used for handling EIT events. The initial value after a reset is 000FFCOOн.

MB91350A Series

- RP (Return Pointer)

RP $\begin{array}{lll}\text { bit } 31 & & \text { bit } 0\end{array}$	$\begin{array}{l}\text { Initial Value } \\ \text { XXXXXXXX }\end{array}$		

The return pointer contains the address to which to return from a subroutine.
When the CALL instruction is executed, the value in the PC is transferred to the RP.
When the RET instruction is executed, the value in the RP is transferred to the PC.
The initial value after a reset is indeterminate.

- SSP (System Stack Pointer)

The SSP is the system stack pointer and functions as R15 when the S flag is " 0 ".
The SSP can be specified explicitly.
The SSP is also used as the stack pointer that specifies the stack for saving the PS and PC when an EIT event occurs.
The initial value after a reset is 00000000 н.
- USP (User Stack Pointer)

The USP is the user stack pointer and functions as R15 when the S flag is "1".
The USP can be specified explicitly.
The initial value after a reset is indeterminate.
This pointer cannot be used by the RETI instruction.

- Multiply \& Divide Registers

These registers are 32-bit wide registers that store the results of multiplication and division operations.
The initial value after a reset is indeterminate.

MB91350A Series

MODE SETTINGS

The FR family uses mode pins (MD2 to MDO) and a mode register (MODR) to set the operation mode.

1. Mode Pins

The MD2, MD1, and MD0 pins specify how the mode vector fetch is performed.

Mode Pins			Mode name	Reset vector access area	Remarks
MD2	MD1	MD0		Internal	
0	0	0	internal ROM mode vector	External	The bus width is specified by the mode register.
0	0	1	external ROM mode vector	Ex	

Values other than those listed in the table are prohibited.

2. Mode Register (MODR)

The data that is written to the mode register from the address at 000F FFF8H by the mode vector fetch is called the mode data.
After the mode register (MODR), has been set, the device operates according to the configured operating mode. The mode register is set by all of the reset sources. User programs cannot write to the mode register.
Note : No data exists at the address (000007 FFH) of the mode register in the previous FR family.
[Register description]

MODR	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0	Initial Value
000F FFF8\%	0	0	0	0	0	ROMA	WTH1	WTH0	ХХХХХХХХв
	Operating mode setting bits								

[bit7-bit3] Reserved bit
Always set these bits to "00000 ". Operation is not guaranteed if these bits are set to a value other than "00000 B ".

[bit2] ROMA (internal ROM enable bit)

The ROMA bit is used to set whether to enable the internal F-bus RAM and F-bus ROM areas.

ROMA	Function	Remarks
0	External ROM mode	Internal F-bus RAM is valid; the area (80000н to 10 0000н) of internal ROM is used as an external area.
1	Internal ROM mode	Internal F-bus RAM and F-bus ROM are valid.

[bit1, bit0] WTH1, WTH0 (Bus width setting bits)

Used to set the bus width to be used in external bus mode.
In external bus mode, the BW1 and BW0 bits of AMDO (CS0 area) are set to the value of these bits.

WTH1	WTH0	function	Remarks
0	0	8-bit bus width	external bus mode
0	1	16-bit bus width	Setting prohibited
1	0		single chip mode
1	1	single chip mode	

MB91350A Series

MEMORY SPACE

1. Memory space

The FR family has 4 Gbytes of logical address space (2^{32} addresses) available to the CPU by linear access.

- Direct Addressing Areas

The following address space areas are used as I/O areas.
These areas are called direct addressing areas. The addresses of operands in these areas can be specified directly within an instruction.
The size of the directly addressable areas depends on the size of the data being accessed as shown below.
\rightarrow Byte data access $\quad: 000$ н to 0FFн
\rightarrow Half word data access : 000 н to 1FFн
\rightarrow Word data access : 000н to 3FFн

2. Memory Map

Memory Map of MB91F355A/F353A/F357B/355A/353A

\begin{tabular}{|c|c|c|c|c|}
\hline \& Single chip mode \& Internal ROM external bus mode \& External ROM external bus mode \&

\hline 0000 0000 ${ }^{-}$ \& I/O \& I/O \& I/O \& \multirow[t]{10}{*}{\begin{tabular}{l}
Direct addressing area

Refer to

\end{tabular}}

\hline 0000 0400 $\mathrm{H}-\mathrm{-}$ \& I/O \& I/O \& I/O \&

\hline 0001 0000 ${ }^{-}$ \& Access disabled \& Access disabled \& Access disabled \&

\hline $0003 \mathrm{EOOOH}--$ \& Built-in RAM
8 Kbytes
(Execute instruction) \& Built-in RAM
8 Kbytes
(Execute instruction) \& Built-in RAM
8 Kbytes
(Execute instruction) \&

\hline 0004 0000н-- \& Built-in RAM 16 Kbytes (Stack) \& Built-in RAM 16 Kbytes (Stack) \& | Built-in RAM |
| :--- |
| 16 Kbytes (Stack) | \&

\hline 0004 4000н-- \& \multirow{2}{*}{Access disabled} \& Access disabled \& Access disabled \&

\hline \multirow[t]{2}{*}{$$
\begin{aligned}
& 00050000 \mathrm{H}-- \\
& 0008000 \mathrm{H}^{--}
\end{aligned}
$$} \& \& External area \& \&

\hline \& Built-in ROM 512 Kbytes \& Built-in ROM 512 Kbytes \& \multirow[t]{2}{*}{External area} \&

\hline 0010 0000 ${ }^{--}$ \& Access disabled \& External area \& \&

\hline \multicolumn{2}{|l|}{FFFF $\mathrm{FFFF}_{\mathrm{H}}{ }^{-}$} \& \& \&

\hline
\end{tabular}

- Each mode is set depending on the mode vector fetch after INIT is negated.
- The available area of internal RAM is restricted immediately after a reset is released. At least one NOP instruction is required immediately after overwriting the setting for the available RAM area.

MB91350A Series

Memory Map of MB91354A

	Single chip mode	Internal ROM external bus mode	External ROM external bus mode	
0000 0000H	1/O	I/O	I/O	$\begin{aligned} & \text { Direct } \\ & \text { addressing area } \end{aligned}$
0000 0400H	I/O	I/O	I/O	Refer to "■ I/O MAP".
0001 0000H	Access disabled	Access disabled	Access disabled	
0003 EOOOH	Built-in RAM 8 Kbytes (Execute instruction)	Built-in RAM 8 Kbytes (Execute instruction)	Built-in RAM 8 Kbytes (Execute instruction)	
0004 0000H	Built-in RAM 8 Kbytes (Stack)	Built-in RAM 8 Kbytes (Stack)	Built-in RAM 8 Kbytes (Stack)	
0004 2000H	Access disabled	Access disabled	Access disabled	
0008 0000н		External area	External area	
		Access disabled		
000A 0000H	Built-in ROM 384 Kbytes	Built-in ROM 384 Kbytes		
0010 0000 H	Access disabled	External area		
FFFF FFFFH				

- Each mode is set depending on the mode vector fetch after $\overline{\text { INIT }}$ is negated.
- The available area of internal RAM is restricted immediately after a reset is released. At least one NOP instruction is required immediately after overwriting the setting for the available RAM area.

MB91350A Series

Memory Map of MB91352A

	Single chip mode	Internal ROM external bus mode	External ROM external bus mode	
0000 0000H	I/O	I/O	I/O	Direct addressing area Refer to "■ I/O MAP".
0000 0400 ${ }_{\text {H }}$	I/O	I/O	I/O	
0001 0000H	Access disabled	Access disabled	Access disabled	
0003 EOOOH	Built-in RAM 8 Kbytes (Execute instruction)	Built-in RAM 8 Kbytes (Execute instruction)	Built-in RAM 8 Kbytes (Execute instruction)	
0004 0000	Built-in RAM 8 Kbytes (Stack)	Built-in RAM 8 Kbytes (Stack)	Built-in RAM 8 Kbytes (Stack)	
0004 2000H	Access disabled	Access disabled	Access disabled	
0005 0000н		External area		
	Built-in ROM 384 Kbytes	Built-in ROM 384 Kbytes	External area	
0010 0000H	Access disabled	External area		
FFFF FFFF ${ }_{\text {H }}$				

- Each mode is set depending on the mode vector fetch after $\overline{\mathrm{NIT}}$ is negated.
- The available area of internal RAM is restricted immediately after a reset is released. At least one NOP instruction is required immediately after overwriting the setting for the available RAM area.

MB91350A Series

Memory Map of MB91351A

	Single chip mode	Internal ROM external bus mode	External ROM external bus mode	
0000 0000н	I/O	I/O	I/O	Direct addressing area
	I/O	I/O	I/O	Refer to "■ I/O MAP".
0001 0000н	Access disabled	Access disabled	Access disabled	
0003 E000	Built-in RAM 8 Kbytes (Execute instruction)	Built-in RAM 8 Kbytes (Execute instruction)	Built-in RAM 8 Kbytes (Execute instruction)	
0004 0000н	Built-in RAM 16 Kbytes (Stack)	Built-in RAM 16 Kbytes (Stack)	Built-in RAM 16 Kbytes (Stack)	
0004 4000	Access disabled	Access disabled	Access disabled	
0005 0000н		External area		
	Built-in ROM 384 Kbytes	Built-in ROM 384 Kbytes	External area	
0010 0000H	Access disabled	External area		
FFFF FFFFH				

- Each mode is set depending on the mode vector fetch after $\overline{\mathrm{NIT}}$ is negated.
- The available area of internal RAM is restricted immediately after a reset is released. At least one NOP instruction is required immediately after overwriting the setting for the available RAM area.

MB91350A Series

Memory Map of MB91F356B

Single chip mode		Internal ROM external bus mode	External ROM external bus mode	
0000 0000н	I/O	I/O	I/O	Direct addressing area
0000 0400 ${ }^{\text {H }}$	I/O	1/0	I/O	Refer to "■ I/O MAP".
0001 0000 ${ }^{\text {H }}$	Access disabled	Access disabled	Access disabled	
0003 EOOOH	Built-in RAM 8 Kbytes (Execute instruction)	$\begin{array}{\|c\|} \hline \text { Built-in RAM } \\ 8 \text { Kbytes } \\ \text { (Execute instruction) } \end{array}$	Built-in RAM 8 Kbytes (Execute instruction)	
0004 0000H	Built-in RAM 16 Kbytes (Stack)	Built-in RAM 16 Kbytes (Stack)	Built-in RAM 16 Kbytes (Stack)	
0004 4000н	Access disabled	Access disabled	Access disabled	
0005 0000н		External area	External area	
0008 0000н		Access disabled		
000C 0000	Built-in ROM 256 Kbytes	Built-in ROM 256 Kbytes		
0010 0000	Access disabled	External area		
FFFF FFFFH				

- Each mode is set depending on the mode vector fetch after $\overline{\mathrm{NIT}}$ is negated.
- The available area of internal RAM is restricted immediately after a reset is released. At least one NOP instruction is required immediately after overwriting the setting for the available RAM area.

MB91350A Series

I/O MAP

This shows the locations of each of the registers for the peripheral resources in memory space.

[How to read the table]

Note : Initial values of register bits are represented as follows :
" 1 " : Initial value is " 1 ".
" 0 " : Initial value is " 0 ".
" X " : Initial value is " X ".
"-" : No physical register at this location

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
000000н		-	PDR2[R/W]B XXXXXXXX	PDR3[R/W]B XXXXXXXX	T-unit port data register*3
000004н	PDR4[R/W]B XXXXXXXX	PDR5[R/W]B XXXXXXXX	PDR6[R/W]B XXXXXXXX	-	
000008н	PDR8[R/W]B --XXXXXX	$\begin{aligned} & \text { PDR9[R/W]B } \\ & ---X X X X X ~ \end{aligned}$	PDRA[R/W]B $----X X X X$	$\mathrm{PDRB}[\mathrm{R} / \mathrm{W}] \mathrm{B}^{* 3}$ XXXXXXX	
00000Сн	$\underset{-----X X X ~}{\text { PDRC[R/WB }}$		-		
000010н	$\begin{aligned} & \text { PDRG[R/W]B*3 } \\ & \text {--XXXXXX } \end{aligned}$	$\begin{gathered} \hline \text { PDRH[R/W]B } \\ \text {--XXXXXX } \end{gathered}$	$\begin{aligned} & \text { PDRI[R/W]B } \\ & \text {--XXXXXX } \end{aligned}$	$\begin{aligned} & \hline \text { PDRJ[R/W]B*3 } \\ & \text { XXXXXXXX } \end{aligned}$	R-bus port data register*3
000014н	PDRK[R/W]B XXXXXXX	$\underset{-----X X}{ }$	PDRM[R/W]B --XXXXXX	$\begin{gathered} \text { PDRN[R/W]B } \\ \text {--XXXXXX } \end{gathered}$	
000018н	PDRO[R/W]B XXXXXXXX	$\begin{gathered} \hline \text { PDRP[R/W]B*3 } \\ ---X X X X \end{gathered}$	-	-	
$00001 \mathrm{CH}_{\text {H }}$	-				
000020н	-	-	-	-	Reserved
000024н	SMCS5[R/W]B, $\mathrm{H}^{* 3}$ 00000010_----00--		$\begin{gathered} \hline \text { SES5[R/W]B } \\ -----00 \end{gathered}$	$\begin{aligned} & \hline \text { SDR5[R/W]B*3 } \\ & \text { XXXXXXXX } \end{aligned}$	SIO5*3
000028н	SMCS6[R/W]B,H		$\begin{gathered} \text { SES6[R/W]B } \\ ----00 \end{gathered}$	SDR6[R/W]B XXXXXXXX	SIO6
00002Сн	SMCS7[R/W]B,H$00000010---00-$		SES7[R/W]B	SDR7[R/W]B XXXXXXXX	SIO7
000030н	-	-	$\begin{gathered} \text { CDCR5[R/W]B }{ }^{\star 3} \\ 0--1111 \end{gathered}$	-_ *1	SIO prescaler $5^{* 3}$
000034н	$\begin{gathered} \hline \text { CDCR6[R/W]B } \\ 0--1111 \end{gathered}$	-*1	$\begin{gathered} \hline \text { CDCR7[R/W]B } \\ 0---1111 \end{gathered}$	- ${ }^{* 1}$	SIO prescaler 6, 7
000038н	-	SRCL5[W]B*3	SRCL6[W]B	SRCL7[W]B \qquad	$\begin{aligned} & \hline \mathrm{SIO}_{\mathrm{to}} \\ & \mathrm{SIO7}^{* 3} \end{aligned}$
00003CH	-	-	--	-	Reserved
000040н	EIRRO[R/W]B,H,W 00000000	ENIRO[R/W]B,H,W 00000000	ELVRO[R/W]B,H,W00000000		External interrupts (INT0 to INT7)
000044н	$\underset{------0}{\text { DICR[R/W]B,H }}$	$\begin{gathered} \text { HRCL[R/W]B,H,W } \\ 0--11111 \end{gathered}$			Delay interrupt
000048н	TMRLR[W]H,W XXXXXXXX_XXXXXXXX		TMR[R]H,W XXXXXXXX_XXXXXXXX		Reload timer 0
00004CH			TMCSR[R/W]B,H,W ----0000_00000000		

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
000050н	TMRLR[W]H,W XXXXXXXX_XXXXXXXX		TMR[R]H,W XXXXXXXX_XXXXXXXX		Reload timer 1
000054н			$\begin{aligned} & \hline \text { TMCSR[R/ } \\ & \text {----0000_0 } \end{aligned}$	W]B,H,W 00000000	
000058н	TMRLR[W]H,W XXXXXXXX_XXXXXXXX		TMR[R]H,W XXXXXXXX_XXXXXXXX		Reload timer 2
00005Сн	-		TMCSR[R/W]B,H,W ----0000_00000000		
000060н	$\begin{gathered} \hline \text { SSR[R/W]B,H,W } \\ 00001000 \end{gathered}$	SIDR[R/W]B,H,W XXXXXXXX	$\begin{gathered} \hline \text { SCR[R/W]B,H,W } \\ 00000100 \end{gathered}$	SMR[R/W]B,H,W $00--0---$	UART0
000064н	UTIM[R]H(UTIMR[W]H) 00000000_00000000		$\begin{gathered} \text { DRCL[W]B } \\ \hline------- \end{gathered}$	$\underset{\substack{\text { UTIMC[R/W]B } \\ 0-00001}}{ }$	U-TIMER/ UARTO
000068н	SSR[R/W]B,H,W 00001000	SIDR/SODR [R/W]B,H,W XXXXXXXX	$\begin{aligned} & \text { SCR[R/W]B,H,W } \\ & 00000100 \end{aligned}$	SMR[R/W]B,H,W $00-----$	UART1
00006Сн	UTIM[R]H(UTIMR[W]H) 00000000_00000000		DRCL[W]B	$\underset{\substack{\text { UTIMC[R/W]B } \\ 0--00001}}{ }$	U-TIMER/ UART1
000070н	$\begin{gathered} \hline \text { SSR[R/W]B,H,W } \\ 00001000 \end{gathered}$	SIDR[R/W]B,H,W XXXXXXXX	$\begin{gathered} \hline \text { SCR[R/W]B,H,W } \\ 00000100 \end{gathered}$	$\begin{gathered} \hline \text { SMR[R/W]B,H,W } \\ 00--0--- \end{gathered}$	UART2
000074	UTIM[R]H(UTIMR[W]H) 00000000_00000000		DRCL[W]B	$\underset{\substack{\text { UTIMC[R/W]B } \\ 0-00001}}{ }$	U-TIMER/ UART2
000078н	$\begin{gathered} \text { ADCS2[R/W]B,H,W } \\ \text { X000XX00 } \end{gathered}$	$\begin{gathered} \text { ADCS1[R/W]B,H,W } \\ 000 \mathrm{X} 0000 \end{gathered}$	ADCT[R/W]H,W XXXXXXXX_XXXXXXXX		A/D converter successive approximations
00007Сн	$\begin{gathered} \text { ADTHO[R]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { ADTLO[R]B,H,W } \\ & \text { 000000XX } \end{aligned}$	$\begin{gathered} \text { ADTH1[R]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { ADTL1[R]B,H,W } \\ & 000000 X X \end{aligned}$	
000080н	$\begin{gathered} \text { ADTH2[R]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \text { ADTL2[R]B,H,W } \\ & \text { 000000XX } \end{aligned}$	$\begin{gathered} \text { ADTH3[R]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	$\begin{aligned} & \hline \text { ADTL3[R]B,H,W } \\ & 000000 X X \end{aligned}$	
000084н		DACR2 [R/W]B,H,W*3 -------0	DACR1[R/W]B,-H,W	DACRO[R/-----0	D/A
000088н		DADR2 [R/W]B,H,W*3 XXXXXXXX	$\begin{array}{\|c} \text { DADR1[R/W]B,H,W } \\ \text { XXXXXXXX } \end{array}$	$\begin{gathered} \text { DADRO[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	converter*3
00008Сн	-	-	-	--	Reserved
000090н	-	-	\longrightarrow	- - * ${ }^{*}$	Reserved
000094н	IBCR[R/W]B,H,W 00000000	$\begin{gathered} \hline \text { IBSR[R]B,H,W } \\ 00000000 \end{gathered}$	ITBA[R/W]B,H,W$----00 _00000000$		$1^{2} \mathrm{C}$ interface
000098н	ITMK[R/W]B,H,W 00----11_11111111		$\begin{gathered} \hline \text { ISMK[R/W]B,H,W } \\ 01111111 \end{gathered}$	$\begin{gathered} \hline \text { ISBA[R/W]B,H,W } \\ -0000000 \end{gathered}$	
00009Сн	- *2	IDAR[R/W]B,H,W 00000000	$\begin{gathered} \hline \text { ICCR[R/W]B,H,W } \\ 0-011111 \end{gathered}$	$\begin{gathered} \text { IDBL[R/W]B,H,W } \\ \substack{------0} \end{gathered}$	

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
0000АОн		-*1		-*1	
0000A4H		-*1	-__ *1	-*1	Reserved
0000А8н	TMRLR[W]H,W XXXXXXXX_XXXXXXXX		TMR[R]H,W XXXXXXXX_XXXXXXXX		Reload timer 3
0000ACH	-		TMCSR[R/W]B,H,W ----0000_00000000		
0000B0н	$\begin{gathered} \hline \text { RCR1[W]B,H,W*3 } \\ 00000000 \end{gathered}$	RCRO[W]B,H,W 00000000	UDCR1[R]B,H,W*3 00000000	UDCRO[R]B,H,W 00000000	8/16-bit Up/Down counter $0,1^{* 3}$
0000B4н	$\begin{gathered} \text { CCRHO[R/W]B,H,W } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { CCRLO[R/W]B,H,W } \\ & 00001000 \end{aligned}$		$\begin{gathered} \text { CSRO[R/W]B,H,W } \\ 00000000 \end{gathered}$	
0000B8н	$\begin{gathered} \hline \text { CCRH1[R/W]B,H,W*3 } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { CCRL1[R/W]B,H,W*3 } \\ 00001000 \end{gathered}$		$\begin{gathered} \text { CSR1[R/W]B,H,W*3 } \\ 00000000 \end{gathered}$	
0000BCH	-	-	-	-	Reserved
0000COн	$\begin{gathered} \hline \text { SSR[R/W]B,H,W } \\ 00001000 \end{gathered}$	$\underset{\substack{\text { SIDR[R/W]B,H,W,W } \\ X X X X X X X}}{ }$	$\begin{gathered} \hline \text { SCR[R/W]B,H,W } \\ 00000100 \end{gathered}$	$\begin{gathered} \hline \text { SMR[R/W]B,H,W } \\ 00--0--- \end{gathered}$	UART3
0000C4н	UTIM[R]H(UTIMR[W]H) 00000000_00000000			$\underset{\substack{\text { UTIMC[R/W]B } \\ 0--00001}}{ }$	U-TIMER/ UART3
0000С8н	$\begin{gathered} \text { SSR[R/W]B,H,W*3 } \\ 00001000 \end{gathered}$	SIDR[R/W]B,H,W*3 XXXXXXXX	$\begin{gathered} \text { SCR[R/W]B,H,W*3 } \\ 00000100 \end{gathered}$	$\begin{gathered} \text { SMR[R/W]B,H,W*3 } \\ 00--0--- \end{gathered}$	UART4*3
0000СС ${ }_{\text {H }}$	$\begin{aligned} & \hline \text { UTIM[R]H(UTIMR[W]H)*3} \\ & 00000000 _00000000 \end{aligned}$		-	$\begin{gathered} \hline \text { UTIMC[R/W]B*3 } \\ 0--00001 \end{gathered}$	U-TIMER/ UART4 ${ }^{\star 3}$
0000DOн	EIRR1[R/W]B,H,W*3 00000000	ENIR1[R/W]B,H,W*3 00000000	ELVR1[R/W]B,H,W*300000000		External interrupts (INT8 to INT15)*3
0000D4н	$\begin{gathered} \text { TCDT[R/W]H,W } \\ 00000000 _00000000 \end{gathered}$		-	TCCS[R/W]B,H,W 00000000	16-bit free-run timer
0000D8н	IPCP1[R]H,W XXXXXXXX_XXXXXXXX		IPCPO[R]H,W XXXXXXXX_XXXXXXXX		16-bit input capture
0000DCH	IPCP3[R]H,W XXXXXXXX_XXXXXXXX		$\begin{gathered} \text { IPCP2[R]H,W } \\ \text { XXXXXXXX_XXXXXXXX } \end{gathered}$		
0000ЕОн	-	$\begin{gathered} \text { ICS23[R/W]B,H,W } \\ 00000000 \end{gathered}$		$\begin{gathered} \text { ICS01[R/W]B,H,W } \\ 00000000 \end{gathered}$	

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
0000E4н	OCCP1[R/W]H,W*3 XXXXXXXX_XXXXXXXX		OCCPO[R/W]H,W XXXXXXXX_XXXXXXXX		16-bit output compare*3
0000Е8н	ОССР3[R/W]H,W*3 XXXXXXXX_XXXXXXXX		OCCP2[R/W]H,W XXXXXXXX_XXXXXXXX		
0000EСн	OCCP5[R/W]H,W*3 XXXXXXXX_XXXXXXXX		OCCP4[R/W]H,W*3 XXXXXXXX_XXXXXXXX		
0000F0н	OCCP7[R/W]H,W*3 XXXXXXXX_XXXXXXXX		OCCP6[R/W]H,W*3 XXXXXXXX_XXXXXXXX		
0000F4н	$\begin{gathered} \hline \text { OCS23[R/W]B,H,W } \\ \text { 11101100_00001100 } \end{gathered}$		$\begin{gathered} \hline \text { OCS01[R/W]B,H,W } \\ \text { 11101100_00001100 } \end{gathered}$		
0000F8н	$\begin{aligned} & \text { OCS67[R/W]B,H,W*3 } \\ & 11101100 _00001100 \end{aligned}$		$\begin{aligned} & \hline \text { OCS45[R/W]B,H,W*3 } \\ & 11101100 _00001100 \end{aligned}$		
0000FCH	-	-	-	-	Reserved
$\begin{gathered} \hline 000100_{\mathrm{H}} \\ \text { to } \\ 000114 \mathrm{H} \end{gathered}$	-	-	-	-	Reserved
000118н	$\begin{gathered} \hline \text { GCN10[R/W]H } \\ 00110010 _00010000 \end{gathered}$		-	$\begin{gathered} \hline \text { GCN20[R/W]B } \\ 00000000 \end{gathered}$	PPG control 0
$00011 \mathrm{CH}_{\mathrm{H}}$			-		Reserved
000120н	$\begin{gathered} \hline \text { PTMRO[R]H,W } \\ \text { 1111111_1111111 } \end{gathered}$		PCSRO[W]H,W XXXXXXXX_XXXXXXXX		PPGO
000124н	PDUTO[W]H,W XXXXXXXX_XXXXXXXX		PCNHO[R/W]B,H,W PCNLO[R/W]B,H,W 00000000 00000000		
000128н	$\begin{gathered} \hline \text { PTMR1[R]H,W*3 } \\ \text { 11111111_11111111 } \end{gathered}$		PCSR1[W]H,W*3 XXXXXXXX_XXXXXXXX		PPG1*3
00012Сн	PDUT1[W]H,W*3 XXXXXXXX_XXXXXXXX		PCNH1[R/W]B,H,W*3 00000000 $\begin{array}{c}\text { PCNL1[R/W]B,H,W*3 } \\ 00000000\end{array}$		
000130н	$\begin{gathered} \text { PTMR2[R]H,W } \\ \text { 11111111_1111111 } \end{gathered}$		PCSR2[W]H,W XXXXXXXX_XXXXXXXX		PPG2
000134H	PDUT2[W]H,W XXXXXXXX_XXXXXXXX		PCNH2[R/W]B,H,W PCNL2[R/W]B,H,W 00000000 00000000		
000138н	$\begin{gathered} \hline \text { PTMR3[R]H, }{ }^{* 3} \\ 11111111 _11111111 \end{gathered}$		$\begin{gathered} \text { PCSR3[W]H,W*3 } \\ \text { XXXXXXXX_XXXXXXXX } \end{gathered}$		PPG3*3
00013С ${ }_{\text {н }}$	PDUT3[W]H,W*3 XXXXXXXX_XXXXXXXX		PCNH3[R/W]B,H,W*3 PCNL3[R/W]B,H,W*3 00000000 00000000		
000140н	$\begin{gathered} \text { PTMR4[R]H,W } \\ \text { 11111111_11111111 } \end{gathered}$		PCSR4[W]H,W XXXXXXXX_XXXXXXXX		PPG4
000144н	PDUT4[W]H,W XXXXXXXX_XXXXXXXX		PCNH4[R/W]B,H,W 00000000PCNL4[R/W]B,H,W 00000000		

(Continued)

MB91350A Series

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
$\begin{gathered} \hline 000284_{H} \\ \text { to } \\ 00038 \mathrm{C}_{\mathrm{H}} \end{gathered}$					Reserved
000390н	DRLR[R/W]B,H,W*2			-	Limit on D-bus RAM capacity
$\begin{gathered} \text { 000394н } \\ \text { to } \\ 0003 \text { ЕСн } \end{gathered}$					Reserved
0003FOн	BSDO[W]XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				Bit search module
0003F4H	BSD1[R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
0003F8н	BSDC[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
0003 FCH					
000400н	$\begin{gathered} \text { DDRG[R/W]B*3 } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRH[R/W]B } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRI[R/W]B } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRJ[R/W]B*3 } \\ 00000000 \end{gathered}$	R-bus data direction register*3
000404H	$\begin{gathered} \text { DDRK[R/W]B } \\ 00000000 \end{gathered}$	$\begin{gathered} \text { DDRL[R/W]B } \\ -----00 \end{gathered}$	$\begin{gathered} \text { DDRM[R/W]B } \\ --000000 \end{gathered}$	$\begin{gathered} \text { DDRN[R/W]B } \\ --000000 \end{gathered}$	
000408н	$\begin{gathered} \hline \text { DDRO[R/W]B } \\ 00000000 \end{gathered}$	$\begin{gathered} \hline \text { DDRP[R/W]B*3 } \\ ---0000 \end{gathered}$			
$00040 \mathrm{CH}_{\mathrm{H}}$	-				
000410н	$\begin{gathered} \hline \text { PFRG[R/W]B*3 } \\ --00-00- \end{gathered}$	$\begin{gathered} \hline \text { PFRH[R/W]B } \\ --00-00- \end{gathered}$	$\begin{aligned} & \hline \text { PFRI[R/W]B } \\ & --00-00- \end{aligned}$	-	R-bus port function register*3
000414H	-	PFRL[R/W]B	$\begin{gathered} \text { PFRM[R/W]B } \\ --00-00- \end{gathered}$	$\begin{gathered} \text { PFRN[R/W]B } \\ --000000 \end{gathered}$	
000418н	$\begin{aligned} & \text { PFRO[R/W]B } \\ & 00000000 \end{aligned}$	$\begin{gathered} \text { PFRP[R/W]B*3 } \\ ---0000 \end{gathered}$			
$00041 \mathrm{CH}^{\text {H }}$	-				Reserved
000420н	$\begin{gathered} \hline \text { PCRG[R/W]B*3 } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { PCRH[R/W]B } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { PCRI[R/W]B } \\ --000000 \end{gathered}$	-	R-bus pull-up control register*3
000424H	-	-	PCRM[R/W]B --000000	$\begin{gathered} \text { PCRN[R/W]B } \\ --000000 \end{gathered}$	
000428	$\begin{aligned} & \hline \text { PCRO[R/W]B } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { PCRP[R/W]B }{ }^{\star 3} \\ ---0000 \end{gathered}$	-	-	
$\begin{aligned} & 00042 \mathrm{C}_{\mathrm{H}} \\ & \text { to } \\ & 00043 \mathrm{C}_{\mathrm{H}} \end{aligned}$					Reserved

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
000440н	$\begin{gathered} \hline \text { ICROO[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \hline \text { ICR01[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR02[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR03[R/W]B,H,W } \\ ---11111 \end{gathered}$	Interrupt controller unit
0004444	$\begin{gathered} \text { ICR04[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR05[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR06[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR07[R/W]B,H,W } \\ ---11111 \end{gathered}$	
000448	$\begin{gathered} \hline \text { ICR08[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR09[R/W]B,H,W } \\ \text {---11111 } \end{gathered}$	$\begin{gathered} \text { ICR1O[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR11[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	
00044CH	$\begin{gathered} \text { ICR12[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR13[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR14[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR15[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	
000450н	$\begin{gathered} \hline \text { ICR16[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR17[R/W]B,H,W } \\ \text {---11111 } \end{gathered}$	$\begin{gathered} \text { ICR18[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR19[R/W]B,H,W } \\ \substack{---11111} \end{gathered}$	
000454H	$\begin{gathered} \text { ICR20[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR21[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR22[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \hline \text { ICR23[R/W]B,H,W } \\ ---11111 \end{gathered}$	
000458н	$\begin{gathered} \hline \text { ICR24[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR25[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR26[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR27[R/W]B,H,W } \\ ---11111 \end{gathered}$	
00045Сн	$\begin{gathered} \hline--11111 \\ \hline \text { ICR28[R/W]B,H,W } \end{gathered}$	$\begin{gathered} \hline \text { ICR29[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR30[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR31[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	
000460н	$\begin{gathered} \text { ICR32[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \hline \text { ICR33[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR34[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR35[R/W]B,H,W } \\ ---11111 \end{gathered}$	
000464H	$\begin{gathered} \hline \text { ICR36[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR37[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR38[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR39[R/W]B,H,W } \\ ---11111 \end{gathered}$	
000468н	$\begin{gathered} \text { ICR4O[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \text { ICR41[R/W]B,H,W } \\ \substack{--11111} \end{gathered}$	$\begin{gathered} \text { ICR42[R/W]B,H,W } \\ \begin{array}{c} --11111 \end{array} \end{gathered}$	$\begin{gathered} \text { ICR43[R/W]B,H,W } \\ ---11111 \end{gathered}$	
00046CH	$\begin{gathered} \hline \text { ICR44[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR45[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR46[R/W]B,H,W } \\ ---11111 \end{gathered}$	$\begin{gathered} \hline \text { ICR47[R/W]B,H,W } \\ ---11111 \end{gathered}$	
$\begin{gathered} \hline 000470_{\mathrm{H}} \\ \text { to } \\ 00047 \mathrm{C}_{\mathrm{H}} \end{gathered}$					
000480н	RSRR[R/W]B,H,W 10000000	$\begin{gathered} \text { STCR[R/W]B,H,W } \\ 00110011 \end{gathered}$	TBCR[R/W]B,H,W 00XXXXOO	CTBR[W]B,H,W XXXXXXXX	unitClock control
000484н	$\begin{gathered} \hline \text { CLKR[R/W]B,H,W } \\ 00000000 \end{gathered}$	WPR[W]B,H,W XXXXXXXX	DIVRO[R/W]B,H,W 00000011	$\begin{gathered} \hline \text { DIVR1[R/W]B,H,W } \\ 00000000 \end{gathered}$	
000488н	-		OSCCR[R/W]B XXXXXXX0	-	
00048CH	WPCR[R/W]B $00---000$	-	-	-	Clock timer
000490н	$\begin{gathered} \text { OSCR[R/W]B } \\ 00--000 \end{gathered}$	-	-	-	Main clock oscillation stabilization wait timer
000494н	$\begin{aligned} & \hline \text { RSTOPO[W]B } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { RSTOP1[W]B } \\ & 00000000 \end{aligned}$	$\begin{aligned} & \hline \text { RSTOP2[W]B } \\ & 00000000 \end{aligned}$	$\begin{gathered} \hline \text { RSTOP3[W]B } \\ \text {-----000 } \end{gathered}$	Peripheral stop control

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
000498н	-	- -	--	\square	Reserved
$\begin{gathered} 00049 \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 0005 \mathrm{FC}_{\mathrm{H}} \end{gathered}$					Reserved
000600н	-	-	$\begin{gathered} \hline \text { DDR2[R/W]B } \\ 00000000 \end{gathered}$	DDR3[R/W]B 00000000	T-unit data direction register*3
000604н	DDR4[R/W]B 00000000	DDR5[R/W]B 00000000	$\begin{gathered} \text { DDR6[R/W]B } \\ 00000000 \end{gathered}$	-	
000608н	$\begin{gathered} \hline \text { DDR8[R/W]B } \\ --000000 \end{gathered}$	$\begin{gathered} \hline \text { DDR9[R/W]B } \\ ---00000 \end{gathered}$	DDRA[R/W]B ---0000	$\begin{gathered} \hline \text { DDRB[R/W]B*3 } \\ 00000000 \end{gathered}$	
00060Сн	$\begin{gathered} \hline \text { DDRC[R/W]B*3 } \\ ----000 \end{gathered}$		-		
000610н	-	-	-	-	T-unit port function register*3
000614н	-	-	$\begin{gathered} \hline \text { PFR6[R/W]B } \\ 11111111 \end{gathered}$	-	
000618н	PFR8[R/W]B --1--0--	PFR9[R/W]B $---010-1$	PFRA[R/W]B ----1111	PFRB1[R/W]B*3 00000000	
00061Сн	$\begin{gathered} \text { PFRB2[R/W]B*3 } \\ 00---00 \end{gathered}$	$\begin{gathered} \text { PFRC[R/W]B*3 } \\ ---00000 \end{gathered}$	-	-	
000620н	-	-	PCR2[R/W]B 00000000	PCR3[R/W]B 00000000	T-unit pull-up control register*3
000624н	PCR4[R/W]B 00000000	PCR5[R/W]B 00000000	PCR6[R/W]B 00000000	-	
000628н	PCR8[R/W]B --000000	PCR9[R/W]B 00000000	PCRA[R/W]B 00000000	$\begin{aligned} & \hline \text { PCRB[R/W]B*3 } \\ & 00000000 \end{aligned}$	
00062Сн	$\begin{gathered} \text { PCRC[R/W]B*3 } \\ ----000 \end{gathered}$	-	-	-	
$\begin{gathered} \hline 000630_{H} \\ \text { to } \\ 00063 \mathrm{C}_{\mathrm{H}} \end{gathered}$					Reserved

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
000640н	ASRO[R/W]H,W 00000000_00000000		ACRO[R/W]B,H,W 1111XX00_00000000		
000644н	ASR1[R/W]H,W 00000000_00000000		ACR1[R/W]B,H,W XXXXXXXX_XXXXXXXX		
000648н	$\begin{gathered} \text { ASR2[R/W]H,W } \\ 00000000 _00000000 \end{gathered}$		ACR2[R/W]B,H,W XXXXXXXX_XXXXXXXX		
00064Сн	$\begin{gathered} \text { ASR3[R/W]H,W } \\ 00000000 _00000000 \end{gathered}$		ACR3[R/W]B,H,W XXXXXXXX_XXXXXXXX		
000650н	ASR4[R/W]H,W$00000000 _00000000$		ACR4[R/W]B,H,W XXXXXXXX_XXXXXXXX		
000654H	$\begin{gathered} \hline \text { ASR5[R/W]H,W } \\ 00000000 _00000000 \end{gathered}$		ACR5[R/W]B,H,W XXXXXXXX_XXXXXXXX		
000658н	$\begin{gathered} \text { ASR6[R/W]H,W } \\ 00000000 _00000000 \end{gathered}$		ACR6[R/W]B,H,W XXXXXXXX_XXXXXXXX		
00065Сн	$\begin{gathered} \text { ASR7[R/W]H,W } \\ 00000000 _00000000 \end{gathered}$		ACR7[R/W]B,H,W XXXXXXXX_XXXXXXXX		T-unit
000660н	AWRO[R/W]B,H,W$01111111 _11111111$		AWR1[R/W]B,H,W XXXXXXXX_XXXXXXXX		
000664H	AWR2[R/W]B,H,W XXXXXXXX_XXXXXXXX		AWR3[R/W]B,H,W XXXXXXXX_XXXXXXXX		
000668н	AWR4[R/W]B,H,W XXXXXXXX_XXXXXXXX		AWR5[R/W]B,H,W XXXXXXXX_XXXXXXXX		
00066CH	AWR6[R/W]B,H,W XXXXXXXX_XXXXXXXX		AWR7[R/W]B,H,W XXXXXXXX_XXXXXXXX		
000670н	-				
000674	-				
000678	$\begin{gathered} \text { IOWRO[R/W]B,H,W } \\ \text { XXXXXXXX } \end{gathered}$	IOWR1[R/W]B,H,W XXXXXXXX	$\begin{array}{c\|} \text { IOWR2[R/W]B,H,W } \\ \text { XXXXXXXX } \end{array}$	\qquad	
00067С ${ }_{\text {H }}$	-				
000680н	$\begin{gathered} \text { CSER[R/W]B,H,W } \\ 00000001 \end{gathered}$	-	\square	$\begin{aligned} & \text { TCR[W]B,H,W } \\ & \text { 0000XXXX } \end{aligned}$	
$\begin{gathered} \hline 000684 н \\ \text { to } \\ 0007 \mathrm{~F} 8 \mathrm{H} \end{gathered}$			-		Reserved
0007FCH	-	$\begin{aligned} & \hline \text { MODR[W] }{ }^{* 5} \\ & \text { XXXXXX } \end{aligned}$	-	-	Mode register
			-		Reserved

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
000B00н	$\begin{gathered} \hline \text { ESTSO[R/W] } \\ \text { X0000000 } \end{gathered}$	$\begin{aligned} & \text { ESTS1[R/W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \hline \text { ESTS2[R] } \\ 1 X X X X X X \end{gathered}$		DSU (EVA chip only)
000B04н	$\begin{gathered} \text { ECTLO[R/W] } \\ 0 \times 000000 \end{gathered}$	$\begin{gathered} \text { ECTL1[R/W] } \\ 00000000 \end{gathered}$	$\begin{aligned} & \text { ECTL2[W] } \\ & 000 \times 0000 \end{aligned}$	$\begin{gathered} \text { ECTL3[R/W] } \\ \text { 00X00X11 } \end{gathered}$	
000B08н	ECNTO[W] XXXXXXXX	$\begin{aligned} & \text { ECNT1[W] } \\ & \text { XXXXXXXX } \end{aligned}$	$\begin{gathered} \text { EUSA[W] } \\ \text { XXXOOOOD } \end{gathered}$	$\begin{aligned} & \text { EDTC[W] } \\ & \text { 0000XXXX } \end{aligned}$	
000B0С ${ }^{\text {¢ }}$	EWPT[R]$00000000 _00000000$				
000B10н	$\begin{gathered} \text { EDTRO[W] } \\ \text { XXXXXXX_XXXXXXX} \end{gathered}$		$\begin{gathered} \text { EDTR1[W] } \\ \text { XXXXXXXX_XXXXXXX } \end{gathered}$		
$\begin{gathered} \text { 000B14н } \\ \text { to } \\ 000 \mathrm{~B} 1 \mathrm{C}_{\mathrm{H}} \end{gathered}$					
000B20н	EIAO[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B24н	EIA1[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B28н	EIA2[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B2CH	EIA3[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B30н	EIA4[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B34 ${ }_{\text {H }}$	EIA5[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B38 ${ }^{\text {- }}$	EIA6[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B3CH	EIA7[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B40н	EDTA[R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B44н	EDTM[R/W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B48 +	EOAO[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B4CH	EOA1[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B50н					

(Continued)

MB91350A Series

Address	Register				Block
	+0	+1	+2	+3	
000B54н	EPSR[R/W]XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				DSU (EVA chip only)
000B58H	EIAMO[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B5CH	EIAM1[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B60н	EOAMO/EODMO[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B64н	EOAM1/EODM1[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B68н	EODO[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
000B6CH	EOD1[W] XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
$\begin{aligned} & \text { O00B70н } \\ & \text { to } \\ & 000 \mathrm{BFC} \end{aligned}$	-				Reserved
000C00н	Test register (access is not allowed.)				Interrupt controller unit
$\begin{aligned} & \text { 000C04н } \\ & \text { to } \\ & 000 \mathrm{C} 14 \mathrm{H} \end{aligned}$	Test register (access is not allowed.)				R-bus test
$\begin{aligned} & \hline 000 \mathrm{C} 18 \mathrm{н} \\ & \text { to } \\ & 000 \mathrm{FFC} \end{aligned}$	-				Reserved
001000н	DMASAO[R/W]W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				DMAC
001004н	DMADAO[R/W]W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001008н	DMASA1[R/W]W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
00100Cн	DMADA1[R/W]W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
001010н		XxXXXXXX_XX			
001014		XXXXXXXX_XX			
001018 ${ }^{\text {H }}$		XXXXXXXX_XX			
00101CH	DMADA3[R/W]W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				

(Continued)

MB91350A Series

(Continued)

Address	Register				Block
	+0	+1	+2	+3	
001020н	DMASA4[R/W]WXXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				DMAC
001024	DMADA4[R/W]W XXXXXXXX_XXXXXXXX_XXXXXXXX_XXXXXXXX				
$\begin{gathered} \hline 001028 \text { н } \\ \text { to } \\ 001 \text { FFC } \end{gathered}$					Reserved
007000н	$\begin{aligned} & \hline \text { FLCR[R/W] } \end{aligned}$	-	-	-	Flash memory
007004н	$\begin{gathered} \text { FLWC[R/W] } \\ 00010011 \end{gathered}$	-	-	-	
007008н	-	-	-	-	
$00700 \mathrm{CH}_{\text {H }}$	-	- -	-	-	
007010н	-	- -	- -	-	
$\begin{gathered} \hline 007014_{\mathrm{H}} \\ \text { to } \\ 0070 \mathrm{FF} \end{gathered}$					Reserved

*1: This is a test register. Access is disabled.
*2 : The available area of internal RAM is restricted immediately after a reset is released. This setting therefore needs to be changed before using the internal RAM.
In addition, at least one NOP instruction is required immediately after overwriting the setting for the available RAM area.
*3 : This register does not exist on the MB91F353A/353A/352A/351A. Access is disabled.
*4: The 16 low-order bits (DTC [15:0]) of DMACA0 to DMACA4 cannot be byte-accessed.
*5 : This register is accessed by the mode vector fetch. It cannot be accessed during normal operation.

MB91350A Series

3. Vector table

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	Resource number
	10	16				
Reset	0	00	-	3FCH	000FFFFFC ${ }_{\text {н }}$	-
Mode vector	1	01	-	3F8H	000FFFF84	-
System reserved	2	02	-	3F4н	000FFFF44	-
System reserved	3	03	-	3FOH	000FFFFFOн	-
System reserved	4	04	-	3ЕС ${ }_{\text {H }}$	000FFFEEC ${ }_{\text {н }}$	-
System reserved	5	05	-	3Е8н	000FFFE8н	-
System reserved	6	06	-	3E4H	000FFFE4н	-
Coprocessor absent trap	7	07	-	3ЕОн	000FFFEOH	-
Coprocessor error trap	8	08	-	3DCH	000FFFDCH	-
INTE instruction	9	09	-	3D8H	000FFFD8 ${ }_{\text {- }}$	-
System reserved	10	OA	-	3D4H	000FFFD 4 н	-
System reserved	11	OB	-	3DOH	000FFFDD ${ }_{\text {¢ }}$	-
Step trace trap	12	OC	-	3СС ${ }_{\text {H }}$	000FFFCCH	-
NMI request (tool)	13	OD	-	3С8н	000FFFC8 ${ }_{\text {H }}$	-
Undefined instruction exception	14	OE	-	3С4	000FFFC4 ${ }_{\text {¢ }}$	-
NMI request	15	OF	15 (FH) fixed	3С0н	000FFFCOH	-
External interrupt 0	16	10	ICROO	3BCH	000 FFFBC H	6
External interrupt 1	17	11	ICR01	ЗВ8н	000FFFB88	7
External interrupt 2	18	12	ICR02	3В4н	000FFFB4 ${ }_{\text {н }}$	11
External interrupt 3	19	13	ICR03	3ВОн	000FFFBOн	-
External interrupt 4	20	14	ICR04	ЗАС	000FFFACH	-
External interrupt 5	21	15	ICR05	ЗА8н	000FFFA8 ${ }^{\text {H }}$	-
External interrupt 6	22	16	ICR06	ЗА4н	000FFFA4 ${ }_{\text {¢ }}$	-
External interrupt 7	23	17	ICR07	ЗАОн	000FFFAOH	-
Reload timer 0	24	18	ICR08	39С ${ }_{\text {н }}$	000FFFF9C ${ }_{\text {H }}$	8
Reload timer 1	25	19	ICR09	398н	000FFF984	9
Reload timer 2	26	1A	ICR10	394н	000FFF94н	10
UART0 (Reception completed)	27	1B	ICR11	390н	000FFF90н	0
UART1 (Reception completed)	28	1C	ICR12	38 CH	000FFFF8C ${ }_{\text {H }}$	1
UART2 (Reception completed)	29	1D	ICR13	388\%	000FFF888	2
UART0 (Transmission completed)	30	1E	ICR14	384н	000FFF844	3
UART1 (Transmission completed)	31	1F	ICR15	380н	000FFF80н	4
UART2 (Transmission completed)	32	20	ICR16	37С ${ }^{\text {¢ }}$	000FFF7C ${ }_{\text {н }}$	5
DMAC0 (end, error)	33	21	ICR17	378	000FFF784	-
DMAC1 (end, error)	34	22	ICR18	374	000FFF744	-

(Continued)

MB91350A Series

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	Resource number
	10	16				
DMAC2 (end, error)	35	23	ICR19	370 ${ }^{\text {H}}$	000FFF70н	-
DMAC3 (end, error)	36	24	ICR20	$36 \mathrm{C}_{\mathrm{H}}$	000FFF6CH	-
DMAC4 (end, error)	37	25	ICR21	368H	000FFFF68	-
A/D	38	26	ICR22	364	000FFFF64н	15
${ }^{12} \mathrm{C}$	39	27	ICR23	360н	000FFF66 ${ }^{\text {¢ }}$	-
System reserved	40	28	ICR24	$35 \mathrm{C}_{\mathrm{H}}$	000FFF5 5 н	-
System reserved	41	29	ICR25	358H	000FFF58	12
SIO 6	42	2A	ICR26	354н	000FFFF54н	13
SIO 7	43	2B	ICR27	350н	000FFF550н	14
UART3 (Reception completed)	44	2C	ICR28	$34 \mathrm{C}_{\mathrm{H}}$	000FFF4Cн	-
UART3 (Transmission completed)	45	2D	ICR29	348н	000FFF48	-
Reload timer 3/main oscillation stabilization wait timer	46	2E	ICR30	344H	000FFFF44	-
Timebase timer overflow	47	2F	ICR31	340H	000FFFF40н	-
System reserved	48	30	ICR32	33CH	000FFFF3Cн	-
Clock counter	49	31	ICR33	338 ${ }^{\text {¢ }}$	000FFF38	-
U/D Counter 0	50	32	ICR34	334	000FFF34н	-
System reserved	51	33	ICR35	330н	000FFFF30н	-
PPG 0	52	34	ICR36	$32 \mathrm{CH}_{\mathrm{H}}$	000FFF2CH	-
PPG 2	53	35	ICR37	328H	000FFF28н	-
PPG 4	54	36	ICR38	324н	000FFF24н	-
16-bit free-run timer	55	37	ICR39	320 H	000FFF20н	-
ICU 0 (capture)	56	38	ICR40	31 CH	000FFF1Cн	-
ICU 1 (capture)	57	39	ICR41	318н	000FFF18н	-
ICU 2/3 (capture)	58	3A	ICR42	314H	000FFFF14	-
OCU 0 (match)	59	3B	ICR43	310н	000FFFF10н	-
OCU 2 (match)	60	3C	ICR44	$30 \mathrm{CH}_{\mathrm{H}}$	000FFFF0CH	-
System reserved	61	3D	ICR45	308H	000FFF08	-
System reserved	62	3E	ICR46	304	000FFFF04н	-
Interrupt delay source bit	63	3F	ICR47	300 H	000FFFF00	-
System reserved (Used by REALOS)	64	40	-	2 FCH	000FFEFCH	-
System reserved (Used by REALOS)	65	41	-	2F8H	000FFEF8 ${ }_{\text {¢ }}$	-
System reserved	66	42	-	2F4H	000FFEF4 ${ }_{\text {н }}$	-
System reserved	67	43	-	2FOH	000FFEFOH	-
System reserved	68	44	-	2 ECH	000FFEEC ${ }_{\text {H }}$	-

(Continued)

MB91350A Series

(Continued)

Interrupt source	Interrupt number		Interrupt level	Offset	TBR default address	Resource number
	10	16				
System reserved	69	45	-	2Е8н	000FFEE8 ${ }_{\text {н }}$	-
System reserved	70	46	-	2E4н	000FFEE4 4	-
System reserved	71	47	-	2EOH	000FFEEOн	-
System reserved	72	48	-	2DCH	000FFEDC ${ }_{\text {н }}$	-
System reserved	73	49	-	2D8н	000FFED8 ${ }_{\text {H }}$	-
System reserved	74	4A	-	2D4н	000FFED4 4	-
System reserved	75	4B	-	2DOH	000FFEDOH	-
System reserved	76	4C	-	2СС ${ }_{\text {H }}$	000FFECC	-
System reserved	77	4D	-	2С8н	000FFEC8 ${ }_{\text {H }}$	-
System reserved	78	4E	-	2С4	000FFEC4 4	-
System reserved	79	4F	-	2 COH	000FFECOH	-
Used by INT instruction	$\begin{gathered} 80 \\ \text { to } \\ 255 \end{gathered}$	$\begin{gathered} \hline 50 \\ \text { to } \\ \text { FF } \end{gathered}$	-	$\begin{gathered} 2 \mathrm{BC} \mathrm{C}_{\mathrm{H}} \\ \text { to } \\ 000_{\mathrm{H}} \end{gathered}$	$\begin{aligned} & \text { O00FFEBCH } \\ & \text { to } \\ & 000 \text { FFCOOH } \end{aligned}$	-

MB91350A Series

■ PERIPHERAL RESOURCES

1. Interrupt Controller

(1) Description

The interrupt controller manages interrupt reception and arbitration.

Hardware configuration

This module consists of the following components :

- ICR register
- Interrupt priority determination circuit
- Interrupt level and interrupt number (vector) generator
- HOLD request removal request generator
- Main functions

This module has the following major functions :

- Detect NMI and interrupt requests
- Prioritize interrupts (according to level and number)
- Notify interrupt level of selected interrupt request (to CPU)
- Notify interrupt number of selected interrupt request (to CPU)
- Request (to the CPU) to return from stop mode in response to an NMI or interrupt request with interrupt level other than "111118"
- Issue requests to the bus master to cancel HOLD requests

MB91350A Series

(2) Register list

Interrupt Control Register (ICR)

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ICR00	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR01	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR02	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR03	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR04	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR05	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR06	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR07	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR08	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR09	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR10	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR11	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR12	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR13	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR14	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR15	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR16	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR17	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR18	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR19	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR20	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR21	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR22	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR23	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR24	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR25	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR26	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR27	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR28	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR29	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR30	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO
ICR31	-	-	-	ICR4	ICR3	ICR2	ICR1	ICRO

(Continued)

MB91350A Series

(Continued)

ICR32
ICR33
ICR34
ICR35
ICR36
ICR37
ICR38
ICR39
ICR40
ICR41
ICR42
ICR43
ICR44
ICR45
ICR46
ICR47

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0
-	-	-	ICR4	ICR3	ICR2	ICR1	ICR0

Hold request cancel request register (HRCL)
HRCL

MHALTI	-	-	LVL4	LVL3	LVL2	LVL1	LVL0

MB91350A Series

(3) Block diagram

MB91350A Series

2. External Interrupt/NMI Control

(1) Description

The external interrupt control unit is the block that controls external interrupt requests input to $\overline{\mathrm{NMI}}$ and INTO to INT15. The level that is detected as a request can be selected from "H", "L", rising edge, or falling edge (except for NMI).
Note : The MB91F353A/353A/352A/351A does not have INT8 to INT15.

(2) Register list

External interrupt enable register (ENIR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
EN7	EN6	EN5	EN4	EN3	EN2	EN1	EN0

External interrupt request register (EIRR)

| bit 15 | bit 14 | bit 13 | bit 12 | bit 11 | bit 10 | bit 9 | bit 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ER7 | ER6 | ER5 | ER4 | ER3 | ER2 | ER1 | ER0 |

Request level setting register (ELVR)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
LB7	LA7	LB6	LA6	LB5	LA5	LB4	LA4

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
LB3	LA3	LB2	LA2	LB1	LA1	LB0	LA0

The above registers (for 8 channels) are available in 2 sets; there are a total of 16 channels.
(3) Block diagram

MB91350A Series

3. REALOS-related Hardware

REALOS-related hardware is used by the real-time OS. Therefore, it cannot be used by user programs when REALOS is used.

- Delay interrupt module
(1) Description

The delayed interrupt module generates a task switching interrupt.
This module enables software to issue or cancel an interrupt request to the CPU.

(2) Register list

Delayed Interrupt Control Register (DICR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	-	-	-	-	-	DLYI

(3) Block diagram

Interrupt 4 R-bus
request

MB91350A Series

- Bit Search Module

(1) Description

The bit search module searches data written to an input register for " 0 ", " 1 ", or a change point and returns the detected bit position.
(2) Register list

0 detection data register (BSDO)
1 detection data register (BSD1)
Data register for transition detection (BSDC)
Detection result register (BSRR)

(3) Block diagram

MB91350A Series

4. 8/16-bit Up/Down Counter

(1) Description

This block is the up/down counter/timer consisting of six event input pins, two 8 -bit up/down counter, two 8 -bit reload/compare registers, and their control circuit.
The MB91F355A/F356B/F357B/355A/354A/V350A contains 2 channels of 8 -bit up/down counter in this block.
The MB91F353A/353A/352A/351A contains 1 channel of 8 -bit up/down counter in this block. It is not possible to use in 16-bit mode.
This module has the following features.

- 8 -bit count register enabling counting from (0)d to (255)d (enabling counting from (0)d to (65535)d in 16 bits $\times 1$ operation mode)
- Four different count modes available with selectable count clocks

Count mode

- Timer mode
— Up/down count mode
- Phase difference count mode (2 Multiplication)
— Phase difference count mode (4 Multiplication)
- In timer mode, the ability to select the count clock input to use from among two internal clock circuits

Count clock (When operating at 25 MHz)
 80 ns (12.5 MHz : Frequency division by 2)

- In up/down count mode, the ability to select the edge detection of the external pin input signals

Detection edge
\square
\square
\square
Ralling edge detection
Detection at rising edge, falling edge, or both edges
Edge detection disabled

- The phase difference count mode is suitable for counting encoders such as motor encoders, and facilitates to count the angle of revolution and number of revolutions to a high precision by inputting the A phase, B phase, and Z phase outputs from the encoder
- ZIN pin has two selectable functions (valid in all modes)

ZIN pin

- Compare and reload functions that can be used separately or in combination. When both functions are used in combination, up/down counting can be performed at an arbitrary width.
Compare/reload function
- Compare function (output interrupt request on compare match)
Compare function (output interrupt request and clear counter on compare
match)
- Reload function (output interrupt request and reload on underflow)
Compare/reload function
(output interrupt request and clear counter on compare match; output interrupt
request and reload on underflow)
Compare/reload disabled
- Count direction flag used to identify the preceding count direction
- Capable of independently controlling the generation of interrupts for compare match, reload (underflow), overflow, or on count direction change

MB91350A Series

(2) Register list

- Up/down count register (UDCR)

Up/down count register ch. 0 (UDCRO)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D07	D06	D05	D04	D03	D02	D01	D00

Up/down count register ch. 1 (UDCR1)*

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
D15	D14	D13	D12	D11	D10	D09	D08

- Reload compare register (RCR)

Reload compare register ch. 0 (RCR0)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D07	D06	D05	D04	D03	D02	D01	D00

Reload compare register ch. 1 (RCR1)*

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
D15	D14	D13	D12	D11	D10	D09	D08

- Counter status register (CSR)

Counter status register ch.0, ch. 1 (CSR0, CSR1*)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
CSTR	CITE	UDIE	CMPF	OVFF	UDFF	UDF1	UDF0

- Counter control register (CCRL)

Counter control register ch.0, ch. 1 (CCRL0, CCRL1*)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	CTUT	UCRE	RLDE	UDCC	CGSC	CGE 1	CGE0

- Counter control register (CCRH)

Counter control register ch. 0 (CCRHO)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
M16E	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0

- Counter control register ch. 1 (CCRH1)*

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
Reserved	CDCF	CFIE	CLKS	CMS1	CMS0	CES1	CES0

* : Access to the UDCR1, RCR1, CSR1, CCRL1, CCRH1 registers is prohibited on the MB91F353A/353A/ 352A/351A.

MB91350A Series

(3) Block diagram

- 8/16-bit up/down counter (ch.0)

MB91350A Series

-8/16-bit up/down counter (ch.1)

MB91350A Series

5. 16-bit Reload Timer

(1) Description

The 16-bit timer consists of a 16-bit down counter, 16 -bit reload register, internal clock, clock generation prescaler, and control register.
The clock source can be selected from among three internal clocks (prepared by frequency dividing the machine clock by $2 / 8 / 32$, and also by $64 / 128$ only for ch. 3) and an external event.
The interrupt can be used to initiate a DMA transfer.
The MB91F353A/353A/352A/351A does not have timer outputs (TOTO to TOT3).
This timer has 4 built-in channels.

(2) Register list

Control status register (TMCSR)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
-	-	Reserved	CSL2	CSL1	CSLO	Reserved	Reserved

(ch. 3 only)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
Reserved	-	OUTL	RELD	INTE	UF	CNTE	TRG

16-bit timer register (TMR)

16-bit reload register (TMRLR)

MB91350A Series

(3) Block diagram

Note : The MB91F353A/353A/352A/351A does not have external timer outputs (TOT0 to TOT3).

MB91350A Series

6. PPG (Programmable Pulse Generator)

The PPG can efficiently output highly precise PWM wave forms.
The MB91F353A/353A/352A/351A contains 3 channels of PPG timer.
The MB91F355A/F356B/F357B/355A/354A/V350A contains 6 channels of PPG timer.

(1) Description

Each channel consists of a 16 -bit down counter, 16 -bit data register with cycle setting buffer, 16 -bit compare register with duty ratio setting buffer, and pin control unit.
The count clocks for the 16-bit down counter can be selected from the following 4 types : (peripheral clock ϕ, $\phi / 4, \phi / 16, \phi / 64)$
The counter is initialized to "FFFFH" at a reset or counter borrow. PPG outputs (PPG0 to PPG5) are provided for each channel.
Note: The MB91F353A/353A/352A/351A contains 3 channels of PPG outputs PPG ($0,2,4$). There is no PPG (1, 3, 5).

(2) Register list

	bit 15
General control register 10 (GCN10)	\square
General control register 20 (GCN20)	\square
Timer register (PTMR0 to PTMR5)	\square
Cycle setting register (PCSR0 to PCSR5)	\square
Duty setting register (PDUT0)	\square

MB91350A Series

(3) Block diagram (overall configuration for 1 channel)

Note : The MB91F353A/353A/352A/351A does not have PPG1, PPG3, PPG5 and external TRG5.

MB91350A Series

7. U-TIMER (16-bit timer for UART baud rate generation)

(1) Description

The U-TIMER is a 16 -bit timer for generating the baud rate for the UART. An arbitrary baud rate can be set depending on the combination of the chip operating frequency and U-TIMER reload value.
The MB91F353A/353A/352A/351A contains 4 channels of this timer.
The MB91F355A/F356B/F357B/355A/354A/V350A contains 5 channels of this timer.
(2) Register list
\square
(3) Block diagram

MB91350A Series

8. UART

(1) Description

The UART is a serial I/O port for asynchronous (start-stop) or CLK synchronous communication. This module has the features listed below.
The MB91F353A/353A/352A/351A contains 4 channels of UART.
The MB91F355A/F356B/F357B/355A/354A/V350A contains 5 channels of UART.

- Full duplex double buffer
- Asynchronous (start-stop synchronized) or CLK synchronized transmission
- Supports multi-processor mode
- Completely programmable baud rate.

Arbitrary baud rate set by built-in timer (Refer to the section for "U-timer".)

- Variable baud rate can be input from an external clock.
- Error detection functions(parity, framing, overrun)
- Transmission signal format is NRZ
- UART (ch. 0 to ch.2) can start DMA transfers using interrupts (ch. 3 and ch. 4 cannot start DMA transfers).
- Capable of clearing DMAC interrupt source by writing to DRCL register

(2) Register list

Serial input register/serial output register (SIDR/SODR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D7	D6	D5	D4	D3	D2	D1	D0

Serial status register (SSR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PE	ORE	FRE	RDRF	TDRE	BDS	RIE	TIE

Serial mode register (SMR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
MD1	MD0	-	-	CS0	-	-	-

Serial control register (SCR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
PEN	P	SBL	CL	A / D	REC	RXE	TXE

DRCL register (DRCL)

MB91350A Series

(3) Block diagram

MB91350A Series

9. Extended I/O serial interface (SIO)

(1) Description

This block is an 8 -bit $\times 1$ channel serial I/O interface that allows data transfer using clock synchronization.
LSB-first or MSB-first transfer mode can be selected for data transfer.
The MB91F353A/353A/352A/351A contains 2 channels of this SIO.
The MB91F355A/F356B/F357B/355A/354A/V350A contains 3 channels of this SIO.

The serial I/O interface operates in 2 modes :

- Internal shift clock mode : Data is transferred synchronized with the internal clock.
- External shift clock mode : Data is transferred synchronized with a clock supplied via the external pin (SCK). In this mode, data can also be transferred using CPU instructions by operating the general-purpose port that shares the external pin (SCK).

(2) Register list

Serial mode control status register (SMCS)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
SMD2	SMD1	SMD0	SIE	SIR	BUSY	STOP	STRT

	bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1
bit 0							
-	-	-	-	MODE	BDS	-	-

SIO test register (SES)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
-	-	-	-	-	-	TST1	TSTO

SDR (Serial Data Register) (SDR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D7	D6	D5	D4	D3	D2	D1	D0

SIO prescaler control register (CDCR)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
MD	-	-	-	DIV3	DIV2	DIV1	DIV0

DMAC interrupt source clear register (SRCL)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	-	-	-	-	-	-

MB91350A Series

(3) Block diagram

MB91350A Series

10. 16-bit free-run timer

(1) Description

The 16-bit free-run timer consists of a 16-bit up counter, control register, and status register. The count values of this timer are used as the base timer for the output compare and input capture modules.

- Four count clock frequencies are available.
- An interrupt can be generated on counter overflow.
- The counter can be initialized upon a match with compare register 0 of the output compare unit, depending on the mode.
(2) Register list

Timer data register (upper) (TCDT)

| bit 15 | bit 14 | bit 13 | bit 12 | bit 11 | bit 10 | bit 9 | bit 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T 15 | T 14 | T 13 | T 12 | T 11 | T 10 | T 9 | T 8 |

Timer data register (lower) (TCDT)

| bit 7 | bit 6 | bit 5 | bit 4 | bit 3 | bit 2 | bit 1 | bit 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| T07 | T06 | T05 | T04 | T03 | T02 | T01 | T00 |

Timer control status register (lower) (TCCS)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ECLK	IVF	IVFE	STOP	MODE	CLR	CLK1	CLK0

(3) Block diagram

MB91350A Series

11. Input Capture

(1) Description

This module detects the rising or falling edge or both edges of an external input signal and then, stores the value of the 16 -bit free-run timer in a register. In addition, the module can generate an interrupt upon detection of an edge.
The input capture module consists of input capture data registers and a control register.
Each input capture unit has a corresponding external input pin.

- The detection edge of the external input can be selected from among 3 types.

Rising edge
Falling edge
Both edges

- An interrupt can be generated upon detection of a valid edge in the external input.
(2) Register list

Input capture data register (upper) (IPCP)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
CP15	CP14	CP13	CP12	CP11	CP10	CP09	CP08

Input capture data register (lower) (IPCP)

bit 7	bit 6	bit 5	bit 4	bit 3		bit 2	bit 1
CP07	CP06	CP05	CP04	CP03	CP02	CP01	CP00

Input capture control register (ICS23)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ICP3	ICP2	ICE3	ICE2	EG31	EG30	EG21	EG20

Input capture control register (ICS01)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ICP1	ICP0	ICE1	ICE0	EG11	EG10	EG01	EG00

MB91350A Series

(3) Block diagram

MB91350A Series

12. Output Compare

(1) Description

The output compare module consists of a 16-bit compare register, compare output latch, and control register. When the 16 -bit free-run timer value matches the compare register value, the output level is inverted and an interrupt is issued.
The MB91F353A/353A/352A/351A contains 2 channels of this block.
The MB91F355A/F356B/F357B/355A/354A/V350A contains 8 channels of this block.

This module has the following features.

- The output compare is able to operate independent of each of 8 compare register. There are output pins and interrupt flags corresponding to each of the compare registers.
- A pair of compare registers can be used to control the output terminal.

The output terminal is reversed by using two compare registers.

- Capable of setting the initial value for each output pin.
- Interrupts can be generated upon a compare match.
- The ch. 0 compare register is used as the compare clear register for the 16 -bit free-run timer.

(2) Register list

Compare register (OCCP)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
C 15	C 14	C 13	C 12	C 11	C 10	C 09	C 08

Compare register (OCCP)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
C 07	C 06	C 05	C 04	C 03	C 02	C 01	C 00

Output control register (OCSO1)

| bit 15 | bit 14 | bit 13 | bit 12 | bit 11 | bit 10 | bit 9 | bit 8 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| - | - | - | CMOD | - | - | OTD1 | OTD0 |

Output control register (OCS23)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
ICP1	ICP0	ICE1	ICE0	-	-	CST1	CST0

MB91350A Series

(3) Block diagram

MB91350A Series

13. $\mathrm{I}^{2} \mathrm{C}$ Interface

(1) Description

The $I^{2} \mathrm{C}$ interface is a serial I/O port supporting the Inter-IC bus, operating as a master/slave device on the $I^{2} \mathrm{C}$ bus. It has the following features:

- Master/slave transmission and reception
- Arbitration function
- Clock sync function
- Slave address and general call address detection function
- Transmission direction detection function
- Repeated start condition generation and detection function
- Bus error detection function
- 10 -bit/7-bit slave address
- Slave address receive acknowledge control when in master mode
- Support for composite slave addresses
- Capable of interrupt when a transmission or bus error occurs
- Standard mode (Max 100 kbps)/High speed mode (Max 400 kbps) supported

MB91350A Series

(2) Register list

Bus control register (IBCR)

	bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9
	bit 8						
BER	BEIE	SCC	MSS	ACK	GCAA	INTE	INT

Bus status register (IBSR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
BB	RSC	AL	LRB	TRX	AAS	GCA	ADT

10-bit slave address resister (ITBA)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
-	-	-	-	-	-	TA9	TA8

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TA7	TA6	TA5	TA4	TA3	TA2	TA1	TAO

10-bit slave address mask resister (ITMK)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
ENTB	RAL	-	-	-	-	TM9	TM8

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
TM7	TM6	TM5	TM4	TM3	TM2	TM1	TM0

7-bit slave address resister (ISBA)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	SA6	SA5	SA4	SA3	SA2	SA1	SA0

7-bit slave address mask resister (ISMK)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
ENSB	SM6	SM5	SM4	SM3	SM2	SM1	SM0

D/A data register (IDAR)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
D7	D6	D5	D4	D3	D2	D1	D0

Clock control register (ICCR)

bit 15	bit 14	bit 13	bit 12	bit 11	bit 10	bit 9	bit 8
TEST	-	EN	CS4	CS3	CS2	CS1	CS0

Clock disable register (IDBL)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	-	-	-	-	-	DBL

MB91350A Series

(3) Block diagram

MB91350A Series

14. A/D converter

(1) Description

The A/D converter converts the analog input voltage into a digital value. It has the following features :

- Conversion time : $1.48 \mu \mathrm{~s}$ minimum per channel
- Employing serial / parallel conversion type for sample and hold circuit.
- 10-bit resolution (switchable between 8 and 10 bits)
- Programmatic selection of the analog input from among 12 channels (The MB91F353A/353A/352A/351A are input 8 channels.)
- Conversion mode

Single conversion mode : Converts 1 selected channel a single time. Scan conversion mode : Scanning conversion of up to 4 channels.

- Converted data is stored in a data buffer (a total of 4 data buffers) .
- An interrupt request to the CPU can be generated upon completion of A/D conversion. The interrupt can be used to start a DMA transfer.
- The startup source can be selected from among software, external trigger (falling edge), and reload timer ch. 2 (rising edge).

(2) Register list

Control status register (ADCS2/ADCS1)

Conversion time setting register (ADCT) \square
Converted data register 0 (ADTH0/ADTLO)

ADTH0	ADTLO

Converted data register 1 (ADTH1/ADTL1)

ADTH1	ADTL1

Converted data register 2 (ADTH2/ADTL2)

Converted data register 3 (ADTH3/ADTL3)

ADTH3	ADTL3

MB91350A Series

(3) Block diagram

Note : The MB91F353A/353A/352A/351A does not have inputs AN8 to AN11.

MB91350A Series

15. 8-bit D/A converter

(1) Description

This block contains 3 channels of 8 -bit D/A converters and D/A converter registers that can be used to control the independent output of each channel. The block has the following features.

- Power saving function
- 3.3 V interface

Note : The MB91F353A/353A/352A/351A contains 2 channels of D/A converter.
(2) Register list

D/A data register 0 to 2 (DADRO to DADR2)

bit 7	bit 6	bit 5	bit 4	bit 3		bit 2	bit 1
bit 0							
DA7	DA6	DA5	DA4	DA3	DA2	DA1	DA0

D/A control register 0 to 2 (DACR0 to DACR2)

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
-	-	-	-	-	-	-	DAE

Note : The MB91F353A/353A/352A/351A does not have DADR2, DACR2.
(3) Block diagram

MB91350A Series

16. DMAC (DMA Controller)

(1) Description

This module provides direct memory access (DMA) transfers in the FR family devices.
The DMAC enables high speed transfers for various data without CPU intervention, thereby improving system performance.

- Hardware configuration

The main components of this module are as follows :

- Independent DMA channels $\times 5$ channels
- 5 channels independent access control circuits
- 32-bit address registers (Supports reloading : 2 per channel)
- 16-bit transfer count registers (Supports reloading : 1 per channel)
- 4-bit block count registers (1 per channel)
- External transfer request input pins : DREQ0, DREQ1, and DREQ2. For ch. 0 to ch. 2 only Note : The MB91F353A/353A/352A/351A do not have an external interface.
- External transfer request acceptance output pins : DACK0, DACK1, and DACK2. For ch. 0 to ch. 2 only Note : The MB91F353A/353A/352A/351A do not have an external interface.
- DMA end output pins : DEOP0, DEOP1, and DEOP2. For ch. 0 to ch. 2 only Note : The MB91F353A/353A/352A/351A do not have an external interface.
- Fly-by transfer (memory to I/O and I/O to memory). For ch. 0 to ch. 2 only Note : The MB91F353A/353A/352A/351A do not support fly-by transfer.
- 2-cycle transfer
- Main functions

This module has the following major functions for data transfer:

- Supports data transfer over multiple independent channels (5 channels)
(1) Priority order (ch. $0>$ ch. $1>$ ch. $2>$ ch. $3>c h .4$)
(2) Order can be reversed for ch. 0 and ch. 1
(3) DMAC activation triggers
- External dedicated pin input (edge detection/level detection for ch. 0 to ch. 2 only)

Note : The MB91F353A/353A/352A/351A do not have an external interface.

- Internal peripheral request (Interrupt request sharing, including external interrupts)
- Software request (register write)
(4)Transmission mode
- Demand transfer, burst transfer, step transfer, or block transfer
- Addressing mode : 32-bit full addressing (increment, decrement, or fixed) (address increment can be in the range - 255 to +255)
- Data length : Byte, halfword, or word
- Single-shot or reload operation selectable

MB91350A Series

(2) Register Description

ch. 0 Control/status			bit 31	bit 0
	Register A	(DMACAO)		
	Register B	(DMACBO)		
ch. 1 Control/status	Register A	(DMACA1)		
	Register B	(DMACB1)		
ch. 2 Control/status	Register A	(DMACA2)		
	Register B	(DMACB2)		
ch. 3 Control/status	Register A	(DMACA3)		
	Register B	(DMACB3)		
ch. 4 Control/status	Register A	(DMACA4)		
	Register B	(DMACB4)		
Overall control register		(DMACR)		
ch. 0 Transfer source address register		(DMASAO)		
		(DMADAO)		
ch. 1 Transfer source address register		(DMASA1)		
		(DMADA1)		
ch. 2 Transfer source address register		(DMASA2)		
		(DMADA2)		
ch. 3 Transfer source address register		(DMASA3)		
		(DMADA3)		
ch. 4 Transfer source address register		(DMASA4) (DMADA4)		

MB91350A Series

(3) Block diagram

MB91350A Series

■ ELECTRICAL CHARACTERISTICS

1. Absolute Maximum Rating

Parameter	Symbol	Rating		Unit	Remarks
		Min	Max		
Power supply voltage*1	Vcc	Vss - 0.5	Vss +4.0	V	*2
Analog power supply voltage*1	DAVC	Vss - 0.5	$\mathrm{Vss}+4.0$	V	*3
Analog power supply voltage*1	AVcc	Vss - 0.5	Vss +4.0	V	*3
Analog reference voltage*1	AVRH	Vss - 0.5	$\mathrm{Vss}+4.0$	V	*3
Input voltage*1	V	Vss - 0.5	$\mathrm{Vcc}+0.5$	V	*8
Input voltage (N-ch open-drain) *1	Vind	Vss-0.5	Vss +5.5	V	
Analog pin input voltage*1	VIA	Vss-0.5	AVcc +0.5	V	*8
Output voltage*1	Vo	Vss-0.5	$\mathrm{Vcc}+0.5$	V	
Maximum clamp current	Iclamp	-2.0	+ 2.0	mA	*7
Total maximum clamp current	$\Sigma \mid$ lclampl	-	20	mA	*7
"L" level maximum output current	los	-	10	mA	*4
"L" level maximum output current (N -ch open-drain)	lolnd	-	20	mA	
"L" level average output current	lolav	-	8	mA	*5
"L" level average output current (N-ch open-drain)	lolavnd	-	15	mA	
"L" level total maximum output current	Σ lob	-	100	mA	
"L" level total average output current	Σ lolav	-	50	mA	*6
"H" level maximum output current	Іон	-	-10	mA	*4
"H" level average output current	Іонav	-	-4	mA	*5
"H" level total maximum output current	$\Sigma \mathrm{loh}$	-	- 50	mA	
"H" level total average output current	Σ Іона⿱	-	-20	mA	*6
Power consumption	PD	-	850	mW	
Operating temperature	Ta	-40	+ 85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-	+125	${ }^{\circ} \mathrm{C}$	

*1 : The parameter is based on $\mathrm{Vss}=\mathrm{DAVS}=\mathrm{AV} s \mathrm{~s}=0 \mathrm{~V}$.
*2 : Vcc must not be lower than $\mathrm{V}_{\mathrm{ss}}-0.3 \mathrm{~V}$.
*3 : Be careful not to exceed " $\mathrm{Vcc}+0.3 \mathrm{~V}$ ", for example, when the power is turned on.
*4 : The maximum output current is the peak value for a single pin.
*5 : The average output current is the average current for a single pin over a period of 100 ms .
*6 : The total average output current is the average current for all pins over a period of 100 ms .
(Continued)

MB91350A Series

(Continued)
*7 : • Relevant pins : Ports 2, 3, 4, 5, 6, 8, 9, A, H, I, K, M, N, O and AN (A/D input) : MB91F353A/353A/352A/351A
Ports 2, 3, 4, 5, 6, 8, 9, A, B, C, G, H, I, J, K, M, N, O, P and AN (A/D input) :
MB91F355A/F356B/F357B/355A/354A

- Use within recommended operating conditions.
- Use at DC voltage (current).
- + B signals are input signals that exceed the Vcc voltage.
- A limiting resistance should always be applied to +B signals by connecting the resistance between the +B signal and the microcontroller.
- The value of the limiting resistance should be set so that when the $+B$ signal is applied the input current to the microcontroller pin does not exceed rated values, either instantaneously or for prolonged periods.
- Note that when the microcontroller drive current is low, such as in low power consumption mode, the + B input potential can increase the potential at the Vcc pin via a protective diode, possibly affecting other devices.
- Note that if a + B input is applied when the microcontroller is off (not fixed at 0 V), power is supplied through the pin, possibly causing the microcontroller to partially operate.
- Note that if $a+B$ input is applied when the power supply is turned on, power is supplied through the pin, possibly resulting in a power-supply voltage at which power-on reset does not work.
- Ensure that $\mathrm{a}+\mathrm{B}$ input pin does not form an open circuit.
- Note that analog I/O pins other than the A/D input pins (such as the LCD drive and comparator input pins) cannot input + B.
- Sample recommended circuits :
- Input/output equivalent circuits
+ B input (0 V to 16 V)

*8 : Vı must not exceed the rated voltage. However, If the maximum current to/from an input is limited by some means using external components, the Iclamp rating supersedes the $V_{\text {I }}$ rating.

WARNING: Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of absolute maximum ratings. Do not exceed these ratings.

MB91350A Series

2. Recommended Operating Conditions

(Other than MB91F356B/F357B)

Parameter	Symbol	Value		Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	3.0	3.6	V	During normal operation
	V cc	3.0	3.6	V	Hold RAM status at stop
Analog power supply voltage	DAVC	Vss - 0.3	Vss +3.6	V	
	AVcc	Vss - 0.3	Vss +3.6		
Analog reference voltage	AVRH	$\mathrm{AV}_{\text {ss }}$	AVcc	V	
Operating temperature	Ta	- 40	+ 85	${ }^{\circ} \mathrm{C}$	

(MB91F356B/F357B only)

Parameter	Symbol			Unit	Remarks
		Min	Max		
Power supply voltage	Vcc	2.7	3.6	V	During normal operation
	Vcc	2.7	3.6	V	Hold RAM status at stop
	Vcc	3.0	3.6	V	When writing or erasing Flash memory
Analog power supply voltage	DAVC	Vss - 0.3	Vss +3.6	V	
	AVcc	Vss - 0.3	Vss +3.6		
Analog reference voltage	AVRH	AVss	AVcc	V	
		-40	+ 85	${ }^{\circ} \mathrm{C}$	
Operating temperature	Ta	0	+70	${ }^{\circ} \mathrm{C}$	When writing or erasing Flash memory*

* : Including the F355A/F353A

WARNING: The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated within these ranges.
Always use semiconductor devices within their recommended operating condition ranges. Operation outside these ranges may adversely affect reliability and could result in device failure.
No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their FUJITSU representatives beforehand.

MB91350A Series

3. DC Characteristics

(Vcc=3.0 V to 3.6 V, Vcc=2.7 V to 3.6 V (MB91F356B/F357B only), Vss = DAVS $=A V \mathrm{Vs}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
"H" level input voltage	V_{1}	$\begin{gathered} \text { Port } 2,3,4,5,6, \\ 9, A \end{gathered}$	-	$\begin{aligned} & V_{c c} \times \\ & 0.65 \end{aligned}$	-	$\mathrm{Vcc}+0.3$	V	MB91F353A/353A/ 352A/351A
		$\begin{gathered} \text { Port 2, 3, 4, 5, 6, } \\ 9, \text { A, B, C } \end{gathered}$						MB91F355A/F356B/ F357B/355A/354A
	Vihs	Port 8, H, I, M, N, O, MDO, MD1, MD2, INIT, $\overline{\text { NMI }}$		$\mathrm{V} \mathrm{cc} \times 0.8$				Hysteresis input MB91F353A/353A/ 352A/351A
		Port 8, G, H, I, M, N, O, P, MDO, MD1, MD2, INIT, NMI						Hysteresis input MB91F355A/F356B/ F357B/355A/354A
	VIHSt	Port K, L				5.25		Hysteresis input withstand voltage of 5 V MB91F353A/353A/ 352A/351A
		Port J, K, L						Hysteresis input withstand voltage of 5 V MB91F355A/F356B/ F357B/355A/354A
"L" level input voltage	VIL	$\begin{gathered} \text { Port } 2,3,4,5,6, \\ 9, A \end{gathered}$	-	Vss	-	$\mathrm{V}_{\mathrm{cc}} \times 0.25$	V	MB91F353A/353A/ $352 A / 351 A$ 352A/351A
		$\begin{gathered} \text { Port 2, 3, 4, 5, 6, } \\ 9, A, B, C \end{gathered}$						MB91F355A/F356B/ F357B/355A/354A
	VILs	Port 8, H, I, M, N, O, MDO, MD1, MD2, INIT, $\overline{\text { NMI }}$				$\mathrm{V} \mathrm{cc} \times 0.2$		Hysteresis input MB91F353A/353A/ 352A/351A
		$\begin{gathered} \hline \text { Port 8, G, H, I, } \\ \text { M, N, O, P, } \\ \text { MDO, MD1, } \\ \text { MD2, INIT, }, \text { MMI } \end{gathered}$						Hysteresis input MB91F355A/F356B/ F357B/355A/354A
	VILSt	Port K, L						Hysteresis input withstand voltage of 5 V MB91F353A/353A/ 352A/351A
		Port J, K, L						Hysteresis input with stand voltage of 5 V MB91F355A/F356B/ F357B/355A/354A

(Continued)

MB91350A Series

(Vcc=3.0 V to 3.6 V, Vcc=2.7 V to 3.6 V (MB91F356B/F357B only), Vss = DAVS $=\mathrm{AV} \mathrm{Vs}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions		Value			Unit	Remarks	
					Min	Typ	Max			
"H" level output voltage	Vон	Port 2, 3, 4, 5, 6, 8, 9, A, H, I, J, K, M, N, O	$\begin{aligned} & \mathrm{V} \mathrm{Cc}=3.0 \mathrm{~V}, \\ & \mathrm{IOH}=-4.0 \mathrm{~mA} \end{aligned}$		$\mathrm{V} c \mathrm{c}-0.5$	-	Vcc	V	MB91F353A/ 353A/352A/351A	
		$\begin{gathered} \text { Port 2, 3, 4, } \\ \text { 5, 6, 8, 9, A, } \\ \text { B, C, G, H, } \\ \text { I, J, K, M, N, } \\ \text { O, P } \end{gathered}$			MB91F355A/ F356B/F357B/ 355A/354A					
"L" level output voltage	Voli	$\begin{gathered} \text { Port 2, 3, 4, } \\ 5,6,8,9, A \\ \text { H, I, K, M, } \\ \text { N, O } \end{gathered}$	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{loL}=4.0 \mathrm{~mA} \end{aligned}$			Vss	-	0.4	V	MB91F353A/ 353A/352A/351A
		Port 2, 3, 4, 5, B, 8, 9, A, B, C, G, H, I, J, K, M, N, O, P			MB91F355A/ F356B/F357B/ 355A/354A					
	Vol2	Port L	$\begin{aligned} & \mathrm{V} \mathrm{cc}=3.0 \mathrm{~V}, \\ & \mathrm{loL}=15.0 \mathrm{~mA} \end{aligned}$		N -ch open-drain					
Input leak current (High-Z Output Leakage Current)	IL	All input pin	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V}, \\ & 0<\mathrm{V}_{1}<\mathrm{V}_{\mathrm{cc}} \end{aligned}$		- 5	-	+ 5	$\mu \mathrm{A}$		
Pull-up resistance	Rup	Setting pin INIT, Pull Up	$\begin{aligned} & \mathrm{V}_{\mathrm{cc}}=3.6 \mathrm{~V}, \\ & \mathrm{~V}_{1}=0.45 \mathrm{~V} \end{aligned}$		25	50	200	k Ω		
Power supply curren	Icc	V cc	$\begin{aligned} & \mathrm{fc}= \\ & 12.5 \mathrm{MHz}, \\ & \mathrm{Vcc}= \\ & 3.3 \mathrm{~V} \end{aligned}$	Flash MASK	-	160 125	220 150	mA	MB91F353A/ 353A/352A/351A Multiply by 4RUN When operating at CLKB : 50 MHz CLKT : 25 MHz CLKP : 25 MHz	
				Flash MASK		85 75	100 90		MB91F353A/ 353A/352A/351A Multiply by 2RUN When operating at CLKB : 25 MHz CLKT : 25 MHz CLKP : 12.5 MHz	

(Continued)

MB91350A Series

(Continued)
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only), $\mathrm{V} s \mathrm{~s}=\mathrm{DAVS}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Power supply current	Icc	Vcc			160	220		MB91F355A/ F356B/F357B/ 355A/354A Multiply by 4RUN When operating at CLKB : 50 MHz CLKT : 25 MHz CLKP : 25 MHz
	Icos		$\begin{aligned} & \mathrm{fc}=12.5 \mathrm{MHz}, \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$	-	100	140	mA	MB91F353A/ 353A/352A/351A Multiply by 4RUN When operating at CLKB : 50 MHz CLKT : 25 MHz CLKP: 25 MHz MB91F355A/ F356B/F357B/ 355A/354A Sleep CLKP : When operating at 25 MHz
	Ic ¢		$\begin{aligned} & \hline \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$		1	100	$\mu \mathrm{A}$	At stop
	Iccl		$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C}, \\ & \mathrm{fc}=32.768 \mathrm{kHz}, \\ & \mathrm{Vcc}=3.3 \mathrm{~V} \end{aligned}$		0.3	3.0	mA	Sub RUN When operating at CLKB : 32.768 kHz CLKT : 32.768 kHz CLKP: 32.768 kHz
	Iccıs				0.2	2.0		Sub-sleep When operating at CLKP : 32.768 kHz
	Ісст				5	120	$\mu \mathrm{A}$	When operating in watch mode (Main Off, STOP)
Input capacitance	Сı	Other than Vcc, Vss, $\mathrm{AVcc}, \mathrm{AV}$ ss, DAVC, DAVS	-	-	5	15	pF	

MB91350A Series

4. AC Characteristics

(1) Clock Timing

$$
(\mathrm{Vcc}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{Vcc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text { (MB91F356B/F357B only), }
$$ V ss $=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value			Unit	Remarks
				Min	Typ	Max		
Clock frequency	$f \mathrm{c}$	$\begin{aligned} & \mathrm{XO}, \\ & \mathrm{X} 1 \end{aligned}$	-	10		12.5	MHz	MAIN PLL (When operating at max internal frequency $(50 \mathrm{MHz})=12.5 \mathrm{MHz}$ self-oscillation with \times 4 PLL)
Clock cycle time	tc			80		100	ns	
Clock frequency	$f \mathrm{c}$			10		25	MHz	MAIN self-oscillation (frequency-halved input)
Internal operating clock frequency	fcp	-	When a minimum value of 12.5 MHz is input as the XO clock frequency and $x 4$ multiplication is set for the PLL of the oscillator circuit	2.94*		50	MHz	CPU
	fcpp					25		Peripheral
	fcpt							External bus
Internal operating clock cycle time	tcp			20		340*	ns	CPU
	tcpp			40				Peripheral
	tcpt							External bus
Clock frequency	$f \mathrm{c}$	$\begin{aligned} & \text { XOA, } \\ & \text { X1A } \end{aligned}$	-	30	32.768	35	kHz	SUB self-oscillation
Clock cycle time	tc			28.6	30.51	33.3	$\mu \mathrm{s}$	
Input clock pulse width	-	$\begin{aligned} & \mathrm{X0}, \\ & \mathrm{X} 1 \end{aligned}$	Pwh/tc Pw/tc	40	-	60	\%	
Internal operating clock frequency	fcp, fcpp, fcpt	-	When a standard value of 32.768 kHz is input as the XOA clock frequency	2*		32.768	kHz	
Internal operating clock cycle time	tcp, tcpp, tcPT			30.51		500*	$\mu \mathrm{s}$	

*: The values assume a gear cycle of $1 / 16$.

- Conditions for measuring the clock timing ratings

MB91350A Series

- Operation Guaranteed Range (Other than MB91F356B/F357B)

- External/internal clock setting range

Notes : - When the PLL is used, the external clock input must fall between 10.0 MHz and 12.5 MHz .

- Set the PLL oscillation stabilization wait time longer than $454.5 \mu \mathrm{~s}$.
- The internal clock gear setting should not exceed the relevant value in the table in "(1) Clock timing ratings".

MB91350A Series

- Operation Guaranteed Range (MB91F356B/F357B only)

For Flash memory wait of 2 (FLWC register : WTC[2:0]=010)

For Flash memory wait of 3 (FLWC register : WTC[2 : 0] = 011)

MB91350A Series

(2) Clock Output Timing

$$
\begin{array}{r}
(\mathrm{V} \mathrm{cc}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} \mathrm{cc}=2.7 \mathrm{~V} \text { to } 3.6 \mathrm{~V}(\mathrm{MB} 91 \mathrm{~F} 356 \mathrm{~B} / \mathrm{F} 357 \mathrm{~B} \text { only }), \\
\left.\mathrm{Vss}=\mathrm{DAVS}=\mathrm{AVss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}+85^{\circ} \mathrm{C}\right)
\end{array}
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Cycle time	torc	$\begin{aligned} & \hline \text { MCLK*4 } \\ & \text { SYSCLK } \end{aligned}$	-	tcpt	-	ns	*1
SYSCLK $\uparrow \rightarrow$ SYSCLK \downarrow	tchcı	$\begin{aligned} & \hline \text { MCLK*4 } \\ & \text { SYSCLK } \end{aligned}$		tcyc - 5	tcyc +5	ns	*2
SYSCLK $\downarrow \rightarrow$ SYSCLK \uparrow	tclch	$\begin{aligned} & \hline \text { MCLK4 } \\ & \text { SYSCLK } \end{aligned}$		tcyc - 5	tcyc +5	ns	*3

*1: tcyc is the frequency of one clock cycle after gearing.
*2 : This value is the rating when the gear ratio is set to $\times 1$. For the ratings when the gear ratio is set to $1 / 2,1 / 4$ or $1 / 8$, substitute $1 / 2,1 / 4$ or $1 / 8$ for n in the following equation.
$(1 / 2 \times 1 / n) \times$ tcyc -10
*3: This value is the rating when the gear ratio is set to $\times 1$.
*4: The MB91F353A/353A/352A/351A does not have MCLK pin. In the following AC characteristics, MCLK is equal to SYSCLK.
Note : tcpt represents the internal operating clock cycle time. Refer to "(1) Clock Timing".

MB91350A Series

(3) Reset Ratings
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only), $\mathrm{V}_{\mathrm{ss}}=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
$\overline{\text { INIT input time }}$ (at power-on)	tintı	INIT	-	tc $\times 10$	-	ns
INIT input time (other than at power-on)				tc $\times 10$		ns

Note : tc represents the clock cycle time. Refer to "(1) Clock Timing".

MB91350A Series

(4) Normal Bus Access Read/Write Operation

- MB91F353A/353A/352A/351A

$$
\left(\mathrm{Vcc}=3.0 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=\mathrm{DAVS}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

*1: When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc \times the number of cycles added for the delay) to this rating.
*2 : This value is the rating when the gear ratio is set to $\times 1$. For the ratings when the gear ratio is set to between $1 / 2$ to $1 / 16$, substitute $1 / 2$ to $1 / 16$ for n in the following equation.
Calculation expression : $3 /(2 n) \times$ tcrc -15
*3: AWRxL : Area Wait Register
*4 : The MB91F353A/353A/352A/351A does not have A23 to A21.
Note : tcyc represents the cycle time. Refer to "(2) Clock Output Timing".

MB91350A Series

MB91350A Series

- MB91F355A/F356B/F357B/355A/354A
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only) , V ss $=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS3}}$ setup	tcsich	$\frac{\text { MCLK, }}{\text { CS0 to }} \overline{\mathrm{CS} 3}$	AWRxL*3 W02 = 0	3	-	ns	
	tcsolch		AWROL : W02 = 1	-3	-	ns	
$\overline{\mathrm{CSO}}$ to $\overline{\mathrm{CS} 3}$ hold	tchesh		-	3	tcrc/2 + 6	ns	
Address setup	tasch	$\begin{array}{c\|} \hline \text { MCLK, } \\ \text { A23 to A00*4 } \end{array}$		3	-	ns	
	taswL	$\begin{aligned} & \overline{\text { WRO }}, \overline{\text { WR1 }} \\ & \text { A23 to A00*4 } \end{aligned}$		3	-	ns	
	taskl	$\begin{gathered} \overline{\mathrm{RD}}, \\ \text { A23 to A00 } \end{gathered}$		3	-	ns	
Address hold	tchax	$\begin{array}{c\|} \hline \text { MCLK, } \\ \text { A23 to A00*4 } \end{array}$		3	tcrc/2 + 6	ns	
	twhax	$\begin{aligned} & \overline{\text { WRO, }} \overline{\text { WR1, }} \\ & \text { A23 to A00'4 } \end{aligned}$	-	3	-	ns	
	trhax	$\begin{gathered} \overline{\mathrm{RD}}, \\ \text { A23 to A00 } \end{gathered}$		3	-	ns	
Valid address \rightarrow Valid data input time	tavov	$\begin{gathered} \text { A23 to A00*4, } \\ \text { D31 to D16 } \end{gathered}$		-	$\begin{gathered} 3 / 2 \times \\ \operatorname{tcyc}-15 \end{gathered}$	ns	$\begin{aligned} & * 1 \\ & { }^{2} 2 \end{aligned}$
WRO, WR1 delay time	tchwL	$\frac{\text { MCLK, }}{\text { WR0, }} \overline{\text { WR1 }}$		-	6	ns	
$\overline{\text { WRO, }}$ WR1 delay time	tchwh			-	6	ns	
$\overline{\overline{W R O}}, \overline{\text { WR1 }}$ minimum pulse width	twwwh	$\overline{\mathrm{WRO}}, \overline{\mathrm{WR1}}$		tcyc - 5	-	ns	
Data setup $\rightarrow \overline{\mathrm{WRx}} \uparrow$	toswh	$\overline{\text { WRO, }} \overline{\text { WR1, }}$D31 to D16		tcrc	-	ns	
$\overline{\mathrm{WRx}} \uparrow \rightarrow$ Data hold time	twhox			3	-	ns	
RD delay time	tchri	$\begin{aligned} & \mathrm{MCLK}, \\ & \overline{\mathrm{RD}} \end{aligned}$		-	6	ns	
$\overline{\mathrm{RD}}$ delay time	tchrı			-	6	ns	
$\overline{\mathrm{RD}} \downarrow \rightarrow$ Valid data input time	trlov	$\overline{\mathrm{RD}}$, D31 to D16		-	tcyc - 10	ns	*1
Data setup $\rightarrow \overline{\mathrm{RD}} \uparrow$ time			$3.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 3.6 \mathrm{~V}$	10	-	ns	
	toser		$2.7 \mathrm{~V} \leq \mathrm{Vcc}<3.0 \mathrm{~V}$	15	-	ns	MB91F356B/ F357B only
$\overline{\overline{\mathrm{RD}} \downarrow} \downarrow \rightarrow$ Data hold time	trhdx		-	0	-	ns	
$\overline{\mathrm{RD}}$ minimum pulse width	trlah	RD		tcrc - 5	-	ns	
$\overline{\text { AS setup }}$	tastch	$\frac{\mathrm{MCLK}}{\overline{\mathrm{AS}}}$		3	-	ns	
AS hold	tchash			3	tcrc/2+6	ns	

*1: When the bus timing is delayed by automatic wait insertion or RDY input, add the time (tcyc \times the number of cycles added for the delay) to this rating.
*2 : This value is the rating when the gear ratio is set to $\times 1$. For the ratings when the gear ratio is set to between $1 / 2$ to $1 / 16$, substitute $1 / 2$ to $1 / 16$ for n in the following equation.

Calculation expression : $3 /(2 n) \times$ tcyc -15
*3 : AWRxL : Area Wait Register
*4: The MB91F353A/353A/352A/351A does not have A23 to A21.
Note : tovc represents the cycle time. Refer to "(2) Clock output timing".

MB91350A Series

MB91350A Series

(5) Multiplex Bus Access Read/Write Operation

($\mathrm{Vcc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only), $\mathrm{V}_{\text {ss }}=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
A15 to A00 Address AUDI setup time \rightarrow SYSCLK \uparrow	tasch	SYSCLK, D31 to D16	-	3	-	ns
SYSCLK $\uparrow \rightarrow$ A15 to A00 Address AUDI hold time	tchax			3	tcrc/2 + 6	ns
A15 to A00 Address AUDI setup time $\rightarrow \overline{\mathrm{AS}} \uparrow$	tasash	SYSCLK, D31 to D16		12	-	ns
$\overline{\overline{\mathrm{AS}} \uparrow \rightarrow}$ A15 to A0 O Address AUDI hold time	tashax			tcyc - 3	tcyc +3	ns

Notes : •This rating is not guaranteed when the CS $\rightarrow \overline{\mathrm{RD}} / \overline{W R}$ Setup Delay setting by AWR : bit1 is " 0 ".

- Beside this rating, normal bus interface ratings are applicable.
- tcyc represents the cycle time. Refer to "(2) Clock Output Timing".

MB91350A Series

(6) Ready Input Timings
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only), Vss $=$ DAVS $=A V$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
RDY setup time \rightarrow SYSCLK	trovs	$\begin{gathered} \hline \text { SYSCLK, } \\ \text { RDY } \end{gathered}$	-	15	-	ns
SYSCLK $\uparrow \rightarrow$ RDY hold time	trovh	$\begin{gathered} \text { SYSCLK, } \\ \text { RDY } \end{gathered}$	-	0	-	ns

MB91350A Series

(7) Hold Timing

$$
\text { (Vcc = 3.0 V to 3.6 V, Vcc=2.7 V to } 3.6 \mathrm{~V} \text { (MB91F356B/F357B only), }
$$

$$
\text { Vss } \left.=\text { DAVS }=\mathrm{AV} \text { ss }=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)
$$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
BRQ setup time \rightarrow SYSCLK \uparrow	teras	SYSCLK,BRQ	-	15	-	ns
SYSCLK $\uparrow \rightarrow$ BRQ hold time	tвван			0	-	ns
$\overline{\text { BGRNT }}$ delay time	tснвGL	$\frac{\text { SYSCLK, }}{\text { BGRNT }}$	-	tcyc / 2 - 6	tcvc / $2+6$	ns
$\overline{\text { BGRNT }}$ delay time	Існван			tcyc / 2-6	tovc / $2+6$	ns
Pin floating $\rightarrow \overline{\text { BGRNT }}$ fall time	txzBGL	BGRNT, D31 to D16, $\frac{\mathrm{A} 23}{\mathrm{CS} 3} \text { to } \text { to } \mathrm{A} 00,$		tcyc - 10	tcre +10	ns
BGRNT $\uparrow \rightarrow$ Pin valid time	tbahxv			torc - 10	torc +10	ns

*: These only apply in the case where the SREN bit of the area select register (ACR) is set to " 1 ".
Notes: • It takes 1 cycle or more from when BRQ is captured until GBRNT changes.

- toyc represents the cycle time. Refer to "(2) Clock Output Timing".

MB91350A Series

(8) UART, SIO Timing
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V, $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only), $\mathrm{V} s \mathrm{~s}=\mathrm{DAVS}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Notes: • Above rating is for CLK synchronous mode.

- tcpp represents the peripheral clock cycle time. Refer to "(1) Clock Timing".

MB91350A Series

- Internal shift clock mode

- External shift clock mode

MB91350A Series

(9) Free-run timer Clock, PPG Timer Input Timing
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only),
Vss $=$ DAVS $=A V$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
Input pulse width	ttiwn ttiwn	FRCK, TRGO to TRG4, AINO, BINO, ZINO	-	2 tcpp	-	ns	$\begin{aligned} & \text { MB91F353A/353A/ } \\ & \text { 352A/351A } \end{aligned}$
		FRCK, TRG0 to TRG5, AINO, AIN1, BINO, BIN1, ZINO, ZIN1					MB91F355A/F356B/ F357B/355A/354A

Note : tcpp represents the peripheral clock cycle time. Refer to "(1) Clock Timing".

MB91350A Series

(10) Trigger Input Timing
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} \mathrm{cc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only),

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
A/D activation trigger input time	tatgx	$\overline{\text { ATG }}$	-	5 tcpp	-	ns
Input capture input trigger	tinp	INO to IN3	-	5 tcpp	-	ns

Note : tcpp represents the peripheral clock cycle time. Refer to "(1) Clock Timing".

MB91350A Series

(11)DMA controller timing* ${ }^{1}$

- For edge detection (block/step transfer mode, burst transfer mode)
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only) , $\mathrm{V}_{\text {ss }}=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
DREQ Input pulse width	torwL	DREQ0 to DREQ2	-	2 tcrc* ${ }^{\text {c }}$	-	ns
DREQ Input pulse width	toswh	DSTP0 to DSTP2		2 tcrc*	-	ns

*1 : The MB91F353A/353A/352A/351A does not have this standard.
*2 : tcrc becomes tcp when fcpt is greater than fcr.

- For level detection (demand transfer mode)

($\mathrm{Vcc}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only) , $\mathrm{V}_{\text {ss }}=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Pin name	Conditions	Value		Unit
				Min	Max	
DREQ setup time	tors	MCLK, DREQ0 to DREQ2	-	15	-	ns
DREQ hold time	tore	MCLK, DREQ0 to DREQ2		0.0	-	ns
DSTP setup time	tostps	MCLK, DSTP0 to DSTP2		15	-	ns
DSTP hold time	tostph	MCLK, DSTP0 to DSTP2		0.0	-	ns

MB91350A Series

- Common operation mode

($\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only) , V ss $=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Conditions	Value		Unit	Remarks
				Min	Max		
DACK delay time	tdalch	MCLK, DACKO to DACK2	AWRxL*	3	-	ns	CS timing
			W02 = 0	-	6	ns	FR30 compatible
	ttadich		AWROL :	-3	-	ns	CS timing
				-	6	ns	FR30 compatible
	tснdat		-	-	tcrc/2 + 6	ns	CS timing
				-	6	ns	FR30 compatible
DEOP delay time	tdelch	MCLK, DEOPO to DEOP2	AWROL :	3	-	ns	CS timing
			W02 = 0	-	6	ns	FR30 compatible
	toedich		AWRxL*	-3	-	ns	CS timing
			W02 = 1	-	6	ns	FR30 compatible
	Існоен		-	-	tcrc/2 + 6	ns	CS timing
				-	6	ns	FR30 compatible
$\overline{\text { IORD }}$ delay time	tchirL	$\frac{\text { MCLK, }}{\text { IORD }}$	-	-	6	ns	
	tchire			-	6	ns	
IOWR delay time	tchiwL	$\frac{\text { MCLK, }}{\frac{1}{\text { IOWR }}}$		-	6	ns	
	tснIWн			-	6	ns	
$\overline{\text { IORD minimum pulse width }}$	tirLIRH	$\overline{\text { ORD }}$		12	-	ns	
	twlwh	$\overline{\text { IOWR }}$		12	-	ns	

* : AWRxL : Area Wait Register.

Note : tcyc represents the cycle time. Refer to "(2) Clock output timing".

MB91350A Series

MB91350A Series

(12) $I^{2} C$ Timing
($\mathrm{Vcc}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only), V ss $=\mathrm{DAVS}=\mathrm{AV}$ ss $=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Symbol	Condition	Standard-mode		Fast-mode*4		Unit
			Min	Max	Min	Max	
SCL clock frequency	fscı	$\begin{aligned} & \mathrm{R}=1.0 \mathrm{k} \Omega, \\ & \mathrm{C}=50 \mathrm{pF}^{* 1} \end{aligned}$	0	100	0	400	kHz
Hold time (repeated) START condition SDA $\downarrow \rightarrow$ SCL \downarrow	thdsta		4.0	-	0.6	-	$\mu \mathrm{s}$
"L" width of the SCL clock	tow		4.7	-	1.3	-	$\mu \mathrm{s}$
"H" width of the SCL clock	tнıg		4.0	-	0.6	-	$\mu \mathrm{s}$
Set-up time for a repeated START condition SCL $\uparrow \rightarrow$ SDA \downarrow	tsusta		4.7	-	0.6	-	$\mu \mathrm{s}$
Data hold time SCL $\downarrow \rightarrow$ SDA $\downarrow \uparrow$	thdot		0	$3.45{ }^{* 2}$	0	0.9*3	$\mu \mathrm{s}$
Data set-up time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat		250	-	100	-	ns
Set-up time for STOP condition SCL $\uparrow \rightarrow$ SDA \uparrow	tsusto		4.0	-	0.6	-	$\mu \mathrm{s}$
Bus free time between a STOP and START condition	tbus		4.7	-	1.3	-	$\mu \mathrm{s}$

*1: R,C : Pull-up resistance and load capacitance of the SCL and SDA lines.
*2 : The maximum thdoat only has to be met if the device does not extend the " L " width (toow) of the SCL signal.
*3 : A Fast-mode $I^{2} C$-bus device can be used in a Standard-mode $I^{2} \mathrm{C}$-bus system, but the requirement tsudat ≥ 250 ns must then be met.
*4: For use at over 100 kHz , set the machine clock to at least 6 MHz .

MB91350A Series

5. Electrical Characteristics for the A/D Converter

- MB91F353A/353A/352A/351A
$\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{Vc}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{AVRH}=3.0 \mathrm{~V}$ to 3.6 V , $\mathrm{Vss}=\mathrm{DAVS}=\mathrm{AV} s \mathrm{~V}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-		10	bit	
Total error *1			-5.0		+ 5.0	LSB	$\begin{aligned} & \text { At } \mathrm{AV} \mathrm{Vc}=3.3 \mathrm{~V}, \\ & \mathrm{AVRH}=3.3 \mathrm{~V} \end{aligned}$
Nonlinear error *1			-3.5		+ 3.5		
Differential linear error *1			-2.5		+ 2.5		
Zero transition voltage *1		$\begin{gathered} \text { AN7 } \\ \text { to } \\ \text { AN0 } \end{gathered}$	AVRL-2.0	AVRL + 1.0	AVRL + 6.0		
Full-transition voltage *1			AVRH - 5.5	AVRH + 1.5	AVRH + 3.0		
Conversion time		-	$1.48{ }^{* 2}$	-	300	$\mu \mathrm{s}$	
Analog power supply current (analog + digital)	IA	AVcc	-	7	-	mA	
	ІА			-	5	$\mu \mathrm{A}$	At STOP
Reference power supply current	IR	AVRH		470	-		$\begin{aligned} & \text { At AVRH }=3.0 \mathrm{~V}, \\ & \text { AVRL }=0.0 \mathrm{~V} \end{aligned}$
(between AVRH and AVRL)	Ів ${ }^{\text {r }}$			-	10		At STOP
Analog input capacitance	-	$\begin{gathered} \text { AN7 } \\ \text { to } \\ \text { ANO } \end{gathered}$		40	-	pF	
Interchannel disparity				-	4	LSB	

*1 : Measured in the CPU sleep state
*2 : When the peripheral resource clock frequency is 25.0 MHz , set the Conversion Time Setting Register (ADCT) to a value equal to or greater than 5334н.
Set each bit as follows :
Sampling time : SAMP3 to SAMPO $\geq 5_{\mathrm{H}}$
Conversion time a: CV03 to CVO \geq Зн
Conversion time b: CV13 to CVO \geq З
Conversion time c: CV23 to CVO ≥ 4 H

MB91350A Series

- MB91F355A/F356B/F357B/355A/354A/V350A
$\left(\mathrm{Vcc}=\mathrm{AV} \mathrm{Vc}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{AVRH}=3.0 \mathrm{~V}$ to $3.6 \mathrm{~V}, \mathrm{~V} s \mathrm{~s}=\mathrm{DAVS}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Parameter	Symbol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-		-		10	bit	
Total error*1			-5.0		+ 5.0	LSB	$\begin{aligned} & \mathrm{AV} \mathrm{Cc}=3.3 \mathrm{~V}, \\ & \mathrm{AVRH}=3.3 \mathrm{~V} \end{aligned}$
Nonlinear error*1			-3.5		+ 3.5		
Differential linear error*1			-2.5		+2.5		
Zero transition voltage*1		AN11 to ANO	AVRL-2.0	AVRL + 1.0	AVRL + 6.0		
Full-transition voltage*1			AVRH - 5.5	AVRH + 1.5	AVRH + 3.0		
Conversion time		-	$1.48{ }^{\text {*2 }}$	-	300	$\mu \mathrm{s}$	
Analog power supply current (analog + digital)	I_{A}	AVcc	-	8	-	mA	
	ІАн			-	5	$\mu \mathrm{A}$	At stop
Reference power supply current	IR	AVRH		470	-		$\begin{aligned} & \mathrm{AVRH}=3.0 \mathrm{~V}, \\ & \mathrm{AVRL}=0.0 \mathrm{~V} \end{aligned}$
(between AVRH and AVRL)	Ів			-	10		At stop
Analog input capacitance	-	AN11 to ANO		40	-	pF	
Interchannel disparity				-	4	LSB	

*1: Measured in the CPU sleep state
*2 : When the peripheral resource clock frequency is 25.0 MHz , set the Conversion Time Setting Register (ADCT) to a value equal to or greater than 5334 H .
Set each bit as follows :
Sampling time : SAMP3 to SAMPO $\geq 5 \mathrm{H}$
Conversion time a : CV03 to CVO \geq Зн
Conversion time b: CV13 to CVO \geq 3н
Conversion time c : CV23 to CVO $\geq 4 \mathrm{H}$

MB91350A Series

- About the external impedance and sampling time of the analog input

- A/D converter with sample and hold circuit. If the external impedance is too high to ensure sufficient sampling time, the analog voltage of the internal sample and hold capacitor will not be sufficiently charged, adversely affecting the A / D conversion precision. Therefore, to satisfy the A/D conversion precision standard, consider the relationship between the external impedance and minimum sampling time and either adjust the resistor value and operating frequency or decrease the external impedance so that the sampling time is longer than the minimum value. Moreover, if sufficient sampling time cannot be ensured, connect a capacitor of about 0.1 $\mu \mathrm{F}$ to the analog input pin.
- Analog input circuit schematic

	R	C
MB91355A/354A/353A/352A/351A	$0.18 \mathrm{k} \Omega$ (Max)	63.0 pF (Max)
MB91F355A/F353A/F356B/F357B	$0.18 \mathrm{k} \Omega$ (Max)	39.0 pF (Max)

Note : The values are reference values.

- The relationship between the external impedance and minimum sampling time

- About errors

The smaller the value of \mid AVRH-AVss \mid, the greater the relative error.

MB91350A Series

Definition of A/D Converter Terms

- Resolution

Analog variation that is recognized by an A/D converter.

- Linearity error

The difference between the line connecting the zero transition point ("00 $00000000 " \leftarrow \rightarrow$ "00 00000001 ") and the full-scale transition point ("1111111110" $\longleftrightarrow " 1111111111$ ") and the actual conversion characteristics.

- Differential linear error

Deviation from the ideal value of the input voltage that is required to change the output code by 1 LSB.
Linearity error

MB91350A Series

- Total error

This error indicates the difference between the actual and ideal values, including the zero transition error/fullscale transition error/linearity error.

$1 L S B^{\prime}($ Ideal value $)=\frac{\mathrm{AVRH}-\mathrm{AV} s \mathrm{~s}}{1024}[\mathrm{~V}]$
Total error of digital output $\mathrm{N}=\frac{\mathrm{V}_{\mathrm{NT}}-\left\{1 \mathrm{LSB}^{\prime} \times(\mathrm{N}-1)+0.5 \text { LSB' }^{\prime}\right\}}{1 \mathrm{LSB}}$
N:A/D converter digital output value
V_{NT} : The voltage at which the digital output transitions from $(\mathrm{N}+1)_{\mathrm{H}}$ to N_{H}
Vот' $($ Ideal value $)=\mathrm{AV}$ ss $+0.5 \mathrm{LSB}^{\prime}[\mathrm{V}]$
VFST' ${ }^{\prime}($ Ideal value $)=$ AVRH -1.5 LSB' [V]

MB91350A Series

6. Electrical Characteristics for the D/A Converter
$\left(\mathrm{Vcc}=\mathrm{DAVC}=3.0 \mathrm{~V}\right.$ to $3.6 \mathrm{~V}, \mathrm{Vss}=\mathrm{DAVS}=\mathrm{AV} \mathrm{ss}=0 \mathrm{~V}, \mathrm{Ta}=-40^{\circ} \mathrm{C}$ to $\left.+85^{\circ} \mathrm{C}\right)$

Parameter	Sym-bol	Pin name	Value			Unit	Remarks
			Min	Typ	Max		
Resolution	-	-	-	-	8	bit	
Nonlinear error			-2.0	-	+ 2.0	LSB	When the output is unloaded
Differential linear error			-1.0	-	+ 1.0		When the output is unloaded
Conversion speed			-	0.6	-	$\mu \mathrm{s}$	When load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)=20 \mathrm{pF}$
				3.0			When load capacitance $\left(\mathrm{C}_{\mathrm{L}}\right)=100 \mathrm{pF}$
Output high impedance		$\begin{aligned} & \text { DAO, } \\ & \text { DA1 } \end{aligned}$	2.0	2.9	3.8	$\mathrm{k} \Omega$	$\begin{aligned} & \text { MB91F353A/353A/352A/ } \\ & 351 \mathrm{~A} \end{aligned}$
		$\begin{aligned} & \text { DA0 to } \\ & \text { DA2 } \end{aligned}$					$\begin{aligned} & \text { MB91F355A/F356B/F357B/ } \\ & \text { 355A/354A } \end{aligned}$
Analog current	-	DAVC	-	40	-	$\mu \mathrm{A}$	$10 \mu \mathrm{~s}$ conversion when the output is unloaded
	IAdA			-	460*		Input digital code, when fixed at 7 Ан or 85 н
	Iadah			0.1	-		At power-down

*: This D/A converter varies in current consumption depending on each input digital code.
This rating indicates the current consumption when the digital code that maximizes current consumption is input.

MB91350A Series

FLASH MEMORY ERASE and PROGRAM PERFORMANCE

Parameter	Condition	Value			Unit	Remarks
		Min	Typ	Max		
Sector erase time	$\begin{aligned} & \mathrm{Ta}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V} \mathrm{cc}=3.3 \mathrm{~V} \end{aligned}$	-	1	15	S	Excludes 00 н programming prior erasure
Chip erase time		-	8	-	S	Excludes 00 н programming prior erasure
Half word (16-bit width) programming time		-	16	3600	$\mu \mathrm{s}$	Excludes system-level overhead
Erase/program cycle	-	10000	-	-	cycle	
Flash data retention time	Average $\mathrm{Ta}=+85^{\circ} \mathrm{C}$	20	-	-	year	*

*: This value comes from the technology qualification (using Arrhenius equation to translate high temperature measurements into normalized value at $+85^{\circ} \mathrm{C}$).

MB91350A Series

EXAMPLE CHARACTERISTICS

- MB91F353A

(Continued)

MB91350A Series

Power supply current
Icc vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcP}=50 \mathrm{MHz}, \mathrm{fcPP}=25 \mathrm{MHz}$

Power supply current at sleep

Power supply current at stop
Icch vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

Sub sleep power supply current
Iccls vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcP}=32 \mathrm{kHz}, \mathrm{fcpp}=\mathrm{fcpt}=32 \mathrm{kHz}$

Power supply current
Icc vs. fc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{fcp}=4 \times \mathrm{fc}$ (multiplied by 4)

Power supply current at sleep
Iccs vs. fc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{Vcc}=3.3 \mathrm{~V}, \mathrm{fcP}=4 \times \mathrm{fc}$ (multiplied by 4)

Sub-RUN power supply current
Iccl vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$, fcp $=32 \mathrm{kHz}$, fcpp $=25 \mathrm{MHz}$

Watch mode power supply current
Icct vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}, \mathrm{fcP}=32 \mathrm{kHz}, \mathrm{fCPP}=\mathrm{f}_{\mathrm{CPT}}=32 \mathrm{kHz}$

(Continued)

MB91350A Series

(Continued)

A/D converter power supply current

A/D converter power supply current at stop

D/A converter power supply current <per 1 channel>

Iada vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

A/D converter reference power supply current
Ir vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

A/D converter reference power supply current at stop

Irh vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

D/A converter power supply current at power down
ladah vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

MB91350A Series

- MB91355A

(Continued)

MB91350A Series

(Continued)

MB91350A Series

(Continued)

MB91350A Series

(Continued)

D/A converter power supply current < per 1 channel >					D/A converter power supply current at power down				
IADA vs. VCC $\mathrm{Ta}=+25^{\circ} \mathrm{C}$					IADAH vs. VCC $\quad \mathrm{Ta}=+25^{\circ} \mathrm{C}$				
					§ 10				
					3				
2.7	3.0	3.3	3.6	3.9		3.0	3.3	3.6	3.9
Vcc [V]							Vcc [V]		

MB91350A Series

- MB91353A/352A/351A

(Continued)

MB91350A Series

(Continued)

MB91350A Series

(Continued)

A/D converter power supply current

A/D converter power supply current at stop
$\mathrm{I}_{\mathrm{ah}} \mathrm{vs}$. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

D/A converter power supply current <per 1 channel>

Iada vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

A/D converter reference power supply current
Ir vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

A/D converter reference power supply current at stop

Irh vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

D/A converter power supply current at power down

Iadah vs. Vcc
$\mathrm{Ta}=+25^{\circ} \mathrm{C}$

MB91350A Series

- ORDERING INFORMATION

Part number	Package	Remarks
MB91F355APMT-002	176-pin plastic LQFP (FPT-176P-M02)	Lead-free Package
MB91F356BPMT	176-pin plastic LQFP (FPT-176P-M02)	Lead-free Package
MB91F357BPMT	176-pin plastic LQFP (FPT-176P-M02)	Lead-free Package
MB91355APMT	176-pin plastic LQFP (FPT-176P-M02)	Lead-free Package
MB91354APMT	176-pin plastic LQFP (FPT-176P-M02)	Lead-free Package
MB91F353APMT	120-pin plastic LQFP (FPT-120P-M21)	Lead-free Package
MB91351APMT	120-pin plastic LQFP (FPT-120P-M21)	Lead-free Package
MB91352APMT	120-pin plastic LQFP (FPT-120P-M21)	Lead-free Package
MB91353APMT	120-pin plastic LQPP (FPT-120P-M21)	Lead-free Package

MB91350A Series

PACKAGE DIMENSION

Please confirm the latest Package dimension by following URL.
http://edevice.fujitsu.com/fj/DATASHEET/ef-ovpklv.html
(Continued)

MB91350A Series

(Continued)

176-pin plastic LQFP	Lead pitch	0.50 mm
Package width \times package length	$24.0 \times 24.0 \mathrm{~mm}$	
Lead shape	Gullwing	
Sealing method	Plastic mold	

Please confirm the latest Package dimension by following URL. http://edevice.fujitsu.com/j/DATASHEET/ef-ovpklv.html

MAIN CHANGES IN THIS EDITION

Page	Section	Change Results
-	-	Added the part number; MB91F357B
4	FEATURES 15. Other features	Changed the description; - Provided with INIT as a reset pin (The CPU operates without oscillation stabilization wait interval when the INIT pin is reset.) \downarrow - INIT pin provided as a reset pin (the oscillation stabilization wait time when the INIT pin is reset is clock cycle $\times 2$.)
94	- ELECTRICAL CHARACTERISTICS 2. Recommended Operating Conditions	Added the table "MB91F356B/F357B only"
$\begin{gathered} \hline 95 \text { to } 98, \\ 101,102,105, \\ 107 \text { to } 110, \\ 112 \text { to } 115, \\ 117 \end{gathered}$	ELECTRICAL CHARACTERISTICS Characteristic values	Added the description $\mathrm{V}_{\mathrm{cc}}=2.7 \mathrm{~V}$ to 3.6 V (MB91F356B/F357B only)
100	4. AC Characteristics (1) Clock Timing	Added the "(MB91F356B/F357B only)" for the "• Operation Guaranteed Range".
105	4. AC Characteristics (4) Normal Bus Access Read/Write Operation	Changed the conditions and values for the "Data setup $\rightarrow \overline{\mathrm{RD}} \uparrow$ time" $\begin{aligned} & -3.0 \mathrm{~V} \leq \mathrm{Vcc} \leq 3.6 \mathrm{~V}, 2.7 \mathrm{~V} \leq \mathrm{Vcc}<3.0 \mathrm{~V} \\ & 10 \rightarrow 10,15 \end{aligned}$
118	- ELECTRICAL CHARACTERISTICS 5. Electrical Characteristics for the	Changed the table title; - MB91F353A \rightarrow • MB91F353A/352A/351A
119	A/D Converter	Changed the table title; - MB91F355A \rightarrow • MB91F355A/F356B/F357B/ 355A/354A/V350A
135	- ORDERING INFORMATION	Added the part number; MB91F357BPMT

The vertical lines marked in the left side of the page show the changes.

MB91350A Series

The information for microcontroller supports is shown in the following homepage.
http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html

FUJITSU LIMITED

All Rights Reserved.

The contents of this document are subject to change without notice. Customers are advised to consult with FUJITSU sales representatives before ordering.
The information, such as descriptions of function and application circuit examples, in this document are presented solely for the purpose of reference to show examples of operations and uses of Fujitsu semiconductor device; Fujitsu does not warrant proper operation of the device with respect to use based on such information. When you develop equipment incorporating the device based on such information, you must assume any responsibility arising out of such use of the information. Fujitsu assumes no liability for any damages whatsoever arising out of the use of the information.
Any information in this document, including descriptions of function and schematic diagrams, shall not be construed as license of the use or exercise of any intellectual property right, such as patent right or copyright, or any other right of Fujitsu or any third party or does Fujitsu warrant non-infringement of any third-party's intellectual property right or other right by using such information. Fujitsu assumes no liability for any infringement of the intellectual property rights or other rights of third parties which would result from the use of information contained herein.
The products described in this document are designed, developed and manufactured as contemplated for general use, including without limitation, ordinary industrial use, general office use, personal use, and household use, but are not designed, developed and manufactured as contemplated (1) for use accompanying fatal risks or dangers that, unless extremely high safety is secured, could have a serious effect to the public, and could lead directly to death, personal injury, severe physical damage or other loss (i.e., nuclear reaction control in nuclear facility, aircraft flight control, air traffic control, mass transport control, medical life support system, missile launch control in weapon system), or (2) for use requiring extremely high reliability (i.e., submersible repeater and artificial satellite).
Please note that Fujitsu will not be liable against you and/or any third party for any claims or damages arising in connection with above-mentioned uses of the products.
Any semiconductor devices have an inherent chance of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.
If any products described in this document represent goods or technologies subject to certain restrictions on export under the Foreign Exchange and Foreign Trade Law of Japan, the prior authorization by Japanese government will be required for export of those products from Japan.
The company names and brand names herein are the trademarks or registered trademarks of their respective owners.

Edited Business Promotion Dept.

[^0]: "Check Sheet" is seen at the following support page
 URL : http://www.fujitsu.com/global/services/microelectronics/product/micom/support/index.html
 "Check Sheet" lists the minimal requirement items to be checked to prevent problems beforehand in system development.

