MULTI-RATE GIGABIT ETHERNET & FIBRE CHANNEL SFP TRANSCEIVERS WITH DIGITAL DIAGNOSTICS

TRPCG1-E2G Single Mode

Product Description

The TRPCG1-E2G SFP series of multi-rate fiber optic transceivers with integrated digital diagnostics monitoring functionality provide a quick and reliable interface for 1000BASE-LX Gigabit Ethernet and 1.062GBd Fibre Channel applications. The transceivers are designed to support data rates ranging from 1.25Gb/s down to 125Mb/s. The diagnostic functions, alarm and warning features as described in the Multi-Source Agreement (MSA) document, SFF-8472 (Rev. 9.4), are provided via an I²C serial interface.

The transceivers use a 1310nm Fabry Perot laser and provides a minimum optical link budget of 11dB, corresponding to a minimum distance of 10km, assuming fiber loss of 0.45dB/km. All modules satisfy Class I Laser Safety requirements in accordance with the U.S. FDA/CDRH and international IEC-60825 standards.

The transceivers connect to standard 20-pad SFP connectors for hot plug capability. This allows the system designer to make configuration changes or maintenance by simply plugging in different types of transceivers without removing the power supply from the host system.

The transceivers have colored bail-type latches, which offer an easy and convenient way to release the modules. The latch is compliant with the SFP MSA.

The transmitter and receiver DATA interfaces are AC-coupled internally. LV-TTL Transmitter Disable control input and Loss of Signal output interfaces are also provided.

The transceivers operate from a single +3.3V power supply over operating case temperature ranges of $-5^{\circ}C$ to $+70^{\circ}C$ (Commercial) or $-40^{\circ}C$ to $+85^{\circ}C$ (Industrial). The housing is made of metal for EMI immunity.

Features

- ☑ Lead Free Designed & Fully RoHS compliant
- ☑ Compliant with IEEE 802.3z Gigabit Ethernet 1000BASE-LX PMD Specifications
- ☑ Compliant with SFP MSA
- ☑ Digital Diagnostics through Serial Interface
- ☑ Internal Calibration for Digital Diagnostics
- ☑ Distance Options to Support 10km
- ☑ Eye Safe (Class I Laser Safety)
- ☑ Duplex LC Optical Interface
- ☑ Loss of Signal Output & TX Disable Input
- ☑ -40°C to +85°C Operating Case Temperature Option
- ☑ Hot-pluggable
- ☑ Single +3.3V Power Supply

Absolute Maximum Ratings

Parameter Storage Temperature		Symbol	Minimum	Maximum	Units °C
		T_{st}	- 40	+ 85	
O	Commercial	Т	- 5	+ 70	°C
Operating Case Temperature 1	Industrial	I_{op}	- 40	+ 85	-(
Supply Voltage		V_{cc}	0	+ 3.47	V
Input Voltage		V_{in}	0	V_{cc}	V
¹ Measured on top side of SFP mod	lule at the front center ve	ent hole of the cage.			

Transmitter Performance Characteristics (Over Operating Case Temperature, $V_{\rm CC}$ = 3.13 to 3.47V)

All parameters guaranteed only at typical data rate

Parameter	Symbol	Minimum	Typical	Maximum	Units		
Operating Data Rate	В	125	-	1250	Mb/s		
Optical Output Power ^{1,2}	P_o	- 9.0	-	- 3.0	dBm		
Center Wavelength	λ_c	1275	1310	1357	nm		
Spectral Width (RMS)	$\Delta\lambda_{\scriptscriptstyle RMS}$	-	-	2.5	nm		
Extinction Ratio	P_{hi}/P_{lo}	9	-	-	dB		
Deterministic Jitter	DJ	-	-	80	ps		
Total Jitter	TJ	-	-	227	ps		
Optical Rise/Fall Time (20% to 80%)	t_r, t_f	-	-	0.32	ns		
Relative Intensity Noise	RIN	-	-	-120	dB/Hz		
Optical Output Eye	C	Compliant with Eye Mask Defined in IEEE 802.3z standard					

¹Measured average power coupled into single mode fiber (SMF).

Receiver Performance Characteristics (Over Operating Case Temperature, V_{cc} = 3.13 to 3.47V) All parameters guaranteed only at typical data rate

Parameter		Symbol	Minimum	Typical	Maximum	Units	
Operating Data Rate		В	125	-	1250	Mb/s	
Minimum Input Optio	ral Power (10 ⁻¹² BER) ¹	P_{min}	- 20.0	-	-	dBm	
Maximum Input Option	cal Power (10 ⁻¹² BER) ¹	P_{max}	- 3.0	-	-	dBm	
LOCAL L. L.	Increasing Light Input	P_{los+}	-	-	- 20.0	I.D.	
LOS Thresholds	Decreasing Light Input	P_{los}	- 30.0	-	-	dBm	
LOSTININ Dela	Increasing Light Input	t_loss_off	-	-	100	μs	
LOS Timing Delay	Decreasing Light Input	t_loss_on	-	-	100		
LOS Hysteresis		-	0.5	-	-	dB	
Deterministic Jitter		DJ	-	-	170	ps	
Total Jitter		TJ	-	-	266	ps	
Wavelength of Operation		λ	1100	-	1600	nm	
Optical Return Loss		ORL	12	-	-	dB	
Electrical 3dB Upper Cutoff Frequency		-	-	-	1500	MHz	
Stressed Receiver Sensitivity			Compliant with IEEE 802.3z standard				

 $^{^{1}}$ When measured with 2^{7} -1 PRBS at 125Mb/s, 1062.5Mb/s & 1250Mb/s and 1310nm.

²For 50mm or 62.5mm multimode fiber (MMF) operation, the output power is 0.5dB less and is measured after a SMF offset-launch mode-conditioning patch cord as specified in IEEE 802.3z.

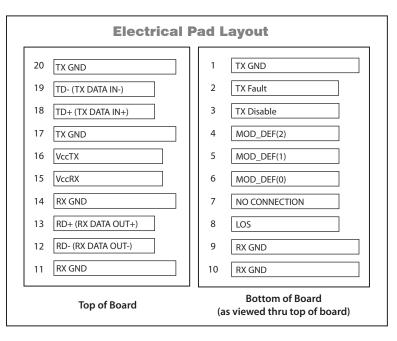
Transmitter Electrical Interface (Over Operating Case Temperature, $V_{CC} = 3.13$ to 3.47V)

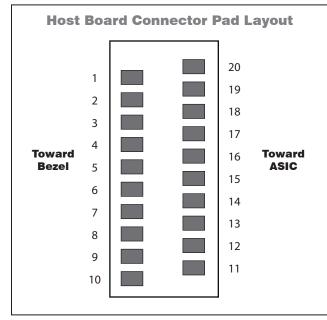
Parameter	Symbol	Minimum	Typical	Maximum	Units
Input Voltage Swing (TD+ & TD-)1	$V_{{\scriptscriptstyle PP ext{-}DIF}}$	0.50	-	2.4	V
Input HIGH Voltage (TX Disable) ²	$V_{_{I\!H}}$	2.0	-	V_{cc}	V
Input LOW Voltage (TX Disable) ²	$V_{_{I\!L}}$	0	-	0.8	V
Output HIGH Voltage (TX Fault) ³	$V_{_{OH}}$	2.0	-	V _{CC} + 0.3	V
Output LOW Voltage (TX Fault) ³	$V_{\scriptscriptstyle OL}$	0	-	0.8	V

 $^{^1} Differential\ peak-to-peak\ voltage.$

Receiver Electrical Interface (Over Operating Case Temperature, $V_{\rm CC}$ = 3.13 to 3.47V)

Parameter	Symbol	Minimum	Typical	Maximum	Units		
Output Voltage Swing (RD+ & RD-) ¹	$V_{{\scriptscriptstyle PP\text{-}DIF}}$	0.6	-	2.0	V		
Output HIGH Voltage (LOS) ²	$V_{_{O\!H}}$	2.0	-	V _{CC} + 0.3	V		
Output LOW Voltage (LOS) ²	$V_{\scriptscriptstyle OL}$	0	-	0.5	V		
Differential and the collection of the control of t							

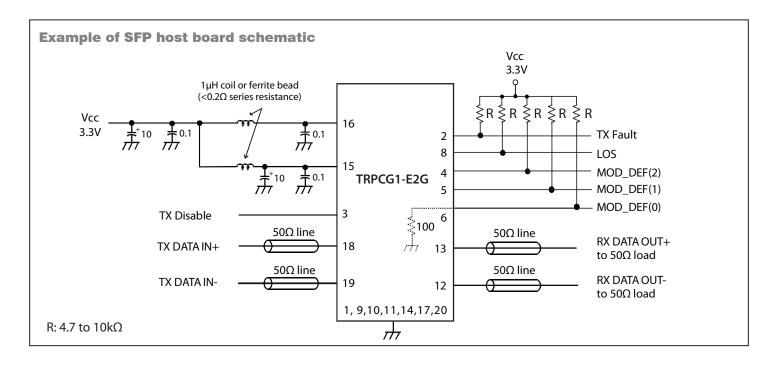

 $^{^{1}}$ Differential peak-to-peak voltage across external 100Ω load.


Electrical Power Supply Characteristics (Over Operating Case Temperature, $V_{cc} = 3.13$ to 3.47V)

Parameter		Symbol Minimum		Typical	Maximum	Units	
Supply Voltage		V_{cc}	3.13	3.3	3.47	V	
Supply Current	LX	I_{CC}	-	190	245	mA	

Module Definition

MOD_DEF(0)	MOD_DEF(1)	MOD_DEF(2)	Interpretation by Host
pin 6	pin 5	pin 4	
TTL LOW	SCL	SDA	Serial module definition protocol



²There is an internal 4.7 to $10k\Omega$ pull-up resistor to *VccT*.

 $^{^3}$ Open collector compatible, 4.7 to $10k\Omega$ pull-up resistor to *Vcc* (Host Supply Voltage).

²Open collector compatible, 4.7 to $10k\Omega$ pull-up resistor to *Vcc* (Host Supply Voltage).

Application Notes

Electrical Interface: All signal interfaces are compliant with the SFP MSA specification. The high speed DATA interface is differential AC-coupled internally with $1\mu F$ and can be directly connected to a 3.3V SERDES IC. All low speed control and sense output signals are open collector TTL compatible and should be pulled up with a 4.7 - $10k\Omega$ resistor on the host board.

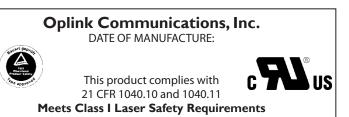
Loss of Signal (LOS): The Loss of Signal circuit monitors the level of the incoming optical signal and generates a logic HIGH when an insufficient photocurrent is produced.

TX Fault: The output indicates LOW when the transmitter is operating normally, and HIGH with a laser fault including laser end-of-life. TX Fault is an open collector/drain output and should be pulled up with a $4.7 - 10 k\Omega$ resistor on the host board. TX Fault is non-latching (automatically deasserts when fault goes away).

TX Disable: When the TX Disable pin is at logic HIGH, the transmitter optical output is disabled (less than -45dBm).

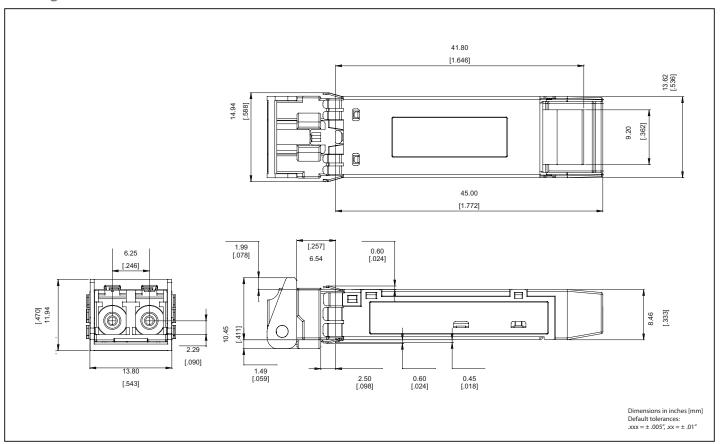
Serial Identification and Monitoring: The module definition of SFP is indicated by the three module definition pins, MOD_DEF(0), MOD_DEF(1) and MOD_DEF(2). Upon power up, MOD_DEF(1:2) appear as NC (no connection), and MOD_DEF(0)

is TTL LOW. When the host system detects this condition, it activates the serial protocol (standard two-wire I²C serial interface) and generates the serial clock signal (SCL). The positive edge clocks data into the EEPROM segments of the SFP that are not write protected, and the negative edge clocks data from the SFP.


The serial data signal (SDA) is for serial data transfer. The host uses SDA in conjunction with SCL to mark the start and end of serial protocol activation. The supported monitoring functions are temperature, voltage, bias current, transmitter power, average receiver signal, all alarms and warnings, and software monitoring of TX Fault/LOS. The device is internally calibrated.

The data transfer protocol and the details of the mandatory and vendor specific data structures are defined in the SFP MSA, and SFF-8472, Rev. 9.4.

Power Supply and Grounding: The power supply line should be well-filtered. All $0.1\mu F$ power supply bypass capacitors should be as close to the transceiver module as possible.


Laser Safety

Laser Safety: All transceivers are Class I Laser products per FDA/CDRH and IEC-60825 standards. They must be operated under specified operating conditions.

Package Outline

Ordering Information

Part Number	Туре	Operating Temperature	Latch Color	Nominal Wavelength	Optical Link Power Budget ⁴	Distance ¹
TRPCG1CLXC000E2G	LX	- 5°C to +70°C	Blue	1310nm	11dB	10km
TRPCG1CLXI000E2G	LX	- 40°C to +85°C	biue	13101111	TTUB	TOKITI

¹The indicated transmission distance is for guidelines only, not guaranteed. The exact distance is dependent on the fiber loss, connector and splice loss, and allocated system penalty. Longer distances can be supported if the optical link power budget is satisfied.