MORNSUN

QP12W05S-37 Hybrid Integrated IGBT Driver

QP12W05S-37 is a hybrid integrated IGBT driver designed for driving IGBT modules. This device is a fully isolated gate drive circuit consisting of an optimally isolated gate drive amplifier and an isolated DC-to-DC converter. The gate driver provides an over-current protection function based on desaturation detection and fault output.

multi-country patent protection RoHS

Features

- I Built in high CMRR opto-coupler (CMR: Typical: 30kV/µs, Min.:15kV/µs)
- I Single supply drive topology
- I Built in the isolated type DC/DC converter for gate drive
- I SIP package
- I CMOS&TTL compatible
- I Electrical isolation voltage between input and output is 3750VRMS (for 1 minute)
- I Built in short circuit protection circuit with a pin for fault output
- I Soft turn-off time is adjustable
- I The drive signal is ignored in the blocking time and the protection circuit reset at the end of it
- I Controlled time detect short circuit is adjustable
- I Switching frequency up to 20kHz

Application

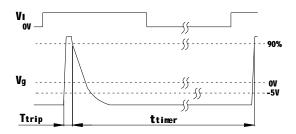
- I General-purpose Inverter
- I AC Servo Systems
- I Uninterruptable Power Supplies(UPS)
- I Welding Machines

Recommended modules

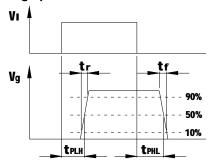
- I 600V Series IGBT(up to 600A)
- I 1200V Series IGBT(up to 400A)
- I 1700V Series IGBT(up to 200A)

MORNSUN Science & Technology co.,Ltd.

Address: 2th floor 6th building, Huangzhou Industrial District, Guangzhou, China Tel: 86-20-38601850 Fax:86-20-38601272 Http://www.mornsun-power.com


Absolute Maximum Ratings				
Item		Test Conditions	Ratings	Units
Supply Voltage	V _D	DC	16	V
Input Voltage	VI	Between pin3 and pin4	-1 ~ +7	V
Out Voltage	Vo	When the Output voltage "H"	V _{CC}	V
Output Current	I _{g on}	Pulse width 2µs Frequency f=20kHz	+5	Α
	I _{g off}		-5	Α
Isolation Voltage	Vis	Sine wave voltage 50Hz/60 Hz,1 min.	3750	V
Operation Temperature	To		-40 ~ +70	°C
Storage Temperature	T _{st}		-50 ~ +125	°C
Fault Output Current	IF		20	mA
Input Voltage	V _R	Applied pin13	50	V
Notes: 1. Ta=25°C; V _D =15V, unless otherwise specified.				

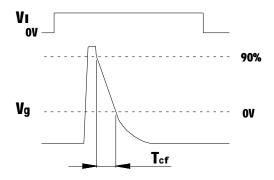
Electrical Characteris	tic					
Characteristics		Test Conditions	Limit			Units
		rest Conditions	Min	Тур.	Max	UTIILS
Supply Voltage	V_D	Recommended Range	14.5	15	15.5	V
Pull-up voltage on input side	V _{IN}	Recommended Range	4.75	5	5.25	V
"H" input current	I _{IH}	Recommended Range	_	16	_	mA
Switching frequency	f	Recommended Range			20	kHz
Gate resistant	Rg	Recommended Range	2			Ω
Gate supply voltage	Vc	_	14.5	_	18.0	V
	VE	_	-7	_	-10	V
"H" output voltage	V _{он}	15KΩconnected between pin9-11	13.5	15.3	17.0	V
"L" output voltage	VoL	15KΩconnected between pin9-11	-6	_	-10	V
"L-H" propagation delay time	t _{PLH}	I _{IH} =10mA	_	0.5	1	μs
"L-H" rise time	t _r	I _{IH} =10mA		0.3	1	μs
"H-L" propagation delay time	t _{PHL}	I _{IH} =10mA		1	1.3	μs
"H-L" fall time	t _f	I _{IH} =10mA		0.3	1	μs
Protection threshold voltage	V _{OCP}	V _D =15V		9.5		V
Protection reset time	t _{timer}	Between start and cancel	1	1.4	2	ms
Fault output current	I _{FO}	Pin15 input current, R=4.7K		5		mA
Short-circuit detection time delay	T _{trip1}	Pin 13: ≥15V, Pin 16:open		1.6		μs
Soft turn-off time	T _{cf}	PIN 13≥15V, Pin 16:open		4.5		μs
SC detect voltage	V _{SC}	Collector voltage of module	15			V


Notes: 1. Ta=25 °C, V_D =15V, Rg=5 Ω . unless otherwise specified 2."H" represents high level; "L" represents low level.

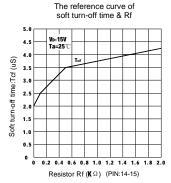
Definition of Characteristics

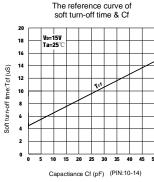
1) Operation of short circuit protection

2) Switching operation

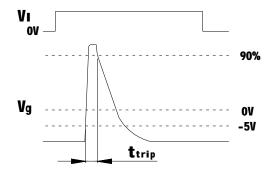


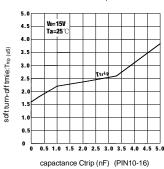
Definition of Adjustment


1) Adjustment of soft turn-off time:

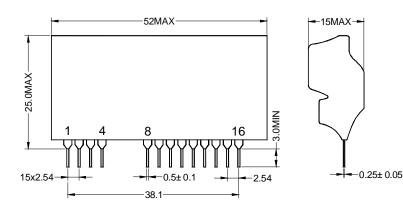

(Operation of short circuit protection)

When a desaturation is detected the hybrid gate driver performs a soft shutdown of the IGBT. The Soft turn-off time is 4.5uS. You can connect an Rf or Cf to adjust the Soft turn-off time. (Connecting Rf will increase the soft turn-off time and connecting Cf will decrease the soft turn-off time.) The soft turn-off time must be set 2.5uS< $T_{\rm cf}$ <10uS. Please refer to the below table.


The soft turn-off time & R_{f,C_f}			
$R_f(\Omega)$	T _{cf} (µS)	C _f (nF)	T _{cf} (µS)
_	4.5	_	4.5
1500	4.0	1	4.9
500	3.5	3.3	5.3
300	3.0	10	6.5
110	2.5	22	9.3


2) Adjustment of short-circuit detection time delay (Operation of short circuit protection)

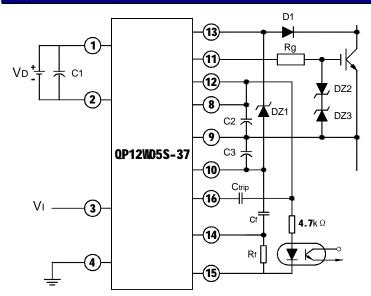
The short-circuit detection time delay is defined between the time in which a desaturation is detected and the time in which the gate voltage fall down to 90% of extent. This diver have a minimum short-circuit detection time delay, and you can adjust the short-circuit detection time delay by connecting the capacitor (Ctrip) between PIN12 and 16. But the short-circuit detection time delay must be set less than 3.5uS. Please refer to below table the data only for refer)



The short-circuit detection time delay & capacitor Ctrip	
Ctrip (nF)	Ttrip(μS)
_	1.6
0.33	1.8
1.0	2.2
2.2	2.4
3.3	2.6

The reference curve of Controlled time detect short circuit & Ctrip

Outline Dimensions (Unit:mm)


Note: Unit: mm

General tolerances: ±0.3mm

PIN FUNCTION:

Pin	Description
1	Power supply(+)
2	Power supply(-)
3	Drive signal input(+)
4	Drive signal input(-)
8	DC/DC converter output(+)
9	DC/DC converter output(COM)
10	DC/DC converter output(-)
11	Drive output
12	Collector
13	Detect of short circuit
14	Adjustment of Soft turn-off time
15	Fault signal output
16	Adjustment of short-circuit detection time delay

Application Examples

V_D=15V

 $V_1=5V\pm5\%$

C1:100uF (Low impedance)

C2:100uF (Low impedance)

C3:100uF (Low impedance)

Ctrip: Depend on need.

Cf: Depend on need

Rf: Depend on need

Rg:5Ω (Adjustable)

DZ1:30V

DZ2, DZ3:18V

D1: Fast recovery diode (trr≤0.2µs)

Application Notes

- 1. The isolated DC/DC converter is only for the gate drive;
- 2. The IGBT gate-emitter drive loop wiring must be shorter than 1 meter;
- 3. The IGBT gate-emitter drive loop wiring should be twisted;
- 4. If large voltage spike is generated at the collector of the IGBT, the IGBT gate resistor should be increased;
- 5. The external capacitors or resistors should be set as close as possible to the Hybrid IC;
- 6. The voltage compensate capacitors should be low impedance and be located as close as possible to the Hybrid IC;
- 7. The peak reverse voltage of the diode D1(to connect PIN13) must be higher than the peak value of the IGBT collector voltage;
- 8. When recovery current flow in D1, PIN13 is applied high voltage. In the case, counterplan for protection which insert a zener diode between PIN10 and 13 are necessary like above diagram(DZ1);
- **9.** When the built in short-circuit protection circuit need not be used, please connect resistance of 4.7kΩ between PIN9 and 13(D1and DZ1are not required).