2x5 SFF GEPON ONU Transceiver

FTM-9412P-F10G

(IEEE 802.3ah[™]-2004 1000BASE-PX10-U)

Members of Flexon[™] Family

Standard

- Compliant with SFF MSA
- Compliant with IEEE Std 802.3ah™ -2004
 1000BASE-PX10-U
- Compliant with FCC 47 CFR Part 15, Class B
- Compliant with FDA 21 CFR 1040.10 and 1040.11, Class I

Description

FTM-9412P-F10-BT is Optical Network Unit (ONU) for IEEE802.3ah[™]-2004 1000BASE-PX10 application. It also fully complies with customized specification from BT.

The transceiver is the high performance module for 1.25Gbps data link in single fiber by using 1310nm burst mode transmitter and 1490nm continuous mode receiver with 1550nm optical signal rejection.

The transmitter section uses a multiple quantum well 1310nm FP laser and is class I laser complaint product according to International Safety Standard IEC-60825, supporting burst-mode operation.

The receiver section uses an integrated 1490nm PIN and preamplifier mounted in an optical header and limiting post-amplifier IC.

The optical burst output can be enabled by a LVTTL logic high-level input of TX_BRST. Signal Detected (SD) output is provided to indicate the detection of an input optical signal of receiver.

Features

perxon

- Single fiber bi-directional data links with symmetric 1.25Gbps upstream and 1.25Gbps downstream
- Integrated micro-optics WDM filter for dual wavelength Tx/Rx operation at 1310/1490nm
- 1310nm burst-mode transmitter with FP laser
- 1490nm continuous-mode receiver with PIN-TIA
- 1550nm optical signal rejection
- 0 to 70°C operating temperature
- ◆ 2×5 SFF package with SC/UPC pigtail
- Single 3.3V power supply
- LVPECL compatible data input/output interface
- LVTTL transmitter burst-mode control
- LVTTL receiver signal-detected indication
- Low EMI and excellent ESD protection
- Class I laser safety standard IEC-60825 compliant
- RoHS compliance

Applications

- Gigabit Ethernet Passive Optical Networks (GEPON) – ONU side
- Gigabit Ethernet Point-to-Point Bi-directional Transmission
- Media Converts for Fiber-In-The-Loop (FITL)

Regulatory Compliance

The transceivers have been tested according to American and European product safety and electromagnetic compatibility regulations (See Table 1). For further information regarding regulatory certification, please refer to Flexon[™] regulatory specification and safety guidelines, or contact with Fiberxon, Inc. America sales office listed at the end of documentation.

Feature	Standard	Performance	
Electrostatic Discharge	MIL-STD-883E	Class 1(>500 V)	
(ESD) to the Electrical Pins	Method 3015.7	Class ((-500 V)	
Electromagnetic	FCC Part 15 Class B		
Interference (EMI)	EN55022 Class B (CISPR 22B)	Compliant with standards	
	VCCI Class B		
Immunity	IEC 61000-4-3	Compliant with standards	
Lagar Eva Safaty	FDA 21CFR 1040.10 and 1040.11	Compliant with Class I Laser	
Laser Eye Safety	EN60950, EN (IEC) 60825-1,2	Product	
Component Recognition	UL and CSA	Compliant with standards	
RoHS	2002/95/EC 4.1&4.2	Compliant with standards	

Table 1 - Regulatory Compliance

Absolute Maximum Ratings

Absolute Maximum Ratings are those values, beyond which, some damages may occur to the devices. Exposure to conditions above the Absolute Maximum Ratings listed in Table 2 may negatively impact the reliability of the products.

Table 2 - Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Unit	Note
Storage Ambient Temperature	T _{STG}	-40	85	°C	
Operating Case Temperature	Tc	0	70	°C	
Operating Humidity	H _{OPR}	5	95	%	
Power Supply Voltage	V _{CC}	0	4	V	
Input Voltage		GND	Vcc	V	
Receiver Damaged Threshold		2		dBm	
Coldering Temperature			380/10	°C/s	1
Soldering Temperature			240/10	°C/s	2
Bending Radius		30		mm	
Pigtail Fiber Contact Temperature			85	°C	

Note 1: Only for soldering by iron

Note 2: Only for wave soldering

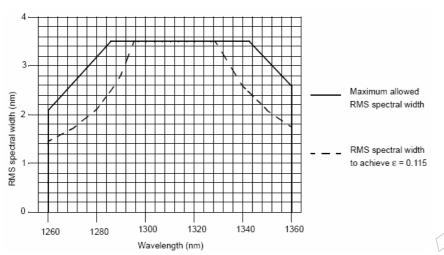
Recommended Operating Conditions

Table 3 - Recommended Operating Conditions

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Power Supply Voltage	V _{cc}	3.13	3.3	3.47	V	3.3±5%
Operating Ambient Temperature	T _{OPR}	0		70	°C	1
Operating Humidity	H _{OPR}	5		95	%	
Data Rate			1.25		Gbit/s	
Data Rate Drift		-100		+100	PPM	

Note 1: When ambient temperature is above 60°C, airflow at rate higher than 1m/sec is required

Optical and Electrical Characteristics


Table 4 - Transmitter Optical and Electrical Characteristics (0°C <T_{OPR}<70°C and 3.13V<V_{CC}<3.47V)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Output Optical Center Wavelength	λα	1276	1310	1356	nm	
Output Optical Spectral Width (RMS)	Δλ			Max allowed in figure of Note 1	nm	1
Average Launch Power	Роит	<u> </u>		4	dBm	2
Average Launch Power-OFF Transmitter	POFF			-45	dBm	Z
Extinction Ratio	ER	9			dB	3
Burst Turn On Time	T _{BURST_ON}			32	ns	
Burst Turn Off Time	T _{BURST_OFF}			32	ns	А
Burst Enable Duration	T _{EN_DUR}	600			ns	4
Burst Disable Duration	T _{DIS_DUR}	100			ns	
Total Jitter	$J_{\text{TOTAL}_{T}}$			0.35	UI	
Relative Intensity Noise	RIN ₁₅			-113	dB/Hz	
Rise/Fall Time (20%-80%)	T _R /T _F			260	ps	3,5
Optical Return Loss Tolerance				15	dB	
Transmitter Reflectance				-6	dB	
Transmitter and Dispersion Penalty	TDP			2.8	dB	6
Transmitter Eye Diagram	Compliant With IEEE Std 802.3ah™-2004					3,7
Data Input Differential Swing	V _{IN}	200		1600	mV	8
Input Differential Impedance	Z _{IN}	90	100	110	Ω	
Power Supply Current	I _{CC_TX}			200	mA	
Transmitter Burst Control Voltage - Low	V _{BURST, L}	0		0.8	V	0
Transmitter Burst Control Voltage - High	V _{BURST, H}	2.0		Vcc	V	9

Note 1: Maximum allowed RMS spectral width is compliant with spectral limits in Figure 60–3, IEEE Std 802.3ah™-2004:

$2{\times}5$ SFF GEPON ONU Transceiver

10km transmission

Note 2: Launched into 9/125um SMF.

- Note 3: Measured with PRBS 27-1 test pattern @1.25Gbps.
- Note 4: Refer to Timing Parameter Definition in Burst Mode Sequence
- Note 5: Measured with the Bessel-Thompson filter OFF.
- Note 6: Maximum sensitivity penalty due to transmitter and dispersion effect through 10km of SMF optical fiber.
- Note 7: Transmitter eye mask definition is {0.22UI, 0.375UI, 0.20UI, 0.20UI, 0.30UI}.
- Note 8: Compatible with LVPECL/CML input, AC coupled Internally. (See Recommended Interface Circuit)
- Note 9: TX_BRST (See Pin Function Definitions)

Parameter	Symbol	Min.	Тур.	Max.	Unit	Notes
Operating Wavelength		1480		1500	nm	
Sensitivity	P _{SEN}			-26.5	dBm	1
Saturation Power	PSAT	-3			dBm	I
Signal Detect Assert Level	P _{SDA}			-27	dBm	2
Signal Detect Deassert Level	P _{SDD}	-39			dBm	3
Signal Detect Hysteresis	P _{SDA} - P _{SDD}	0.5		6	dB	
Power Supply Current	I _{CC_RX}			140	mA	4
Receiver Reflectance				-12	dB	
Data Output Voltage - Low	V _{OL} -V _{CC}	-2.0		-1.58	V	5
Data Output Voltage - High	V _{OH} -V _{CC}	-1.1		-0.74	V	5
Signal Detect Voltage - Low	V _{SD, L}	0		0.8	V	6
Signal Detect Voltage - High	V _{SD, H}	2.0		V _{CC}	V	0
Signal Detect Assert Time	T _{ASS}			100	μs	
Signal Detect Deassert Time	T _{DAS}			100	μs	
WDM Filter Isolation		38			dB	7
		35			dB	8

Table 5 - Receiver Optical and Electrical Characteristics (0°C <T_{OPR}<70°C and 3.13V<V_{CC}<3.47V)

Note 1: Measured with a PRBS 2^{7} -1 test pattern @1.25Gbps and ER=9dB, BER $\leq 1 \times 10^{-12}$.

Note 2: An increase in optical power above the specified level will cause the Signal Detect output to switch from a low state to a high state.

- Note 3: A decrease in optical power below the specified level will cause the Signal Detect output to switch from a high state to a low state.
- Note 4: Supply current excluding receiver output load.
- Note 5: LVPECL output, AC coupled internally. (See Recommended Interface Circuit)
- Note 6: SD (See Pin Function Definitions)
- Note 7: Tested at 1550nm
- Note 8: Tested at 1650nm

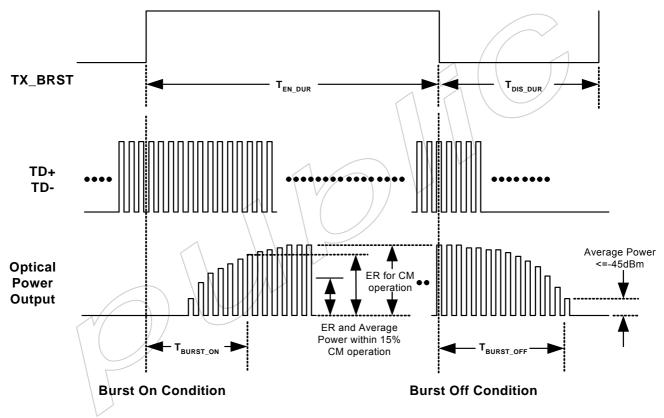
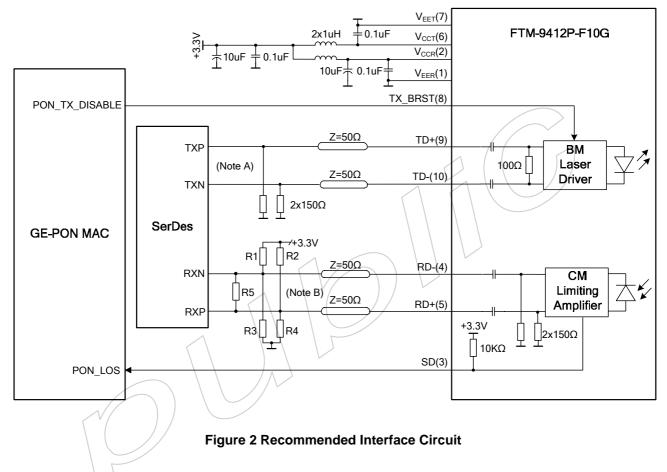



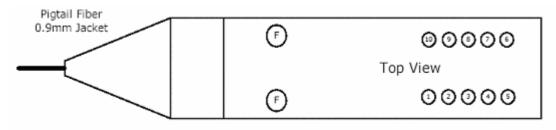
Figure 1 Timing Parameter Definition in Burst Mode Sequence

Recommended Interface Circuit

Figure 2 shows the recommended interface schemes.

Note A: Open emitter output internally.

Note B: LVPECL output, AC coupled internally.


Input stage in SerDes IC is assumed with high impedance and internal bias to Vcc-1.3V R1=R2=R3=R4=N.C, R5=100 Ω

Input stage in SerDes IC is assumed without internal bias to Vcc-1.3V

R1=R2=82 Ω ,R3=R4=130 Ω ,R5=N.C

Pin Definitions

 2×5 SFF planform in Figure 3 below shows the pin information of electrical interface and mounting studs. Functions are described in Table 6 with some accompanying notes.

Figure 3 2×5 SFF Planform

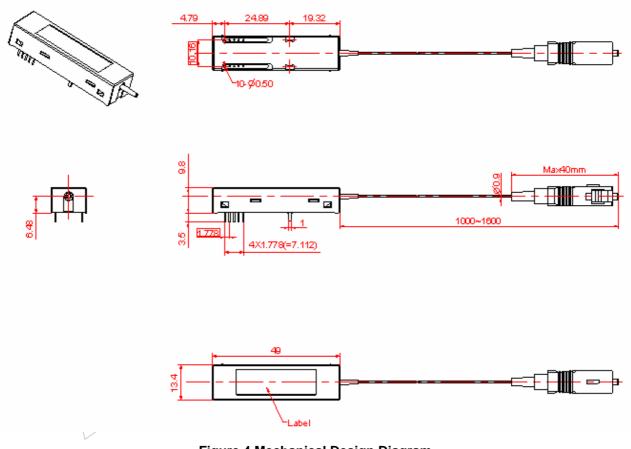
Table 6 - Pin Function Definitions

Pin No.	Name	Description	Notes			
1	V _{EER}	Receiver Signal Ground				
2	V _{CCR}	Receiver Power Supply				
3	SD	Receiver Signal Detect	1			
4	RD-	Inverted Receiver Data Output	2			
5	RD+	Non-inverted Receiver Data Output	2			
6	V _{CCT}	Transmitter Power Supply				
7	V _{EET}	Transmitter Signal Ground				
8	TX_BRST	Transmitter Burst Output Control	3			
9	TD+	Transmitter Non-inverted Data Input	4			
10	TD-	Transmitter Inverted Data Input	4			
F	MS	Mounting Studs	5			

Note 1: TTL logic output, with internal 4.7-10K Ω pull-up resistor.

Optical Signal Detected: High; Optical Signal Loss: Low

Note 2: LVPECL logic output, internally AC-coupled. (See <u>Recommended Interface Circuit</u>)


Note 3: A positive pulse controls the burst mode optical power output with an internal 3.5~5KΩ pull-up resistor. (See <u>Timing Parameter Definition in Burst Mode Sequence</u>)

Note 4: LVPECL logic input, internally terminated and AC-coupled. (See Recommended Interface Circuit)

Note 5: The mounting studs are provided for transceiver mechanical attachment to circuit board. They may also provide an optional connection of the transceiver to the equipment chassis ground. The holes in the circuit board must be tied to chassis ground. It is not recommended that the mounting studs be connected to signal ground.

Mechanical Design Diagram

The form factor is 2×5 SFF with pigtail fiber. The pigtail fiber has a length of 1300 ± 300 mm and 30mm minimum bending radius. The fiber connector type is SC/UPC. The mechanical design diagram is shown in Figure 4. (Dimension in mm)

Figure 4 Mechanical Design Diagram

Table 7 - Pigtail Fibre Characteristics

Parameter	Min.	Typical	Max.	Unit
Mode Field Diameter		9		μ m
Gladding Diameter		125		μ m
Jacket Diameter		0.9		mm
Bending Radius of Pigtail Fibre	30			mm
Tension Force on Pigtail Fibre			1	Kg
Pigtail Fibre Length	1000	1300	1600	mm
Optical Return Loss (UPC type)-1310nm	50			dB

Ordering Information

Part No.	Product Description				
FTM-9412P-F10	1310nm(TX)/1490nm(RX), Pigtail 2×5 SFF for GEPON ONU 10km application,				
	with 1550nm optical signal rejection, 0°C ~+70°C				

Related Documents

For further information, please refer to the following documents:

■ IEEE Std 802.3ahTM-2004

Obtaining Document

You can visit our website:

http://www.fiberxon.com/

Or contact with Fiberxon, Inc. America Sales Office listed at the end of documentation to get the latest documents.

2×5 SFF GEPON ONU Transceiver

10km transmission

Revision History

Reversion	Initiate	Review	Approve	Subject	Release Date
1a	Jacob Cai	Gary Chen	Peter Tang	Initial datasheet	Sep. 11, 2007
				(Doc No. DS0000307-1a)	

© Copyright Fiberxon Inc. 2007

All Rights Reserved.

All information contained in this document is subject to change without notice. The products described in this document are NOT intended for use in implantation or other life support applications where malfunction may result in injury or death to persons.

The information contained in this document does not affect or change Fiberxon's product specifications or warranties. Nothing in this document shall operate as an express or implied license or indemnity under the intellectual property rights of Fiberxon or third parties. All information contained in this document was obtained in specific environments, and is presented as an illustration. The results obtained in other operating environment may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN "AS IS" BASIS. In no event will Fiberxon be liable for damages arising directly from any use of the information contained in this document. Contact

U.S.A. Headquarters: 5201 Great America Parkway, Suite 340 Santa Clara, CA 95054 U. S. A. Tel: 408-562-6288 Fax: 408-562-6289 Or visit our website: http://www.fiberxon.com/