

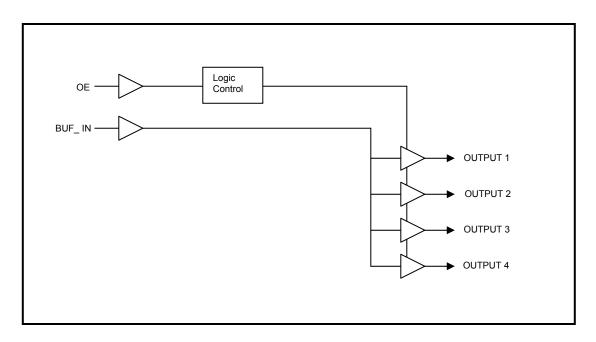
ASM2P2304NZ

rev 1.1

Four Output PCI-X and General Purpose Buffer

Features

- One input to four Output Buffer/Driver
- General-purpose or PCI-X clock buffer
- Buffers all frequencies from DC to 140 MHz
- Output-to-output skew less than 100 pS
- Available in 8-pin TSSOP and SOIC Packages
- 3.3V operation

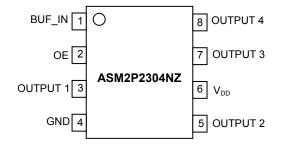

Functional Description

The ASM2P2304NZ is a low-cost buffer designed to distribute high-speed clocks for PCI-X and other applications. The device operates at 3.3V and outputs can run up to 140 MHz.

Table 1. Function Table.

Inputs	Outputs	
BUF_IN OE		Output [1:4]
L	L	L
Н	L	L
L	Н	L
Н	Н	Н

Block Diagram



PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200, Campbell, CA 95008 • Tel: 408-879-9077 • Fax: 408-879-9018 www.pulsecoresemi.com

rev 1.1

Pin Configuration

Pin Description

Pin #	Pin Name	Туре	Description
1	BUF_IN ¹	I	Input clock. 5V Tolerant Input
2	OE	I	Input pin for Output Enable, active HIGH. Connect to V _{DD}
3	Output 1 ²	0	Output 1
4	GND	Р	Ground
5	Output 2 ²	0	Output 2
6	V _{DD}	Р	3.3V Voltage Supply
7	Output 3 ²	0	Output 3
8	Output 4 ²	0	Output 4

Notes :

Weak pull down on input Weak pull down on all outputs 1. 2.

ASM2P2304NZ

rev 1.1

Absolute Maximum Ratings

Parameter	Description	Min	Max
Supply Voltage to Ground Potential	-0.5	7	V
DC Input Voltage (Except BUF_IN)	-0.5	V _{DD} + 0.5	V
DC Input Voltage (BUF_IN)	-0.5	7	V
Storage Temperature	-65	+150	°C
Max. Soldering Temperature (10 sec)		260	°C
Junction Temperature		150	°C
Static Discharge Voltage (As per JEDEC STD22- A114-B)		2000	V

Note: These are stress ratings only and functional usage is not implied. Exposure to absolute maximum ratings for prolonged periods can affect device reliability.

Operating Conditions

Parameter	Description	Min	Max	Unit
V _{DD}	Supply Voltage	3.0	3.6	V
T _A	Operating Temperature (Ambient Temperature)	-40	85	°C
CL	Load Capacitance	-	25	pF
C _{IN}	Input Capacitance	-	7	pF
BUF_IN, OUTPUT [1:4]	Operating Frequency	DC	140	MHz
t _{PU}	Power-up time for all V _{DD} 's to reach minimum specified Voltage (Power ramps must be monotonic)	0.05	50	mS

ASM2P2304NZ

rev 1.1

Electrical Characteristics

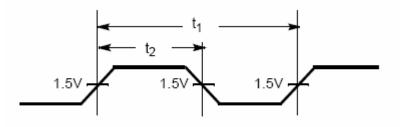
Parameter	Description	Test Conditions	Min	Max	Unit
V _{IL}	Input LOW Voltage ¹		-	0.8	V
VIH	Input HIGH Voltage ¹		2.0	-	V
I _{IL}	Input LOW Current	V _{IN} = 0V	-5	5	μA
I _{IH}	Input HIGH Current	V _{IN} = V _{DD}	-5	12	μA
V _{OL}	Output LOW Voltage ²	I _{OL} = 24 mA	-	0.8	V
V OL		I _{OL} = 12 mA		V	
V _{он}	Output HIGH Voltage ²	I _{ОН} = –24 mA	2.0	-	V
∨ОН		I _{он} = –12 mA	2.4	-	V
I _{DD}	Supply Current	Unloaded outputs at 66.66 MHz	-	25	mA

Switching Characteristics for Commercial and Industrial Temperature Devices³

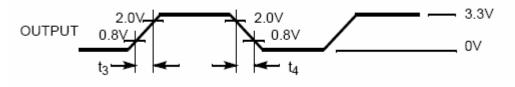
Parameter	Name	Description		Min	Тур	Мах	Unit
t _D	Duty Cycle ² = $t_2 \div t_1$	Measured at 1.5V		40.0	50.0	60.0	%
t ₃	Rise Time ²	Measured be	Measured between 0.8V and 2.0V		-	1.50	nS
t4	Fall Time ²	Measured between 2.0V and 0.8V		-	-	1.50	nS
+	Output to Output Skew ²	All outputs	For Commercial parts	-	-	100	5
t ₅		equally loaded	For Industrial parts	-	-	150	pS
t ₆	Propagation Delay, BUF_IN Rising Edge to OUTPUT Rising Edge ²	Measured at V _{DD} /2		2.5	3.5	5	nS

Note:

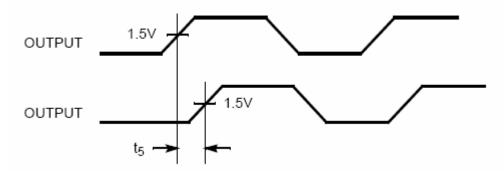
1. BUF_IN input has a threshold voltage of V_{DD}/2. 2. Parameter is guaranteed by design and characterization. It is not 100% tested in production. 3. All parameters specified with loaded outputs.

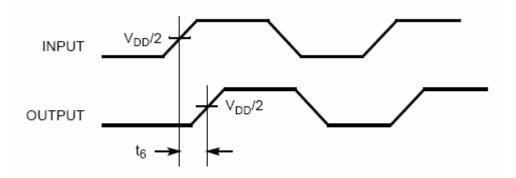


ASM2P2304NZ


rev 1.1

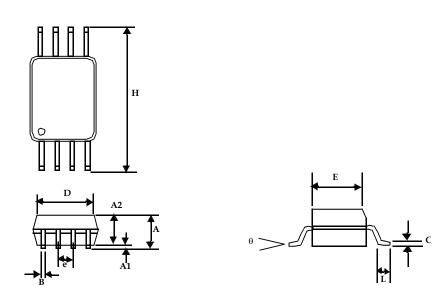
Switching Waveforms


Duty Cycle Timing


All Outputs Rise/Fall Time

Output-Output Skew

Input-Output Propagation Delay

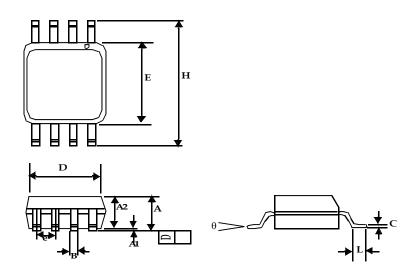


ASM2P2304NZ

rev 1.1 Package Information

8-lead Thin Shrunk Small Outline Package (4.40-MM Body)

		Dimensions				
Symbol	Inc	hes	Millimeters			
	Min	Мах	Min	Max		
А		0.043		1.10		
A1	0.002	0.006	0.05	0.15		
A2	0.033	0.037	0.85	0.95		
В	0.008	0.012	0.19	0.30		
с	0.004	0.008	0.09	0.20		
D	0.114	0.122	2.90	3.10		
E	0.169	0.177	4.30	4.50		
е	0.026	0.026 BSC 0		.65 BSC		
н	0.252 BSC		6.40	BSC		
L	0.020	0.028	0.50	0.70		
θ	0°	8°	0°	8°		



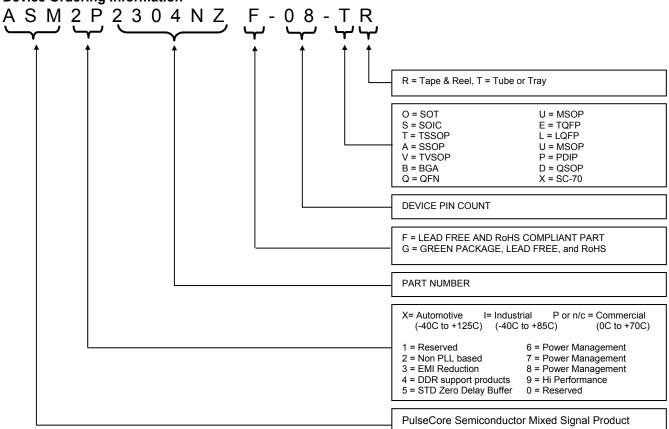
ASM2P2304NZ

rev 1.1

Package Information

8-lead (150-mil) SOIC Package

	Dimensions				
Symbol	Inches		Millimeters		
	Min	Мах	Min	Мах	
A1	0.004	0.010	0.10	0.25	
А	0.053	0.069	1.35	1.75	
A2	0.049	0.059	1.25	1.50	
В	0.012	0.020	0.31	0.51	
С	0.007	0.010	0.18	0.25	
D	0.193	BSC	4.90	BSC	
E	0.154 BSC		3.91	BSC	
е	0.050	0.050 BSC 1.27		BSC	
Н	0.236 BSC		6.00	BSC	
L	0.016	0.050	0.41	1.27	
θ	0°	8°	0°	8°	



rev 1.1

Ordering Codes

Part Number	Marking	Package Type	Temperature
ASM2P2304NZF-08-ST	2P2304NZF	8-pin SOIC - Tube, Pb Free	Commercial
ASM2P2304NZF-08-SR	2P2304NZF	8-pin SOIC - Tape and Reel, Pb Free	Commercial
ASM2I2304NZF-08-ST	2I2304NZF	8-pin SOIC - Tube, Pb Free	Industrial
ASM2I2304NZF-08-SR	2I2304NZF	8-pin SOIC - Tape and Reel, Pb Free	Industrial
ASM2P2304NZG-08-ST	2P2304NZG	8-pin SOIC - Tube, Green	Commercial
ASM2P2304NZG-08-SR	2P2304NZG	8-pin SOIC - Tape and Reel, Green	Commercial
ASM2I2304NZG-08-ST	2I2304NZG	8-pin SOIC - Tube, Green	Industrial
ASM2I2304NZG-08-SR	2I2304NZG	8-pin SOIC - Tape and Reel, Green	Industrial
ASM2P2304NZF-08-TT	2P2304NZF	8-pin TSSOP - Tube, Pb Free	Commercial
ASM2P2304NZF-08-TR	2P2304NZF	8-pin TSSOP - Tape and Reel, Pb Free	Commercial
ASM2I2304NZF-08-TT	2I2304NZF	8-pin TSSOP - Tube, Pb Free	Industrial
ASM2I2304NZF-08-TR	2I2304NZF	8-pin TSSOP - Tape and Reel, Pb Free	Industrial
ASM2P2304NZG-08-TT	2P2304NZG	8-pin TSSOP - Tube, Green	Commercial
ASM2P2304NZG-08-TR	2P2304NZG	8-pin TSSOP - Tape and Reel, Green	Commercial
ASM2I2304NZG-08-TT	2I2304NZG	8-pin TSSOP - Tube, Green	Industrial
ASM2I2304NZG-08-TR	2I2304NZG	8-pin TSSOP - Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

rev 1.1

ASM2P2304NZ

PulseCore Semiconductor Corporation 1715 S. Bascom Ave Suite 200 Campbell, CA 95008 Tel: 408-879-9077 Fax: 408-879-9018 www.pulsecoresemi.com Copyright © PulseCore Semiconductor All Rights Reserved Part Number: ASM2P2304NZ Document Version: 1.1

Note: This product utilizes US Patent # 6,646,463 Impedance Emulator Patent issued to PulseCore Semiconductor, dated 11-11-2003

© Copyright 2006 PulseCore Semiconductor Corporation. All rights reserved. Our logo and name are trademarks or registered trademarks of PulseCore Semiconductor. All other brand and product names may be the trademarks of their respective companies. PulseCore reserves the right to make changes to this document and its products at any time without notice. PulseCore assumes no responsibility for any errors that may appear in this document. The data contained herein represents PulseCore's best data and/or estimates at the time of issuance. PulseCore reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. PulseCore does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of PulseCore products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in PulseCore's Terms and Conditions of Sale (which are available from PulseCore). All sales of PulseCore products are made exclusively according to PulseCore's Terms and Conditions of Sale. The purchase of products from PulseCore does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of PulseCore or third parties. PulseCore does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of PulseCore products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify PulseCore against all claims arising from such use.