FEATURES

- 1 MHz Switching Frequency
- 2.7 V to 5.5 V Input Voltage Range
- Low Shutdown Current: $\leqq 1 \mu \mathrm{~A}$
- Regulated 20mA Full-Scale Output Current
- 32-Position Linear Scale with Digital Control
- High Accuracy Brightness Matching
- 33\% Less Input Current Than Doubler Charge Pump
- No Inductors Required
- Build-in Soft-Start
- Current Limit and Over Temperature Protection
- 12-Pin (AIC1841) and 16-Pin (AIC1842) QFN Package

APPLICATIONS

- Cellular Phones
- PDAs
- Digital Still Cameras
- Handheld Devices
- White LED Backlighting

GENERAL DESCRIPTION

The AIC1841 and AIC1842 provide 4 and 6 LED current source outputs with regulated constant current for uniform intensity. The AIC1841/2 is the low noise, constant frequency charge pump DC/DC converter that uses 1.5 X conversion to increase efficiency in white LED applications. The devices can be used to produce current levels up to 20 mA for each output from a 2.7 V to 5.5 V input. Low external parts counts (two $1 \mu \mathrm{~F}$ flying capacitors and two small bypass capacitors at $V_{I N}$, and OUT) make the AIC1841/2 ideal for small, battery-powered applications.

EN/SET interface is used to enable, disable and set the LED current for a 32 level logic scale LED brightness control. Built-in current limiting, with thermal shutdown provide protection to the AIC1841/2 against fault conditions. Automatic softstart circuitry prevents excessive inrush current during start-up. 1 MHz high switching frequency is enable to use tiny external components.
The AIC1841 is available in a 12-pin thin QFN package, and the AIC1842 is available in a spacesaving 16-pin QFN package.

ORDERING INFORMATION

Example: AIC1841GHDTR
\rightarrow in Green QFN-12 ($3 \times 3 \times 0.9 \mathrm{~mm}$) Package and Tape \& Reel Packing Type
AIC1842GHFTR
\rightarrow in Green QFN-16 ($3 \times 3 \times 0.9 \mathrm{~mm}$) Package and Tape \& Reel Packing Type

ABSOLUTE MAXIMUM RATINGS

\qquad
VIN, VOUT, EN/SET to GND 6.0 V

Thermal Resistance $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$.. 48 C / W
Operating Temperature Range .. $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$
Junction Temperature ... $125^{\circ} \mathrm{C}$
Storage Temperature Range .. $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s)
$.260^{\circ} \mathrm{C}$
Thermal Resistance Junction to Ambient, R JAA (Assume no ambient airflow, no heatsink)
QFN-12/16 (3x3X0.9mm)... $48^{\circ} \mathrm{C} / \mathrm{W}$
QFN-16 (4x4X0.9mm) ... $43^{\circ} \mathrm{C} / \mathrm{W}$
Thermal Resistance Junction to Case, R日JC
QFN-12/16 (3x3X0.9mm).................................... $8^{\circ} \mathrm{C} / \mathrm{W}$
QFN-16 (4x4X0.9mm) ... $8^{\circ} \mathrm{C} / \mathrm{W}$
Absolute Maximum Ratings are those values beyond which the life of a device may be impaired.

ELECTRICAL CHARACTERISTICS

($\mathrm{V}_{\text {IN }}=3.6 \mathrm{~V}, \mathrm{EN} / \mathrm{SET}=\mathrm{IN}, \mathrm{C}_{\mathrm{IN}}=\mathrm{C} 1=\mathrm{C} 2=\mathrm{C}_{\mathrm{OUT}}=1 \mu \mathrm{~F}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, Unless otherwise specified.) (Note1)

PARAMETER	TEST CONDITIONS	MIN.	TYP.	MAX.	UNITS
Operating Voltage		2.7		5.5	V
Undervoltage-Lockout Threshold	$V_{\text {IN }}$ falling	2.25	2.45	2.60	V
Undervoltage-Lockout Hysteresis			120		mV
Operating Current	Active, No Load Current		1	2	mA
Shutdown Current	$\mathrm{EN}=0$			1	$\mu \mathrm{A}$
Output Current		18	20	22	mA
Output Current Line Regulation	$3.0 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq 5.5 \mathrm{~V}$, AIC1841	-2		2	\%/V
	$3.2 \mathrm{~V} \leqq \mathrm{~V}_{\text {IN }} \leqq 5.5 \mathrm{~V}$, AIC1842				
LED to LED Current Matching (Note2)	AIC1841		3	7	\%
	AIC1842		4	8	
Soft-Start Time			400		$\mu \mathrm{s}$
Switching Frequency		0.75	1	1.25	MHz
Enable Threshold Low	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V			0.5	V
Enable Threshold High	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$ to 5.5 V	1.4			V
EN/SET Low Time		0.3		75	$\mu \mathrm{s}$
Minimum EN/SET High Time			50		ns
EN/SET Off Timeout			300	500	$\mu \mathrm{s}$
EN/SET Input Leakage	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}$	-1		1	$\mu \mathrm{A}$
Thermal Shutdown Threshold			150		${ }^{\circ} \mathrm{C}$
Thermal Shutdown Hysteresis			25		${ }^{\circ} \mathrm{C}$

Note 1: Specifications are production tested at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$. Specifications over the $-40^{\circ} \mathrm{C}$ to $85^{\circ} \mathrm{C}$ operating temperature range are assured by design, characterization and correlation with Statistical Quality Controls (SQC).
Note 2: Current matching define: $\left(\mathrm{I}_{\text {LED } 1} \mathrm{I}_{\text {LED2 }}\right) /\left(\mathrm{I}_{\text {LED1 }}+\mathrm{I}_{\text {LED } 2}\right)$, between any two outputs

TYPICAL PERFORMANCE CHARACTERISTICS

Fig1: Enable Transient Response

Fig3: 80 mA load at $\mathrm{Vin}=3.0 \mathrm{~V}$

Fig5: 80 mA load at $\mathrm{Vin}=3.6 \mathrm{~V}$

Fig2: Shutdown Timeout

Fig4: 100 mA load at $\mathrm{Vin}=3.0 \mathrm{~V}$

Fig6: 120 mA load at $\mathrm{Vin}=3.6 \mathrm{~V}$

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Fig7: 80mA load at Vin $=4.2 \mathrm{~V}$

Fig9: EN/SET Pin 10kHz Clock Transient

Fig11: EN/SET Pin 1MHz Clock Transient

Fig8: 120 mA load at $\mathrm{Vin}=4.2 \mathrm{~V}$

Fig10: EN/SET Pin 100kHz Clock Transient

Fig12: Quiescent vs. Supply Voltage

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Fig13: Quiescent Current vs. Input Voltage

Temperature (${ }^{\circ} \mathrm{C}$)
Fig15: Shutdown Current vs. Temperature

Fig17: Frequency vs. Input Voltage

Fig14: Quiescent Current vs. Temperature

Fig16: Normalized LED Current vs. Temperature

Fig18: Frequency vs. Temperature

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Fig19: 32 Levels Current Setting with 6 LEDs

Fig21: Efficiency vs. Supply Current

Fig23: Efficiency vs. Supply Current

Fig20: 32 Levels Current Setting with 4 LEDs

Fig22: Efficiency vs. Supply Voltage

Fig24: Efficiency vs. Supply Voltage

BLOCK DIAGRAM

PIN DESCRIPTIONS

D1: Current source output.
D2: Current source output.
D3: Current source output.
D4: Current source output.
D5: Current source output. (AIC1842 only)
D6: Current source output. (AIC1842 only)
C1+: Flying capacitor 1 positive terminal.
C1-: Flying capacitor 1 negative terminal.
C2+: Flying capacitor 2 positive terminal.
C2-: Flying capacitor 2 negative terminal.
NC: No connect. (AIC1842 only)

APPLICATION INFORMATION

Operation

The AIC1841/2 is a high efficiency 1.5X charge pumps intended for WLED backlighting. This kind of converter uses capacitors to store and transfer energy. Since the capacitors can't change to the voltage level abruptly, the voltage ratio of VOUT to V_{IN} is limited. Capacitive voltage conversion is obtained by switching a capacitor periodically. Refer to Fig. 25, during the "on" state of internal clock, Q_{1}, Q_{4} and Q_{7} are closed, which charges $C_{F L Y 1}$ and $C_{F L Y 2}$ to $1 / 2 V_{I N}$ level. During the "off" state, Q_{2}, Q_{3}, Q_{5} and Q_{6} are closed. The output voltage is $\mathrm{V}_{\text {IN }}$ plus $\mathrm{V}_{\text {CFLY }}$, that is, $1.5 \mathrm{~V}_{\text {IN }}$.

Fig. 25 The circuit of 1.5 X charge pump

OUT: Charge pump output. For the best performance, OUT should bypass a $1 \mu \mathrm{~F}$ (min.) low ESR ceramic capacitor with the shortest distance to ground.

GND: Ground. Connect GND as close as possible to system ground and to the ground of the input bypass capacitor.

VIN: Input supply voltage. Bypass a $1 u F$ (min.) low ESR ceramic capacitor to GND as close to device as possible. The input voltage range is 2.7 V to 5.5 V .

EN/SET: Enable and current set pin.

The AIC1841/2 only requires one $1 \mu \mathrm{~F}$ ceramic capacitor for C_{IN}, one $1 \mu \mathrm{~F}$ ceramic capacitor for Cout and two $1 u F$ ceramic capacitors for the charge pump flying capacitors.

Efficiency

The efficiency of AIC1841/2 for ideal 1.5X charge pump can be simply defined as:
$\eta=\frac{P_{\text {OUT }}}{P_{\text {IN }}}=\frac{V_{\text {OUT }} \times I_{\text {OUT }}}{V_{\text {IN }} \times I_{\text {IN }}}=\frac{V_{\text {OUT }} \times I_{\text {OUT }}}{V_{\text {IN }} \times 1.5 l_{\text {OUT }}}=\frac{V_{\text {OUT }}}{1.5 \mathrm{~V}_{\text {IN }}}$
The actual efficiency will decrease as the result from internal switching loss.

WLED Current Level Setting

The AIC1841/2 D1 to D4/D6 are constant current outputs which source up to 20 mA respectively to drive four or six WLEDs. The LED current is set via serial interface by the EN/SET pin, which is based on a digital sacle. The interface records rising edges of the EN/SET pin, and counts them into 32 current level settings where each code is 0.625 mA greater than previous code. Code 1 is
the lowest current scale, 0.625 mA , and Code 32 is full scale, 20 mA . The LED current appears linear with each increasing code. The first rising edge enables the device and sets the LED output current to the lowest setting level, 0.625 mA . After

EN/SET Interface

The EN/SET timing is as the diagram shown below. The first rising edge enables the device and sets the LED output current to the lowest setting level. The AIC1841/2 reaches full capaciity after typically 400us soft start time. During the soft start period, multiple clock pulses may be inserted, they will be missed cause the counter of EN/SET interface will work after soft start time. The $2^{\text {nd }}$
$32^{\text {nd }}$ clock, the LED output returns to state 1 . The EN/SET pin has to remain high to keep the LED output current to programmed level when the final clock is input.

Code	WLED Current
1	0.625
2	1.250
3	1.875
4	2.500
5	3.125
6	3.750
7	4.375
8	5.000
9	5.625
10	6.250
11	6.875
12	7.500
13	8.125
14	8.750
15	9.375
16	10.000

Code	WLED Current
17	10.625
18	11.250
19	11.875
20	12.500
21	13.125
22	13.750
23	14.375
24	15.000
25	15.625
26	16.250
27	16.875
28	17.500
29	18.125
30	18.750
31	19.375
32	20.000

pulse should be later than $1^{\text {st }}$ pulse for a soft start time to maintain a correct LED output current level. The counter can be clocked up to 1 MHz , so the intermediate scales are not visible.The EN/SET has to hold high to keep the output LED current to programmed level when the final clock is input. When the EN/SET keeps a low for the tshDN timeout period or longer, the AIC1841/2 is shutdown.

[^0]
Open-Circuit Protection

In any cases of open output circuit, the LEDs are disconnected from the circuit or the LEDs are failed, etc., the output voltage will limit approximately to 5 V .

Thermal Protection

When the temperature of device exceeds approximately $150^{\circ} \mathrm{C}$, the thermal protection will shut the switching down and the temperature will reduce afterwards. Once the temperature drops below approximately $125^{\circ} \mathrm{C}$, the charge pump switching circuit will re-start. Even though all six outputs shorted to ground at maximum 120 mA , the die temperature will not increase sufficiently to enable the thermal protection resulting from its low thermal resistance.

Capacitor Selection

Four external capacitors, $\mathrm{C}_{\mathrm{IN}}, \mathrm{C}_{\mathrm{OUT}}, \mathrm{C}_{\mathrm{FLY} 1}$, and $\mathrm{C}_{\text {FLY2 }}$, determine AIC1841/2 performances. Optimum performance can be obtained by using low ESR ceramic capacitors. A 1uF ceramic capacitor for all four capacitors is recommended for genernal application.

To reduce noise and ripple, low ESR ceramic capacitor is recommended for C_{IN} and COUT. The value of Cout determines the amount of output ripple voltage. An output capacitor with larger value results in smaller ripple. C FLY is critical for the charge pump which affects turn on time. The larger $\mathrm{C}_{\text {FLY }}$ is, the higher output current obtains. However, large C_{IN} and $\mathrm{C}_{\text {out }}$ are required when large $\mathrm{C}_{\mathrm{FLY}}$ applies. The ratio of C_{IN} (as well as COUT) to C $\mathrm{C}_{\text {FLY }}$ should be approximately $1: 1$ to 10:1.

Layout Considerations

Due to the switching frequency and high transient current of AIC1841/2, careful consideration of PCB layout is necessary. The C_{IN} should be connected as close to the IC as possible. The ground of C_{IN} and $\mathrm{C}_{\text {OUt }}$ should be placed as close as possible. To achieve the best performance of AIC1841/2, minimize the distance between every two components and also minimize every connection length with a maximum trace width. Make sure each device connects to immediate ground plane.

Application Example

I . When using the AIC1841/2 to drive fewer than four/six LEDs, keep current output float. The

II.Any combination of output may be connected in parallel to deliver a single power output to drive a LED module. The maximum output current is the sum of parallel-connected
current source. This feature is useful to drive pre-wire LED backlight modules, which is connected in parallel structure circuit.

PHYSICAL DIMENSIONS (unit: mm)

- QFN 12L $-3 \times 3 \times 0.9-0.5 \mathrm{~mm}$

INDEX AREA

S	QFN 12L-3x3x0.9-0.5mm	
Y	MILLIMETERS	
M		
B		
C		
	MIN.	MAX.
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.18	0.30
D	2.90	3.10
D2	1.50	1.80
E	2.90	3.10
E2	1.50	1.80
e	0.45	0.55
L	0.35	0.45
θ	0	12

Note : 1. Refer to JEDEC MO-220 VEED-3.
2. All dimensions are in millimeters, θ is in degrees.

- QFN 16L $-3 \times 3 \times 0.9-0.65 \mathrm{~mm}$

$\begin{aligned} & \mathrm{S} \\ & \mathrm{Y} \\ & \mathrm{M} \\ & \mathrm{~B} \\ & \mathrm{O} \\ & \mathrm{~L} \end{aligned}$	QFN 16L-3x3x0.9-0.5mm	
	MILLIMETERS	
	MIN.	MAX.
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.18	0.30
D	2.90	3.10
D2	1.05	1.80
E	2.90	3.10
E2	1.05	1.80
e		
L	0.30	0.55
θ	0	14

- QFN 16L $-4 \times 4 \times 0.9-0.65 \mathrm{~mm}$

$\begin{aligned} & \text { S } \\ & \mathrm{Y} \\ & \text { M } \\ & \mathrm{B} \\ & \mathrm{O} \\ & \mathrm{~L} \end{aligned}$	QFN 16L-4x4x0.9-0.65mm	
	MILLIMETERS	
	MIN.	MAX.
A	0.80	1.00
A1	0.00	0.05
A3	0.20 REF	
b	0.25	0.35
D	3.90	4.10
D2	2.20	2.80
E	3.90	4.10
E2	2.20	2.80
e	0.65 BSC	
L	0.30	0.65
θ	0	14

Note:

Information provided by AIC is believed to be accurate and reliable. However, we cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in an AIC product; nor for any infringement of patents or other rights of third parties that may result from its use. We reserve the right to change the circuitry and specifications without notice.

Life Support Policy: AIC does not authorize any AIC product for use in life support devices and/or systems. Life support devices or systems are devices or systems which, (I) are intended for surgical implant into the body or (ii) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.

[^0]: Current Setting Diagram

