

January 2008

Do Not Use for New Designs - use PE55 or PE77

- Pletronics' PE3XB Series is a quartz crystal controlled precision square wave generator with an PECL output.
- Solder pad compatible with many 9x14 Plastic J lead packages.
- FR4 base with a mechanical metal cover.
- Tape and Reel packaging is available.

- 1 to 250 MHz
- 9.9 mm x 13.97 mm 'B' package
- Enable/Disable Function:
 PE33B on pad 2
 PE37B on pad 1
- Low Jitter

Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 1.34 or .66 grams

Moisture Sensitivity Level: 1 As defined in J-STD-020C

Second Level Interconnect code: e4

Absolute Maximum Ratings:

Parameter	Unit
V _{cc} Supply Voltage	-0.5V to +6.5V
Vi Input Voltage	-0.5V to V _{CC} + 0.5V
Vo Output Voltage	-0.5V to V _{CC} + 0.5V

Thermal Characteristics

The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 60 to 100°C/Watt depending on the solder pads, ground plane and construction of the PCB.

January 2008

Part Number:

PE3x	45	В	E	W	-125.0M	-XX		Part Marking:
							Packaging code or blank T250 = 250 per Tape and Reel T500 = 500 per Tape and Reel T1K = 1000 per Tape and Reel	PLE PE77 FFFFFM • YMDXX
							Frequency in MHz	
							Supply Voltage V _{cc} W = 2.5V ± 10%	
							Optional Enhanced OTR Blank = Temp. range -10 to +70°C E = Temp. range -40 to +85°C	
							Series Model	
							Frequency Stability 45 = ± 50 ppm 44 = ± 25 ppm 20 = ± 20 ppm	
							Series Model x is 3 = E/D on pad 2 x is 7 = E/D on pad 1	

Legend:

PLE = Pletronics
FFFFFM = Frequency in MHz

The marking is on the cover of the PE77 device
The marking is that of the PE77 device

YMD or YYWW = Date of Manufacture (Year - month - day or year and week)

All other marking is internal factory codes

Specifications such as frequency stability, supply voltage and operating temperature range, etc. are not identified from the marking. External packaging labels and packing list will correctly identify the ordered Pletronics part number.

Codes for Date Code YMD

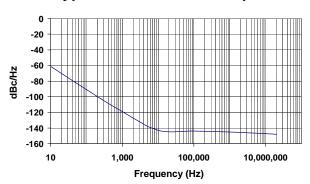
Code	6	7	8	9	0	1	2
Year	2006	2007	2008	2009	2010	2011	2012

Month JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC	L	Code	Α	В	С	D	Е	F	G	H	J	K	L	M
	ĺ	Month	JAN	FEB	MAR	APR	MAY	JUN	JUL	AUG	SEP	OCT	NOV	DEC

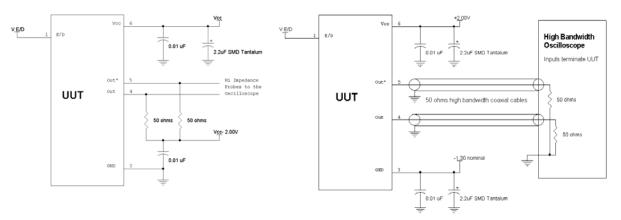
Code	1	2	3	4	5	6	7	8	9	Α	В	С
Day	1	2	3	4	5	6	7	8	9	10	11	12
Code	D	E	F	G	Н	J	K	L	М	N	Р	R
Day	13	14	15	16	17	18	19	20	21	22	23	24
Code	T	U	٧	W	Х	Y	Z					
Day	25	26	27	28	29	30	31					

January 2008

Electrical Specification for 2.50V ±5% over the specified temperature range

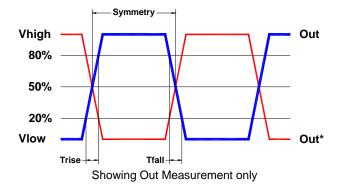

Item	Min	Max	Unit	Condition
Frequency Range	1	250	MHz	
Frequency Accuracy "45"	-50	+50	ppm	For all supply voltages, load changes, aging for 1
"44"	-25 +25			year, shock, vibration and temperatures
"20"	-20	+20		
Output Waveform		PECL /E	CL	
Output High Level (0°C to 85°C)	1.475	1.760	volts	Referenced to Ground, V _{CC} = 2.5 V
	0.975	1.260	volts	Referenced to termination voltage, V _{CC} = 2.5 V
	-1.025	-0.740	volts	Referenced to Vcc, V _{cc} = 2.5 V
Output High Level (-40°C)	1.415	1.620	volts	Referenced to Ground, V _{CC} = 2.5 V
	0.915	1.12	volts	Referenced to termination voltage, $V_{CC} = 2.5 \text{ V}$
	-1.085	-0.88	volts	Referenced to Vcc, V _{cc} = 2.5 V
Output Low Level (0°C to 85°C)	0.690	1.095	volts	Referenced to Ground, V _{CC} = 2.5 V
	0.190	0.595	volts	Referenced to termination voltage, V _{CC} = 2.5 V
	-1.810	-1.405	volts	Referenced to Vcc, V _{cc} = 2.5 V
Output Low Level (-40°C)	0.670	1.195	volts	Referenced to Ground, V _{CC} = 2.5 V
	0.170	0.695	volts	Referenced to termination voltage, $V_{CC} = 2.5 \text{ V}$
	-1.830	-1.305	volts	Referenced to Vcc, V _{cc} = 2.5 V
Output Symmetry	45	55	%	at 50% point of V _{cc} (See load circuit)
Jitter	-	0.13	pS RMS	12 KHz to 20 MHz from the output frequency
	-	2.8	pS RMS	10 Hz to 1 MHz from the output frequency
Output T _{RISE} and T _{FALL}	-	0.7	nS	Vth is 20% and 80% of waveform
V _{CC} Supply Current (I _{CC})	-	90	mA	
Enable/Disable Internal Pull-up	50	-	Kohm	to V _{cc}
V disable	-	0.6	volts	Referenced to pad 3
V enable	1.7	-	volts	Referenced to pad 3
Output leakage $V_{OUT} = V_{CC}$	-10	+10	uA	Pad 1 low, device disabled
$V_{OUT} = 0V$	-10	+10	uA	
Enable time	-	10	nS	Time for output to reach a logic state
Disable time	-	10	nS	Time for output to reach a high Z state
Start up time	-	10	mS	Time for output to reach specified frequency
Operating Temperature Range	-10	+70	°C	Standard Temperature Range
	- 40	+85	°C	Extended Temperature Range "E" Option
Storage Temperature Range	-55	+125	°C	
Standby Current I _{cc}	-	3	uA	Pad 1 low, device disabled

Specifications with E/D pad open circuit



January 2008

Typical Phase-Noise Response



Load Circuit

E/D shown on pad 1 for PE37B, will be on pad 2 for PE33B

Test Waveform

January 2008

Reliability: Environmental Compliance

Parameter	Condition
Mechanical Shock	MIL-STD-883 Method 2002, Condition B
Vibration	MIL-STD-883 Method 2007, Condition A
Solderability	MIL-STD-883 Method 2003
Thermal Shock	MIL-STD-883 Method 1011, Condition A

ESD Rating

Model	Minimum Voltage	Conditions
Human Body Model	1500	MIL-STD-883 Method 3115
Charged Device Model	1000	JESD 22-C101

Package Labeling

Label is 1" x 2.6" (25.4mm x 66.7mm)
Font is Courier New
Bar code is 39-Full ASCII
The label does show the PE3 full part number

P/N: PE3345BV-80.0M

Customer P/N: 12345678

Qty: D/C 0627B6

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

RoHS Compliant

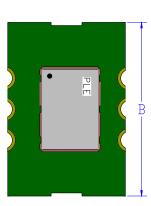
2nd LvL Interconnect

Category=e4

Max Safe Temp=245C for 10s 2X Max

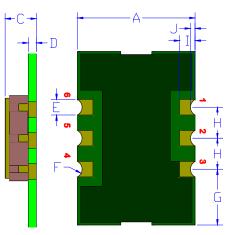
Layout and application information

Recommend connecting Pad 1 and Pad 2 together to permit the design to accept Enable/Disable on both input pads


For Optimum Jitter Performance, Pletronics recommends:

- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.

January 2008


Mechanical:

FR4 PCB Base: Solder masked All via holes tented on bottom Copper Clad ½ oz. Typical Gold plated 0.02 µinch (0.5 µm)

Label:

Laser engraved on the 5x7 mm oscillator that is mounted on the FR4 base

Pin 3 Ground plane is typical

Not to scale

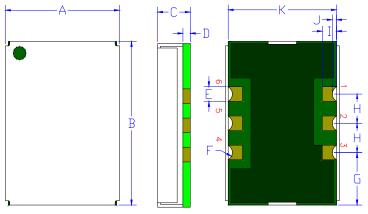
	Inches	mm				
Α	0.380 <u>+</u> 0.010	9.65 <u>+</u> 0.25				
В	0.550 <u>+</u> 0.010	13.97 <u>+</u> 0.25				
O	0.134 <u>+</u> 0.010	3.40 <u>+</u> 0.25				
D ¹	0.062	1.57				
E¹	0.050	1.27				
F¹	0.028 R	0.72 R				
G¹	0.180	4.57				
H¹	0.100	2.54				
I ¹	0.050	1.27				
J ¹	0.015	0.38				
¹ Typical Dimonsions						

¹Typical Dimensions

PE33 Pad	PE37 Pad	Function	Note					
2	2 1 Output Enable/Disable		When this pad is not connected the oscillator shall operate. When this pad is <0.30 volts, the output will be at a steady, non switching state. Recommend connecting this pad to $V_{\rm CC}$ if the oscillator is to be always on.					
1	1 2 No connect		There is no internal connection to this pad					
(3 Ground (GNE							
4	4	Output	The outputs must be terminated, 100 ohms between the outputs is the ideal termination.					
5 Output*		Output*	When the device is disabled, the Output will be an active logic low and the Output* will be an active logic high. The outputs can not be "wire-ORed" with other oscillators or signal generators					
(6 Supply Voltag		Recommend connecting appropriate power supply bypass capacitors as close as possible.					

January 2008

Mechanical (obsolete version):


The cover is no longer being supplied over this part. This part is made with a hermetically sealed PE99xxDV series oscillator. This part is now exposed.

The cover has been deleted, the cover was causing problems with the newer high temperature RoHS lead free processes. The cover purpose was only cosmetic.

All parts with 2008 date codes will be made in the new fashion.

There is no change in electrical properties.

Pletronics does recommend that all designs should transition to the PE99xxDV ceramic part.

FR4 PCB Base:

Solder masked

All via holes tented on bottom Copper Clad ½ oz. Typical Gold plated 0.02 μinch (0.5 μm)

Label:

White Kapton with Black Letters

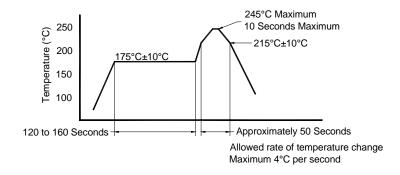
Blue Epoxy heat cure ink covering top with laser marked lettering

Cover:

Centered on the base 304 Stainless Steel 0.010 inch (0.25µm) Electroless Nickel Plated 1 µinch (25 µm) typical

Pin 3 Ground plane is typical

Not to scale

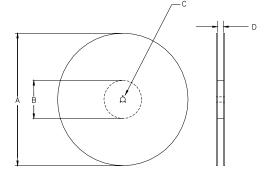

_	Inches	mm
В	0.550 <u>+</u> 0.010	13.97 <u>+</u> 0.25
Α	0.390 <u>+</u> 0.010	9.90 <u>+</u> 0.25
С	0.105 <u>+</u> 0.010	2.67 <u>+</u> 0.25
D¹	0.026 typ.	0.66
E ¹	0.050	1.27
F ¹	0.028 R	0.72 R
G¹	0.180	4.57
H¹	0.100	2.54
I ¹	0.050	1.27
J ¹	0.015	0.38
K ¹	0.380	9.65

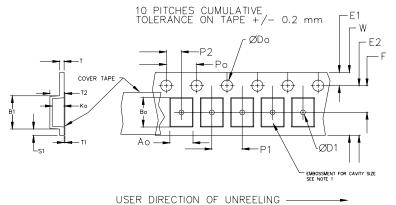
- The package is not hermetically sealed.
- The sides are intentionally left open to permit cleaning material to freely flow in the package, thus minimizing the accumulation of contaminants during cleaning processes.
- The internal part of the package must be thoroughly dry before operating.

January 2008

Reflow Cycle (typical for lead free processing)

The part may be reflowed 2 times without degradation.


Tape and Reel: available for quantities of 250 to 1000 per reel, cut tape for < 250


	Constant Dimensions Table 1											
Tape Size	D0	D1 Min	E1	P0	P2	S1 Min	T Max	T1 Max				
8mm		1.0			2.0							
12mm	1.5	1.5	1.75	4.0	<u>+</u> 0.05			2.4				
16mm	+0.1 -0.0	1.5	<u>+</u> 0.1	<u>+</u> 0.1	2.0	0.6	0.6	0.1				
24mm		1.5			<u>+</u> 0.1							

Variable Dimensions Table 2										
Tape Size	B1 Max	E2 Min	F	P1	T2 Max	W Max	Ao, Bo & Ko			
24 mm	12.1	14.25	7.5 <u>+</u> 0.1	16.0 <u>+</u> 0.1	8.0	16.3	Note 1			

Note 1: Embossed cavity to conform to EIA-481-B

Dimensions in mm Not to scale

			REE			
	Α	inches	7.0	10.0	13.0	
		mm	177.8	254.0	330.2	
	В	inches	2.50	4.00	3.75	
		mm	63.5	101.6	95.3	Tape Width
	С	mm	13	Widiii		
	D	mm			24.4 +2.0 -0.0	24.0

Reel dimensions may vary from the above

January 2008

IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

Contacting Pletronics Inc.

Pletronics Inc. Tel: 425-776-1880 19013 36th Ave. West Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: www.pletronics.com

Copyright © 2005, 2006, 2007, 2008 Pletronics Inc.