Bi-CMOS LSI

LV8747T — PWM Constant-Current Control Stepping Motor Driver and Switching Regulator Controller

Overview

The LV8747T is a PWM constant-current control stepping motor driver and switching regulator controller IC.

Features

- Two circuits of PWM constant-current control stepping motor driver incorporated
- Two circuits of switching regulator controller incorporated
- Motor driver control power incorporated
- Control of the stepping motor to W1-2 phase excitation possible
- Chopping frequency selectable
- Output short-circuit protection circuit incorporated
- High-precision reference voltage circuit incorporated
- Output-stage push-pull composition enabling high-speed operation
- Timer latch type short-circuit protection circuit incorporated
- Upper and lower regenerative diodes incorporated
- Thermal shutdown circuit incorporated

Specifications

Absolute Maximum Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage	VM max		38	V
Driver output peak current 1	MDIO peak1	OUT1/OUT2 tw $\leq 10 \mathrm{~ms}$, duty 20%	1.75	A
Driver output continuous current 1	MDIO max1	OUT1/OUT2	1.5	A
Driver output peak current 2	MDI $_{\mathrm{O}}$ peak2	OUT3/OUT4 tw $\leq 10 \mathrm{~ms}$, duty 20%	0.8	A
Driver output continuous current 2	MDIO max2 $^{\text {max }}$	OUT3/OUT4	0.5	A
Regulator output current	SWIO max	OUT5/OUT6 tw $\leq 1 \mu \mathrm{~s}$	mA	

Continued on next page.

Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use.

- Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.

LV8747T
Continued from preceding page.

Parameter	Symbol	Conditions	Ratings	Unit
Allowable power dissipation 1	Pd max1	Independent IC	0.4	W
Allowable power dissipation 2	Pd max2	Our recommended four-layer substrate *1, *2	4.85	W
Operating temperature	Topr		-20 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	Tstg		-55 to +150	${ }^{\circ} \mathrm{C}$

*1 Specified circuit board : $100 \times 100 \times 1.6 \mathrm{~mm}^{3}: 4$-layer glass epoxy printed circuit board
*2 For mounting to the backside by soldering, see the precautions.

Allowable Operating Ratings at $\mathrm{Ta}=25^{\circ} \mathrm{C}$

Parameter	Symbol	Conditions	Ratings	10 to 35
Supply voltage	VM		V	
Logic input voltage	V_{IN}		0 to 5	V
VREF input voltage	VREF		0 to 3	V
Regulator output voltage	V_{O}		$\mathrm{VM}-5$ to VM	V
Regulator output current	IO		0 to 200	mA
Error amplifier input voltage	$\mathrm{VOA}_{\mathrm{O}}$		0 to 3	V
Timing capacity	CT	RT		100 to 15000
Timing resistance	pF			
Triangular wave oscillation frequency		5 to 50	$\mathrm{k} \Omega$	

Electrical Characteristics at $\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{VM}=24 \mathrm{~V}, \mathrm{VREF}=1.5 \mathrm{~V}$

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
General						
VM current drain	IM	PS = "H", no load		6	8	mA
Thermal shutdown temperature	TSD	Design guarantee		180		${ }^{\circ} \mathrm{C}$
Thermal hysteresis width	Δ TSD	Design guarantee		40		${ }^{\circ} \mathrm{C}$
REG5 output voltage	Vreg5	Ireg5 $=-1 \mathrm{~mA}$	4.5	5.0	5.5	V
Motor Drivers [Charge pump block]						
Boost voltage	VGH	$V M=24 V$	28.0	28.7	29.8	V
Rise time	tONG	$V G=10 \mu \mathrm{~F}$		50	100	ms
Oscillation frequency	Fcp	$\mathrm{CHOP}=20 \mathrm{k} \Omega$	90	120	150	kHz
Output block (OUT1/OUT2)						
Output on resistance	RonU1	$\mathrm{I} \mathrm{O}=-1.5 \mathrm{~A}$, source side		0.5	0.8	Ω
	RonD2	$\mathrm{I} \mathrm{O}=1.5 \mathrm{~A}$, sink side		0.5	0.8	Ω
Output leak current	Ioleak1	$\mathrm{V}_{\mathrm{O}}=35 \mathrm{~V}$			50	$\mu \mathrm{A}$
Diode forward voltage	VD1	$\mathrm{ID}=-1.5 \mathrm{~A}$		1.0	1.3	V
Output block (OUT3/OUT4)						
Output on resistance	RonU2	$\mathrm{I}^{\mathrm{O}}=-500 \mathrm{~mA}$, source side		1.5	1.8	Ω
	RonD2	$\mathrm{I} \mathrm{O}=500 \mathrm{~mA}$, sink side		1.1	1.4	Ω
Output leak current	Ioleak2	$\mathrm{V}_{\mathrm{O}}=35 \mathrm{~V}$			50	$\mu \mathrm{A}$
Diode forward voltage	VD2	ID $=-500 \mathrm{~mA}$		1.0	1.3	V
Logic input block						
Logic pin input current	$\mathrm{I}_{1} \mathrm{~L}$	$\mathrm{V}_{\text {IN }}=0.8 \mathrm{~V}$	3	8	15	$\mu \mathrm{A}$
	${ }_{1}{ }_{1}{ }^{\text {H }}$	$\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$	30	50	70	$\mu \mathrm{A}$
Logic high-level input voltage	$\mathrm{V}_{\text {IN }}{ }^{\text {H }}$		2.0			V
Logic low-level input voltage	$\mathrm{V}_{1 \mathrm{~N}^{\mathrm{L}}}$				0.8	V
Current control block						
VREF input current	IREF	VREF $=1.5 \mathrm{~V}$	-0.5			$\mu \mathrm{A}$
Chopping frequency	Fchop	CHOP $=20 \mathrm{k} \Omega$	45	62.5	75	kHz
Threshold voltage of current setting comparator	VHH	VREF $=1.5 \mathrm{~V}, 10=\mathrm{H}, \mathrm{I} 1=\mathrm{H}$	0.291	0.300	0.309	V
	VLH	VREF $=1.5 \mathrm{~V}, 10=\mathrm{L}, \mathrm{II}=\mathrm{H}$	0.191	0.200	0.209	V
	VHL	VREF $=1.5 \mathrm{~V}, 10=\mathrm{H}, \mathrm{I}=\mathrm{L}$	0.093	0.100	0.107	V

Continued from preceding page.

Parameter	Symbol	Conditions	Ratings			Unit
			min	typ	max	
Output short-circuit protection circuit						
Charge current	IOCP	$\mathrm{VOCP}=0 \mathrm{~V}$	15	20	25	$\mu \mathrm{A}$
Threshold voltage	VthOCP		0.8	1.0	1.2	V
Switching regulator Controller [Reference voltage block]						
REG25 output voltage	Vreg25	$\operatorname{Ireg} 25=-1 \mathrm{~mA}$	2.475	2.500	2.525	V
Input stability	$\mathrm{V}_{\text {DL }} \mathrm{l}$	$\mathrm{VM}=10$ to 35 V			10	mV
Load stability	$\mathrm{V}_{\mathrm{DL}} \mathrm{O}$	Ireg25 $=0$ to -3 mA			10	mV
Internal regulator block						
REGVM5 output voltage	VregVM5	VregVM5 $=1 \mathrm{~mA}$	VM-6.0		VM-5.0	V
Triangular wave oscillator block						
Oscillation frequency	FOSC	$\mathrm{RT}=20 \mathrm{k} \Omega, \mathrm{CT}=620 \mathrm{pF}$	72	80	88	kHz
Frequency fluctuation	FDV	$\mathrm{VM}=10$ to 35 V		1	5	\%
Current setting pin voltage	VRT	$\mathrm{RT}=20 \mathrm{k} \Omega$	0.91	0.98	1.05	V
Protective circuit block						
Threshold voltage of comparator	VthFB	FB5, FB6	1.40	1.55	1.70	V
Standby voltage	VstSCP	ISCP $=40 \mu \mathrm{~A}$			100	mV
Source current	ISCP	$V S C P=0 \mathrm{~V}$	1.6	2.5	3.4	$\mu \mathrm{A}$
Threshold voltage	VthSCP		1.65	1.8	1.95	V
Latch voltage	VItSCP	ISCP $=40 \mu \mathrm{~A}$			100	mV
Soft start circuit block						
Source current	ISOFT	$\mathrm{VSOFT}=0 \mathrm{~V}$	1.3	1.6	1.9	$\mu \mathrm{A}$
Latch voltage	VItSOFT	ISOFT $=40 \mu \mathrm{~A}$			100	mV
Low-input malfunction preventive circuit block						
Threshold voltage	VUT		8.3	8.7	9.1	V
Hysteresis voltage	VHIS		240	340	440	mV
Error amplifier block						
Input offset voltage	$\mathrm{V}_{\mathrm{i}} \mathrm{O}$				6	mV
Input offset current	$1{ }_{1} \mathrm{O}$				30	nA
Input bias current	$\mathrm{l}_{\mathrm{j}} \mathrm{b}$				100	nA
OPEN open gain	AV			85		dB
Common-phase input voltage range	VCM	$\mathrm{VM}=10$ to 35 V			3.0	V
Common phase removal ratio	CMRR			80		dB
Max output voltage	$\mathrm{V}_{\mathrm{O}} \mathrm{H}$		4.5	5.0		V
Min output voltage	$\mathrm{V}_{\mathrm{O}} \mathrm{L}$			0.2	0.5	V
Output sink current	Isi	$\mathrm{FB}=2.5 \mathrm{~V}$	300	600	1000	$\mu \mathrm{A}$
Output source current	Iso	$\mathrm{FB}=2.5 \mathrm{~V}$	45	75	105	$\mu \mathrm{A}$
PWM comparator block						
Input threshold voltage(Fosc = 10kHz)	VT100	Duty cycle $=100 \%$	0.95	1.01	1.07	V
	VTO	Duty cycle $=0 \%$	0.49	0.52	0.55	V
Input bias current	IBDT	DT6 $=0.4 \mathrm{~V}$			1	$\mu \mathrm{A}$
MAX duty cycle 1 $(\text { Fosc }=80 \mathrm{kHz})$	Don1	5ch Internally fixed	95			\%
MAX duty cycle 2 (Fosc $=160 \mathrm{kHz}$)	Don2	5ch Internally fixed	93			\%
MAX duty cycle 3 $(\text { Fosc }=10 \mathrm{kHz})$	Don3	6ch VREG25 divided by $17 \mathrm{k} \Omega$ and $8 \mathrm{k} \Omega$	56	65	74	\%
Output block						
Output ON resistance	RonU3	$\mathrm{l} \mathrm{O}=-200 \mathrm{~mA}$, source side		10	12	Ω
	RonD3	$\mathrm{I} \mathrm{O}=200 \mathrm{~mA}$, sink side		6	8	Ω
Leak current	ILEAK	$\mathrm{V}_{\mathrm{O}}=35 \mathrm{~V}$			5	$\mu \mathrm{A}$

Package Dimensions

unit: mm (typ)
3337

Substrate Specifications (Substrate recommended for operation of LV8747T)
$\begin{array}{ll}\text { Size } & : 100 \mathrm{~mm} \times 100 \mathrm{~mm} \times 1.6 \mathrm{~mm} \text { (four-layer substrate [2S2P]) } \\ \text { Material } & : \text { Glass epoxy } \\ \text { Copper wiring density } & : \mathrm{L} 1=85 \% / \mathrm{L} 4=90 \%\end{array}$

L1 : Copper wiring pattern diagram

L4 : Copper wiring pattern diagram

Cautions

1) The data for the case with the Exposed Die-Pad substrate mounted shows the values when 80% or more of the Exposed Die-Pad is wet.
2) For the set design, employ the derating design with sufficient margin.

Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as vibration, impact, and tension.
Accordingly, the design must ensure these stresses to be as low or small as possible.
The guideline for ordinary derating is shown below :
(1)Maximum value 80% or less for the voltage rating
(2)Maximum value 80% or less for the current rating
(3)Maximum value 80% or less for the temperature rating
3) After the set design, be sure to verify the design with the actual product.

Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc.
Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction, possibly resulting in thermal destruction of IC.

Pin Assignment

Block Diagram

Pin Functions

Pin No	Pin	Description
24	VM12	Driver 1/2ch Pin to connect to power supply
25		
30	OUT1A	Driver 1ch OUTA output pin
31		
26	OUT1B	Driver 1ch OUTB output pin
27		
28	RNF1	Driver 1ch Current sense resistor connection pin
29		
22	OUT2A	Driver 2ch OUTA output pin
23		
18	OUT2B	Driver 2ch OUTB output pin
19		
20	RNF2	Driver 2ch Current sense resistor connection pin
21		
35	101	Driver 1ch Output current setting input pin
34	111	
33	PHA1	Driver 1ch Output phase shift input pin
14	102	Driver 2ch Output current setting input pin
15	112	
16	PHA2	Driver 2ch Output phase shift input pin
40	VREF12	Driver 1/2ch Output current setting reference voltage input pin
32	PGND1	Driver output Power GND
17	PGND2	Driver output Power GND
6	VM34	Driver 3/4ch Power connection pin
9	OUT3A	Driver 3ch OUTA output pin
7	OUT3B	Driver 3ch OUTB output pin
8	RNF3	Driver 3ch Current sense resistor connection pin
5	OUT4A	Driver 4ch OUTA output pin
3	OUT4B	Driver 4ch OUTB output pin
4	RNF4	Driver 4ch Current sense resistor connection pin
11	103	Driver 3ch Output current setting input pin
12	113	
13	PHA3	Driver 3ch Output phase shift input pin
63	104	Driver 4ch Output current setting input pin
64	114	
2	PHA4	Driver 4ch Output phase shift input pin
61	VREF34	Driver 3/4ch Output current setting reference voltage input pin
10	PGND3	Driver output Power GND
60	OCP	Pin to connect to the output short-circuit state detection time setting capacitor
59	OCPM	Over-current mode changeover pin
39	CHOP	Pin to connect to the resistor to set the chopping frequency
62	PS	Driver Power save input pin
36	VG	Charge pump capacitor connection pin
38	CP1	Charge pump capacitor connection pin
37	CP2	Charge pump capacitor connection pin
41	VMSW	Power connection pin
44	REG5	Internal regulator output pin
56	REGVM5	Internal regulator output pin
45	REG25	Regulator Reference voltage output pin
46	CT	Regulator Timing capacity external pin
47	RT	Regulator Timing resistor external pin
42	SOFT	Regulator Soft start setting pin
43	SCP	Regulator Timer and latch setting pin
54	NON5	Regulator Error amplifier 5 input + pin

Continued from preceding page.
Continued from preceding page.

Pin No	Pin	
53	INV5	Regulator Error amplifier 5 input - pin
52	FB5	Regulator Error amplifier 5 output pin
58	OUT5	Regulator Output 5
51	NON6	Regulator Error amplifier 6 input + pin
50	INV6	Regulator Error amplifier 6 input - pin
49	FB6	Regulator Error amplifier 6 output pin
57	OUT6	Regulator Output 6
48	DT6	Regulator Output 6 MAX DUTY setting pin
55	GND	GROUND
1	GND	GROUND

Equivalent Circuits

Pin No.	Pin Name	Equivalent Circuit
$\begin{gathered} \hline 2 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 33 \\ 34 \\ 35 \\ 59 \\ 62 \\ 63 \\ 64 \end{gathered}$	$\begin{gathered} \text { PHA4 } \\ 103 \\ 113 \\ \text { PHA3 } \\ 102 \\ 112 \\ \text { PHA2 } \\ \text { PHA1 } \\ \text { I11 } \\ 101 \\ \text { OCPM } \\ \text { PS } \\ \text { I04 } \\ \text { I14 } \end{gathered}$	
$\begin{aligned} & 36 \\ & 37 \\ & 38 \end{aligned}$	VG CP2 CP1	
$\begin{gathered} \hline 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \end{gathered}$	OUT4B RNF4 OUT4A VM34 OUT3B RNF3 OUT3A PGND3	
$\begin{aligned} & 17 \\ & 18 \\ & 19 \\ & 20 \\ & 21 \\ & 22 \\ & 23 \\ & 24 \\ & 25 \\ & 26 \\ & 27 \\ & 28 \\ & 29 \\ & 30 \\ & 31 \\ & 32 \end{aligned}$	PGND2 OUT2B OUT2B RNF2 RNF2 OUT2A OUT2A VM12 VM12 OUT1B OUT1B RNF1 RNF1 OUT1A OUT1A PGND1	

Continued from preceding page.

Pin No.	Pin Name	Equivalent Circuit
$\begin{aligned} & 40 \\ & 61 \end{aligned}$	VREF12 VREF34	
39	CHOP	
60	OCP	
44	REG5	
45	REG25	

Continued from preceding page.

Pin No.	Pin Name	Equivalent Circuit
$\begin{aligned} & 49 \\ & 50 \\ & 51 \\ & 52 \\ & 53 \\ & 54 \end{aligned}$	FB6 INV6 NON6 FB5 INV5 NON5	
48	DT6	
$\begin{aligned} & 46 \\ & 47 \end{aligned}$	$\begin{aligned} & \text { CT } \\ & \text { RT } \end{aligned}$	
$\begin{aligned} & 57 \\ & 58 \end{aligned}$	OUT6 OUT5	

Continued on next page.

Continued from preceding page

Pin No.	Pin Name	Equivalent Circuit
56	REGVM5	
42	SOFT	
43	SCP	

Stepping Motor Driver OUT1/OUT2(OUT3/OUT4)

(1) Output control logic

Parallel input (Note)		Output		Current direction
PS	PHA	OUTA	OUTB	
Low	$*$	Off	Off	Standby
High	Low	Low	High	OUTB \rightarrow OUTA
High	High	High	Low	OUTA \rightarrow OUTB

(Note) : Enter either "H" or "L" externally for the logic input pin. Never use the input pin in the OPEN state.
(2) Constant-current setting

$10($ Note $)$	I 1 (Note $)$	Output current
High	High	$\mathrm{I}_{\mathrm{O}}=(\mathrm{VREF} / 5) /$ RNF
Low	High	$\mathrm{I}_{\mathrm{O}}=((\mathrm{VREF} / 5) / \mathrm{RNF}) \times 2 / 3$
High	Low	$\mathrm{I}_{\mathrm{O}}=((\mathrm{VREF} / 5) / \mathrm{RNF}) \times 1 / 3$
Low	Low	$\mathrm{I}_{\mathrm{O}}=0$

(Note) : Enter either "H" or "L" externally for the logic input pin. Never use the input pin in the OPEN state.
Set current calculation method
The constant-current control setting of STM driver is determined as follows from the setting of VREF voltage, and IO and I1, and resistor (RNF) connected between RNF and GND :

Iconst $[\mathrm{A}]=((\mathrm{VREF}[\mathrm{V}] / 5) / \operatorname{RNF}[\Omega]) \times$ attenuation factor
(Example) For VREF $=1.5 \mathrm{~V}, \mathrm{I} 0=\mathrm{I} 1=$ " H " and RNF $=1 \Omega$;

$$
\text { Iconst }=1.5 \mathrm{~V} / 5 / 1 \Omega \times 1=0.3 \mathrm{~A}
$$

(3) Setting the chopping frequency

For constant-current control, chopping operation is made with the frequency determined by the external resistor (connected to the CHOP pin).

The chopping frequency to be set with the resistance connected to the CHOP pin (pin 39) is as shown below.

The recommended chopping frequency ranges from 30 kHz to 120 kHz .
(4) Constant-current control time chart (chopping operation)
(Sine wave increasing direction)

(Sine wave decreasing direction)

In each current mode, the operation sequence is as described below :

- At rise of chopping frequency, the CHARGTE mode begins.(The section in which the CHARGE mode is forced regardless of the magnitude of the coil current (ICOIL) and set current (IREF) exists for $1 / 16$ of one chopping cycle.)
- The coil current (ICOIL) and set current (IREF) are compared in this forced CHARGE section.

When (ICOIL<IREF) state exists in the forced CHARGE section ;
CHARGE mode up to ICOIL \geq IREF, then followed by changeover to the SLOW DECAY mode, and finally by the FAST DECAY mode for the $1 / 16$ portion of one chopping cycle.
When (ICOIL<IREF) state does not exist in the forced CHARGE section;
The FAST DECAY mode begins. The coil current is attenuated in the FAST DECAY mode till one cycle of chopping is over.
Above operations are repeated. Normally, the SLOW (+FAST) DECAY mode continues in the sine wave increasing direction, then entering the FAST DECAY mode till the current is attenuated to the set level and followed by the SLOW DECAY mode.
(5) Output current vector locus (one step is normalized to 90 degrees)

(6) Typical current waveform in each excitation mode

Two-phase excitation (1/2ch, CW mode)

1-2 phase excitation (1/2ch, CW mode)

W1-2 phase excitation (1/2ch, CW mode)

Output short-circuit protection circuit

To protect IC from damage due to short-circuit of the output caused by lightening or ground fault, the output short-circuit protection circuit to put the output in the standby mode is incorporated.

(1) Output short-circuit protection operation changeover function

Changeover to the output short-circuit protection of IC is made by the setting of OCPM pin.

OCPM	State
"Low"	Auto reset method
"High"	Latch method

(Auto reset method)
When the output current is below the output short-circuit protection current, the output is controlled by the input signal. When the output current exceeds the detection current, the switching waveform as shown below appears instead.

When detecting the output short-circuit state, the short-circuit detection circuit is activated.
When the short-circuit detection circuit operation exceeds the timer latch time described later, the output is changed over to the standby mode and reset to the ON mode again in 256μ s (TYP). In this event, if the over-current mode still continues, the above switching mode is repeated till the over-current mode is canceled.
(Latch method)
Similarly to the case of automatic reset method, the short-circuit detection circuit is activated when it detects the output short-circuit state.
When the short-circuit detection circuit operation exceeds the timer latch time described later, the output is changed over to the standby mode.
In this method, latch is released by setting PS = "L"
(2) OCP pin constant setting method (timer latch setting)

Connect C between the OCP pin and GND, and the time up to the output OFF can be set in case of output short-circuit. The C value can be determined as follows :

Timer latch : Tocp

Tocp $\approx \mathrm{C} \times \mathrm{V} / \mathrm{I}[\mathrm{s}]$
V : Threshold voltage TYP 1V
I: OCP charge current TYP $20 \mu \mathrm{~A}$
(C: Recommended constant value 100 pF to 200 pF)

Switching Regulator Controller

(1) Regulator block diagram

(2) Timing chart

(3) SOFT pin constant setting method (Soft start setting)

The switching regulator can be set to soft-start by connecting C between the SOFT pin and GND.
Determine the C value as follows :

Soft start time : Tsoft	Tsoft $\approx \mathrm{C} \times \mathrm{V} / \mathrm{I}[\mathrm{s}]$
	V : Error amplifier input + pin voltage (NON5/NON6)
	I : SOFT charge current TYP $1.6 \mu \mathrm{~A}$

(4). SCP pin constant setting method (Timer latch setting)

The time up to the output OFF in case of regulator output short-circuit can be set by connecting C between the SCP pin and GND.
Determine the C value as follows :

Timer latch : Tscp
$\mathrm{Tscp} \approx \mathrm{C} \times \mathrm{V} / \mathrm{I}[\mathrm{s}]$
$\mathrm{V}:$ Threshold voltage TYP 1.8 V
$\mathrm{I}:$ SCP charge current TYP $2.5 \mu \mathrm{~A}$
(5) RT pin constant setting method (Capacitor charge/discharge current setting)

The CT pin capacitor charge/discharge current can be set for triangular wave generation by connecting R between the RT pin and GND.
Determine the R value as follows :

> Charge/discharge current : Irt

$$
\begin{aligned}
& \text { Irt } \approx \mathrm{V} / \mathrm{R}[\mathrm{~A}] \\
& \mathrm{V}: \mathrm{R} \text { pin voltage TYP } 0.98 \mathrm{~V}
\end{aligned}
$$

(6) CT pin constant setting method (Triangular wave oscillation frequency setting)

The triangular wave oscillation can be set (together with the setting of charge/discharge current setting of RT pin) by connecting C between the CT pin and GND.
Determine the C value as follows :

Triangular wave oscillation frequency : Fosc

Fosc $\approx 1 /\{2 \times \mathrm{C} \times \mathrm{V} / \mathrm{I}\}[\mathrm{Hz}]$
V : Triangle wave amplitude TYP 0.5 V (Fosc $=10 \mathrm{kHz}$)
*Note that the amplitude increases with the frequency.
I : Capacitor charge/discharge current. See the RT pin constant setting method of (5).

Application Circuit

\square SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein.
■ SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
\square In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law.
\square No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd.
\square Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use.

- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.
■ Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellctual property rights which has resulted from the use of the technical information and products mentioned above.

This catalog provides information as of October, 2007. Specifications and information herein are subject to change without notice.

