SANYO Semiconductors DATA SHEET # LV2283VB — FM Transmitter IC with Stereo Modulation #### Overview The LV2283VB is an FM Transmitter IC. MPX block makes stereo modulated, composite signal from L and R sound inputs. RF VCO includes FM modulation function. PLL synthesizer determines RF output frequency with I²C control. # **Application** - Portable Memory Player - Portable HDD Player - Wireless Headphone #### **Features** • (Audio) Pilot tone system stereo modulation, audio attenuation • (RF) VCO, programmable gain driver amplifier • (PLL) 70 to 110MHz 100kHz step (Bus control) I²C bus control (Regulator) 2.8V LDO regulator #### **Specifications** #### **Absolute Maximum Ratings** at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |-----------------------------|---------------------|--|----------------------|------| | Maximum supply voltage | V _{CC} max | Pin 6 | 7.0 | V | | Maximum input voltage | V _{IN} max | | V _{CC} +0.3 | V | | Minimum input voltage | V _{IN} min | | -0.3 | V | | Allowable power dissipation | Pd max | Ta ≤ 85°C, Mounted on a specified board* | 500 | mW | | Operating temperature | Topr | | -40 to +85 | °C | | Storage temperature | Tstg | | -55 to +150 | °C | ^{*} Specified board : 114.3mm×76.1mm×1.6mm, glass epoxy circuit board. - Any and all SANYO Semiconductor Co.,Ltd. products described or contained herein are, with regard to "standard application", intended for the use as general electronics equipment (home appliances, AV equipment, communication device, office equipment, industrial equipment etc.). The products mentioned herein shall not be intended for use for any "special application" (medical equipment whose purpose is to sustain life, aerospace instrument, nuclear control device, burning appliances, transportation machine, traffic signal system, safety equipment etc.) that shall require extremely high level of reliability and can directly threaten human lives in case of failure or malfunction of the product or may cause harm to human bodies, nor shall they grant any guarantee thereof. If you should intend to use our products for applications outside the standard applications of our customer who is considering such use and/or outside the scope of our intended standard applications, please consult with us prior to the intended use. If there is no consultation or inquiry before the intended use, our customer shall be solely responsible for the use. - Specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment. # **Recommended Operating Conditions** at Ta = 25°C | Parameter | Symbol | Conditions | Ratings | Unit | |--------------------------------|--------------------|------------|------------|------| | Recommended supply voltage | VCC | Pin 6 | 3.3 | ٧ | | Operating supply voltage range | V _{CC} op | Pin 6 | 2.8 to 5.5 | V | # AC Characteristics Ta = 25 °C, $V_{CC} = 3.3V$, I^2C bits = Default state, L and R input = 1kHz, 450mVrms, unless otherwise noted | Doromotor | Cumbal | Conditions | | Ratings | | Unit | | |-----------------|-------------------|--|-----|---------|-----|------|--| | Parameter | Symbol Conditions | | min | typ | max | Unit | | | Circuit current | Icc | No input signal, Pin 6 current | | 8 | 10 | mA | | | Standby current | ISTB | No input signal, I ² C bit "STB" = "1", | | | 1.0 | μА | | | | | Pin 6 current | | | | | | ## **Audio and MPX Blocks** | Danasatas | Coursels at | Condition - | | Ratings | | Unit | | |-----------------------------------|-------------------|--|-----|---------|-----|-------|--| | Parameter | Symbol Conditions | | min | typ | max | Unit | | | Maximum audio input | VA max | Pin 1 and 24 input | | | 900 | mVrms | | | Audio input frequency | FAF | Pin 1 and 24 input | 20 | | 15k | Hz | | | Channel separation | SEP | Pin 7, composite output, L→R, R→L | 20 | 20 35 | | dB | | | Channel balance | СВ | Pin 7, composite output -2 0 | | 2 | dB | | | | Total harmonic distortion | THD | Pin 7, composite output | | 0.1 | 0.3 | % | | | Pilot tone output level | PMOD | I ² C bits "ST" ="1" | 0.5 | 0.85 | 1.2 | mVp-p | | | Composite output level | MPXOUT | | 3.3 | 3.8 | 4.3 | mVrms | | | Audio mute | MUTE | I ² C bit "MUTE" = "1" | 30 | 35 | | dB | | | Audio attenuation adjustment step | ATTSTEP | I ² C bit "ATT2 – ATT0" = "000" to "111", | 1.5 | 2 | 2.5 | dB | | | | | totally 8 steps. | | | | | | | Crystal oscillator frequency (1) | FXOSC (1) | Pin 21 and Pin 22 | | 76 | | kHz | | ## **RF Blocks** | Parameter | Symbol | Symbol Conditions | | Ratings | | | | |---------------------------|-------------------|--|-----|---------|-----|------|--| | Farameter | Symbol Conditions | | min | typ | max | Unit | | | RF output | RFOUT | f = 98MHz, I ² C bit "RF2 - RF0" = "011", | 109 | 112 | 115 | dBμV | | | | | Pin 12 output | | | | | | | RF output adjustment step | RFSTEP | I^2C bit "RF2 - RF0" = "000" to "111", | 0.4 | 0.9 | 1.4 | dB | | | | | totally 8 steps. Pin 12 relative output. | | | | | | | RF frequency | FRF | 100kHz step | 70 | | 110 | MHz | | ## **PLL Blocks** | Parameter | Cumbal | Conditions | | Ratings | | l loit | |---------------------------------------|-----------|---|--------------------|--------------------|----------------------|--------| | Parameter | Symbol | Conditions | min | typ | max | Unit | | I ² C input "High" voltage | VH | | 0.8V _{CC} | | V _{CC} +0.3 | V | | I ² C input "Low" voltage | VL | | -0.3 | | 0.2V _{CC} | V | | 19kHz output voltage | V19K | Pin 20. 19kHz output. I ² C bit "19K" = "1".
Load impedance = $47k\Omega$. | 0.6V _{CC} | 0.8V _{CC} | | Vp-p | | RF input frequency | FPLL | Step = 100kHz, See table 1 | 70 | | 110 | MHz | | Crystal oscillator frequency (2) | FXOSC (2) | Pin 16 | | 16 | | MHz | | External clock frequency | FEXT | External clock injection to Pin 13 instead of 16MHz crystal oscillation. When the LSI is standby mode, external clock should be stop. | 1 | | 24 | MHz | | CP output current | ICP | CP voltage = 1.4V | | 30 | | μА | # **Package Dimensions** unit: mm (typ) 3287 # **Pin Assignment** # **Block Diagram** # **AC Testing Circuit** **Pin Description** | Pin De | escription | | | | |---------|------------------|-------------------|---|----------------------------------| | Pin No. | Pin Name | DC Voltage
(V) | Description | Equivalent Circuit | | 1 | L-INPUT | 0 | Left channel input. If audio source DC voltage is not 0V, AC coupling capacitance is required. Pre-emphasis capacitance should be required between pin 1 (24) and 2 (23). | 6
4
50kΩ 1kΩ w-
(24) | | 2 | L-CAP | 0 | See Pin 1 | | | 3 | GND | 0 | | | | 4 | MPX+B | 2.8 | LDO regulator output for audio frequency and MPX blocks. External decoupling capacitance is required. | 6
4
5 | | 5 | GND | 0 | | | | 6 | VCC | 3.3 | | | | 7 | COMPOSITE
OUT | 0.05 | Stereo modulated output. | 12kΩ \(\frac{1}{2}\) | | 8 | CP OUT | - | Charge pump current output. | 6
(1)
(30)µА
(9)
(8) | | 9 | GND | 0 | | | Continued on next page. Continued from preceding page DC Voltage Pin No. Pin Name Equivalent Circuit Description (V) 10 VCO 2.2 Transistor BASE terminal for Colpitz (6) oscillator. (10) (9) 11 RF+B 2.8 LDO regulator output for RF blocks. (6) (11) 12 RF OUT 2.8 Collector output. Inductance should be connected Between pin 11 and pin 12 for getting resonant frequency and making pin12 DC bias 2.8V. ≩450Ω ≹20Ω (12) (13) 13 GND 0 PLL+B 2.8 LDO regulator output for digital blocks. (6) (5) 15 GND 0 Continued on next page. | from preceding pag | | | | |--------------------|--|---|---| | Pin Name | DC Voltage
(V) | Description | Equivalent Circuit | | XTAL | 2.0 | 16MHz crystal is needed for PLL reference frequency. If external clock is injected to Pin 16, frequency should be from 1MHz to 24MHz and N (integer) × 200kHz. When the IC is Standby mode, external clock should be stop. | 6
14
16
15 | | SCL | - | I ² C clock input. | 6 W CMOS Logic Input 15 | | SDA | - | I ² C data input. | 6 (B) W CMOS Logic Input (15) | | COUNTER
RESET | 3.3 | Usually pin 19 should be kept "Logic High" or opened (pull up $100 \mathrm{k}\Omega$ makes pin 19 "Logic High" automatically). When pin 19 is "Logic Low" level, internal frequency counter from 76kHz to 19kHz is reset. | 6 18Ω 19 CMOS Logic Input 15 | | 19K OUT | - | 19kHz output (same phase as pilot tone).
When I2C bit "19K"=0, Pin 20 is kept
"Logic Low" level. | 6 CMOS Logic Output | | 76K OSC
OUT | 2.0 | For stereo modulator pilot signal and sub carrier. 76kHz crystal should be connected between Pin 21 and Pin 22 | $\begin{array}{c} 6 \\ \hline 14 \\ \hline 21 \\ \hline \\ 1k\Omega \\ \hline \\ 1k\Omega \\ \hline \\ 1k\Omega \\ \hline \\ Continued on next page. \\ \\ \end{array}$ | | | Pin Name XTAL SCL SDA COUNTER RESET 19K OUT | Pin Name CVoltage (V) XTAL 2.0 SCL - SDA - COUNTER RESET 3.3 RESET - 76K OSC 2.0 | Description Description | Continued from preceding page. | Pin No. | Pin Name | DC Voltage
(V) | Description | Equivalent Circuit | |---------|------------|-------------------|-------------|--------------------| | 22 | 76K OSC IN | 0.7 | See Pin 21 | See Pin 21 | | 23 | R-CAP | 0 | See Pin 1 | See Pin 21 | | 24 | R-INPUT | 0 | See Pin 1 | See Pin 21 | # I²C Bus Definition Table 1. I²C Bus Write Data Format | Nama | D. de | | Bit | | | | | | | ACK | |----------------|-------|-------------|------|-----|-----|-----|-------|------|------|-----| | Name | Byte | MSB (1) LSB | | | | | LSB | ACK | | | | Address Byte | 1 | AD7 | AD6 | AD5 | AD4 | AD3 | AD2 | AD1 | R/W | ^ | | | | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | Α | | Control Byte 1 | 2 | P10 | P9 | P8 | P7 | P6 | P5 | P4 | P3 | A | | | | 0 | 1 | 1 | 1 | 1 | 0 | 1 | 0 | | | Control Byte 2 | 3 | P2 | P1 | P0 | 19K | ST | PILOT | STB | MUTE | | | | | 1 | 0 | 0 | 0 | 1 | 1 | 0 | 0 | Α | | Control Byte 3 | 4 | RES1 | RES0 | RF2 | RF1 | RF0 | ATT2 | ATT1 | ATT0 | | | | | 0 | 0 | 1 | 1 | 1 | 0 | 1 | 1 | А | | Control Byte 4 | 5 | R6 | R5 | R4 | R3 | R2 | R1 | R0 | TEST | | | | | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 0 | А | ^{(1):} MSB is transmitted first. Table 2. I²C Write Mode Description | Bit | Name | Description | |-------------|----------------------|---| | AD7 – AD1 | Address bit | LV2283VB requires address bits. | | R/W | Read/Write | "0" for Write mode (Write mode only). | | Α | Acknowledge | | | P10 – P0 | Programmable counter | 11 bit Programmable counter. P0 = LSB, P10 = MSB. | | | | RF Frequency = $(P10\times2^{10} + P9\times2^{9} + P1\times2^{1} + P0) \times 100$ kHz | | | | Default state = "01111010100" (980) | | 19K | 19kHz output | 19K OUT (Pin 20) ON / OFF. "19K" = "0" for no output. "1" for 19kHz output (same phase as pilot tone). | | | | Default state = "0" | | ST | MONO/ST selection | Monaural/Stereo transmission mode selection. "ST" is set "0" for monaural mode (no pilot tone), "1" for | | | | stereo transmission. Default state = "1" | | PILOT | Pilot tone output | "1" for normal operation (default). "0" for NO pilot tone in composite output even if ST bit = "1" (Stereo | | | | mode). | | STB | Standby | "1" for standby mode. Default state = "0" for normal operation. | | MUTE | Audio mute | "1" for Audio mute. Default state = "0" for normal operation. | | RES1, RES0 | Reserved bits | Reserved bits. Default state = "00" for normal operation. | | RF2 – RF0 | RF output adjustment | RF output voltage adjustment with 8 degree, 1dB steps. "RF2, RF1, RF0" = "111" for maximum. "000" is | | | | minimum RF output. Default state = "111" | | ATT2 – ATT0 | Audio attenuator | Audio attenuator for FM modulation fine adjustment is set by "ATT2, ATT1, ATT0" with 8 degree, | | | | 2dB steps. "111" is for 0dB attenuation. "000" is for 14dB attenuation. Default state = "011". | | R6 – R0 | Reference counter | 7 bit Programmable counter. R0 = LSB, R6 = MSB. | | | | Reference frequency should be set 100kHz. | | | | {Crystal oscillator frequency (Pin 16)} / { $(R6 \times 2^6 + R5 \times 2^5 + R1 \times 2^1 + R0) \times 2$ } = 100kHz. | | | | Default state = "1010000" (80 x 2). | | TEST | Test mode | For IC testing. Set "0" for normal operation. | | | | "1" for counter testing mode. Default state = "0" | # I²C Bus Operation #### Time chart Table 3. Timing specification | Devemates | Cumhal | | Unit | | | |--|-----------|-----|------|------|------| | Parameter | Symbol | min | typ | max | Unit | | SCL clock frequency | fSCL | | | 100 | kHz | | Bus free time between a STOP and START condition | tBUF | 4.7 | | | μS | | Hold time START condition | tHD ; STA | 4.0 | | | μS | | LOW period of the SCL clock | tLOW | 4.7 | | | μS | | HIGH period of the SCL clock | tHIGH | 4.0 | | | μS | | Data hold time | tHD ; DAT | 0.0 | | | μS | | Data set-up time | tSU; DAT | 250 | | | ns | | Rise time of both SDA and SCL signals | tR | | | 1000 | ns | | Fall time of both SDA and SCL signals | tF | | | 300 | ns | | Set-up time for STOP condition | tSU; STO | 4.0 | | | μS | I²C Bus AC Characteristics : Temp=25°C V_{CC} = 3.3V Note : I²C Bus is a registered trademark of the Phillips Co.. # **Application Circuit** - SANYO Semiconductor Co.,Ltd. assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all SANYO Semiconductor Co.,Ltd. products described or contained herein. - SANYO Semiconductor Co.,Ltd. strives to supply high-quality high-reliability products, however, any and all semiconductor products fail or malfunction with some probability. It is possible that these probabilistic failures or malfunction could give rise to accidents or events that could endanger human lives, trouble that could give rise to smoke or fire, or accidents that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design. - In the event that any or all SANYO Semiconductor Co.,Ltd. products described or contained herein are controlled under any of applicable local export control laws and regulations, such products may require the export license from the authorities concerned in accordance with the above law. - No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written consent of SANYO Semiconductor Co.,Ltd. - Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the SANYO Semiconductor Co.,Ltd. product that you intend to use. - Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production. - Upon using the technical information or products described herein, neither warranty nor license shall be granted with regard to intellectual property rights or any other rights of SANYO Semiconductor Co.,Ltd. or any third party. SANYO Semiconductor Co.,Ltd. shall not be liable for any claim or suits with regard to a third party's intellectual property rights which has resulted from the use of the technical information and products mentioned above. This catalog provides information as of December, 2007. Specifications and information herein are subject to change without notice.