STG4259
Low voltage $0.3 \Omega \max$ dual SPDT switch
with break-before-make feature and 15 KV ESD protection

Features

- Wide operating voltage range:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{Opr})=1.65 \mathrm{~V}$ to 4.8 V
- Low power dissipation:
$\mathrm{I}_{\mathrm{CC}}=0.2 \mu \mathrm{~A}(\max)$ at $\mathrm{T}_{\mathrm{A}}=85^{\circ} \mathrm{C}$
- Low ON resistance $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$:
$-R_{O N}=0.4 \Omega\left(\max T_{A}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=2.25 \mathrm{~V}$
$-\mathrm{R}_{\mathrm{ON}}=0.35 \Omega\left(\max \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$
$-R_{\mathrm{ON}}=0.30 \Omega\left(\max \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$ at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$
- Separate supply voltage for switch and control pin
- Separate control pin for each switch
- Latch-up performance exceeds 100 mA per JESD 78, class II

■ ESD performance tested on common channels (D1 and D2 pins)

- 9 kV IEC-61000-4-2 ESD, contact discharge
- 15 kV IEC-61000-4-2 ESD, air gap discharge
ESD performance tested on all other pins
- 8 kV IEC-61000-4-2 ESD, contact discharge
- 500 V machine model (JESD22 A115-A)
- 1500 V charged-device model (JESD22 C101)
- 8 kV IEC-61000-4-2 ESD, air gap discharge

Flip-Chip11

Description

The STG4259 is a high-speed CMOS low voltage dual analog SPDT (single pole dual throw) switch or 2:1 multiplexer/ demultiplexer switch fabricated in silicon gate $\mathrm{C}^{2} \mathrm{MOS}$ technology. It is designed to operate from 1.65 V to 4.8 V , making this device ideal for portable applications. It offers low ON resistance (0.30Ω) at $\mathrm{V}_{\mathrm{CC}}=4.3 \mathrm{~V}$. The SEL inputs are provided to control the switches.

The switch S 1 is ON (connected to common port D) when the SEL input is held high and OFF (high impedance state exists between the two ports) when SEL is held low; the switch S2 is ON (it is connected to common port D) when the SEL input is held low and OFF (high impedance state exist between the two ports) when SEL is held high.

Additional key features are fast switching speed, break-before-make delay time and ultra low power consumption. All inputs and outputs are equipped with protection circuits against static discharge, giving them ESD immunity and transient excess voltage.

Table 1. Device summary

Order code	Package	Packing
STG4259BJR	Flip-Chip11	Tape and Reel

Contents

1 Logic diagram and pin-out information 3
2 Maximum rating 5
3 Electrical characteristics 7
4 Test circuits 10
5 Package mechanical data 13
6 Revision history 18

Logic diagram and pin-out information

Figure 1. Functional diagram

Figure 2. Input equivalent circuit

Table 2. Truth table

SELn	Switch $\mathbf{n S 1}$	Switch ns2
H	ON	OFF $^{(1)}$
L	OFF $^{(1)}$	ON

1. High impedance

Figure 3. Pin connection (bump side view)

Flip-Chip11

Table 3. Pin description

Flip-Chip11	Symbol	Name and function
4,10,	1S1, 1S2,	Independent channels
6,12	2 S1, 2S2	Common channels
9,7	D1, D2	Control
3,1	SEL1, SEL2	Positive supply voltage
11	$\mathrm{~V}_{\mathrm{CC}}$	Logic supply voltage
2	$\mathrm{~V}_{\mathrm{L}}$	Ground (0V)
5	GND	

2 Maximum rating

Stressing the device above the rating listed in the "Absolute Maximum Ratings" table may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

Table 4. Absolute maximum ratings

Symbol	Parameter	Value	Unit
V_{CC}	Supply voltage	-0.5 to 5.5	V
V_{L}	Logic supply voltage	-0.5 to 5.5	V
V_{1}	DC input voltage	-0.5 to $V_{C C}+0.5$	V
$\mathrm{V}_{\text {IC }}$	DC control input voltage	-0.5 to $\mathrm{V}_{\mathrm{L}}+0.5$	V
V_{O}	DC output voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
IIKC	DC input diode current on control pin ($\mathrm{V}_{\text {SEL }}<0 \mathrm{~V}$)	- 50	mA
I_{K}	DC input diode current ($\mathrm{V}_{\text {SEL }}<0 \mathrm{~V}$)	± 50	mA
lok	DC output diode current	± 20	mA
I_{0}	DC output current	± 300	mA
lop	DC output current peak (pulse at $1 \mathrm{~ms}, 10 \%$ duty cycle)	± 500	mA
$I_{C C}$ or $I_{\text {GND }}$	DC $\mathrm{V}_{\text {CC }}$ or ground current	± 100	mA
P_{D}	Power dissipation at $\mathrm{T}_{\mathrm{A}}=70^{\circ} \mathrm{C}{ }^{(1)}$	500	mW
$\mathrm{T}_{\text {stg }}$	Storage temperature	-50 to 105	${ }^{\circ} \mathrm{C}$
T_{L}	Lead temperature (10 sec)	260	${ }^{\circ} \mathrm{C}$

1. Derate above $70^{\circ} \mathrm{C}$ by $18.5 \mathrm{~mW} / \mathrm{C}$

Table 5. Recommended operating conditions

1. Truth table guaranteed: 1.65 V to 4.8 V

3 Electrical characteristics

Table 6. DC specifications

Symbol	Parameter	Test conditions			Value					Unit
		V_{Cc} (V)	$\begin{aligned} & V_{L} \\ & (V) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			$\begin{gathered} -40 \text { to } \\ 85^{\circ} \mathrm{C} \end{gathered}$		
					Min	Typ	Max	Min	Max	
V_{IH}	High level input voltage	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	1.65-1.95		1.25			1.25		V
			2.3-2.7		1.75			1.75		
			3.0-3.6		2.35			2.35		
			4.3		2.8			2.8		
$\mathrm{V}_{\text {IL }}$	Low level input voltage	$\begin{gathered} 1.65-3 \\ 4.3 \end{gathered}$	1.65-1.95				0.6		0.6	V
			2.3-2.7				0.8		0.8	
			3.0-3.6				1.05		1.05	
			4.3				1.5		1.5	
R_{ON}	ON resistance	1.8	1.65-4.8	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \\ & V_{C C} \\ & I_{S}=100 \mathrm{~mA} \end{aligned}$		0.49	0.65		0.85	Ω
		2.25				0.30	0.40		0.50	
		3				0.25	0.35		0.45	
		3.7				0.22	0.32		0.42	
		4.3				0.21	0.30		0.40	
$\Delta \mathrm{R}_{\text {ON }}$	ON resistance match between channels ${ }^{(1)}$	1.8	1.65-4.8	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		5				$\mathrm{m} \Omega$
		2.25				3				
		3				3				
		3.7				3				
		4.3				3				
$\mathrm{R}_{\text {FLAT }}$	ON resistance flatness ${ }^{(2)}$	1.8	1.65-4.8	$\begin{aligned} & V_{S}=0 \mathrm{~V} \text { to } \\ & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{I}_{\mathrm{S}}=100 \mathrm{~mA} \end{aligned}$		300	400		450	$\mathrm{m} \Omega$
		2.5				130	170		230	
		3				90	120		170	
		3.7				90	120		170	
		4.3				90	120		170	
IOFF	Sn OFF state leakage current	$\begin{gathered} 1.65-8 \\ 4.8 \end{gathered}$	1.65-4.8	$\begin{aligned} & V_{S}=0 \text { to } \\ & V_{C C} \\ & V_{D}=0 \text { to } \\ & V_{C C} \end{aligned}$	-20		20	-300	300	nA
loN	Sn ON state leakage current	$\begin{array}{r} 1.65-8 \\ 4.8 \end{array}$	1.65-4.8	$\begin{aligned} & \mathrm{V}_{S}=0 \text { to } \\ & \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{~V}_{\mathrm{D}}=\text { open } \end{aligned}$	-20		20	-100	100	nA

Table 6. DC specifications (continued)

I_{D}	D ON state leakage current	$1.65-$ 4.8	$1.65-4.8$	$\mathrm{V}_{\mathrm{S}}=$ open $\mathrm{V}_{\mathrm{D}}=0$ to V_{CC}	-20		20	-100	100	nA
I_{CC}	Quiescent supply current	$1.65-$ 4.8	$1.65-4.8$	$\mathrm{V}_{\mathrm{SEL}}=\mathrm{V}_{\mathrm{CC}}$ or GND	0.05		0.05	-0.2	0.2	$\mu \mathrm{~A}$
$\mathrm{I}_{\mathrm{SEL}}$	SEL leakage current	$1.65-$ 4.8	$1.65-4.8$	$\mathrm{V}_{\mathrm{SEL}}=4.3 \mathrm{~V}$ or GND	-0.1		0.1	-1	1	$\mu \mathrm{~A}$

1. $\Delta \mathrm{R}_{\mathrm{ON}}=\mathrm{R}_{\mathrm{ON}(\text { Max })}-\mathrm{R}_{\mathrm{ON}(\text { Min })}$
2. Flatness is defined as the difference between the maximum and minimum value of on resistance as measured over the specified analog signal ranges.

Table 7. AC electrical characteristics ($\left.C_{L}=35 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=50 \Omega \mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}} \leq 5 \mathrm{~ns}\right)$

Symbol	Parameter	Test conditions			Value					$\underset{t}{\text { Uni }}$
		V_{CC} (V)	V_{L} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{tPLH}}, \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation delay	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} 1.65- \\ 4.8 \end{gathered}$			0.13				ns
		2.3-2.7				0.15				
		3.0-3.3				0.16				
		3.6-4.3				0.16				
t_{ON}	Turn-ON time	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} 1.65- \\ 4.8 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$		95	123		95	ns
		2.3-2.7				48	62		70	
		3-3.6				33	43		55	
		4.3				29	38		40	
$\mathrm{t}_{\text {OFF }}$	Turn-OFF time	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} 1.65-8 \\ 4.8 \end{gathered}$	$\begin{aligned} & \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} \end{aligned}$		12	15		70	ns
		2.3-2.7				12	16		55	
		3-3.6				13	17		40	
		4.3				13	17		35	
t_{D}	Break-before-make time delay	$\begin{gathered} 1.65- \\ 1.95 \end{gathered}$	$\begin{gathered} 1.65-8 \\ 4.8 \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} / 2 \end{aligned}$	10	66				ns
		2.3-2.7			10	28				
		3-3.6			10	18				
		4.3			10	12				
Q	Charge injection	$\begin{aligned} & 1.65- \\ & 1.95 \end{aligned}$	$\begin{gathered} 1.65- \\ 4.8 \end{gathered}$	$\begin{aligned} & \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF} \\ & \mathrm{~V}_{\mathrm{GEN}}=0 \mathrm{~V} \end{aligned}$		86				pC
		2.3-2.7				95				
		3.0-3.3				98				
		3.6-4.3				103				

Table 8. Analog switch characteristics ($\left.C_{L}=5 p F, R_{L}=50 \Omega, T_{A}=25^{\circ} \mathrm{C}\right)$

Symbol	Parameter	Test conditions			Value					Unit
		$V_{C C}$ (V)	V_{L} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		
					Min	Typ	Max	Min	Max	
OIRR	OFF isolation ${ }^{(1)}$	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	4.3	$\begin{aligned} & V_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		-71				dB
Xtalk	Crosstalk	1.6-4.3	4.3	$\begin{aligned} & V_{\mathrm{S}}=1 \mathrm{~V}_{\mathrm{RMS}} \\ & \mathrm{f}=100 \mathrm{kHz} \end{aligned}$		-93				dB
T_{HD}	Total harmonic distortion	2.3-4.3	4.3	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=600 \Omega \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{CC}} \mathrm{~V}_{\mathrm{PP}} \\ & \mathrm{f}=600 \mathrm{~Hz} \text { to } \\ & 20 \mathrm{kHz} \end{aligned}$		0.01				\%
BW	-3dB bandwidth (switch ON)	$\begin{gathered} 1.65- \\ 4.3 \end{gathered}$	4.3	$\mathrm{R}_{\mathrm{L}}=50 \Omega$		40				MHz
$\mathrm{C}_{\text {SEL }}$	Control pin input capacitance	1.8-4.3	$\begin{array}{r} 1.8- \\ 4.3 \end{array}$	$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}$		30				pF
$\mathrm{C}_{\text {Sn }}$	Sn port capacitance	1.8-4.3	$\begin{array}{r} \hline 1.8- \\ 4.3 \end{array}$	$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}$		95				pF
$C_{\text {D }}$	D port capacitance when switch is enabled	1.8-4.3	$\begin{array}{r} 1.8- \\ 4.3 \end{array}$	$\mathrm{V}_{\mathrm{L}}=\mathrm{V}_{\mathrm{CC}}$		230				pF

1. $O F F$-isolation $=20 \log _{10}(V D / V S), V_{D}=$ output, $\mathrm{V}_{\mathrm{S}}=$ input to off switch

4 Test circuits

Figure 4. ON resistance

Figure 6. OFF leakage

Figure 8. OFF isolation

Figure 9. Test circuit

Note: $1 C_{L}=5 / 35 \mathrm{pF}$ or equivalent: (includes jig capacitance)
$2 R_{L}=50 \Omega$ or equivalent
$3 \quad R_{T}=Z_{\text {OUT }}$ of pulse generator (typically 50Ω)
Figure 10. Break-before-make time delay

Figure 11. Switching time and charge injection
$\left(V_{G E N}=0 V, R_{G E N}=0 \Omega R_{L}=1 \mathrm{M} \Omega C_{L}=100 \mathrm{pF}\right)$

Figure 12. Turn ON, turn OFF delay time

5 Package mechanical data

In order to meet environmental requirements, ST offers these devices in ECOPACK ${ }^{\circledR}$ packages. These packages have a Lead-free second level interconnect. The category of second Level Interconnect is marked on the package and on the inner box label, in compliance with JEDEC Standard JESD97. The maximum ratings related to soldering conditions are also marked on the inner box label. ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.

Figure 13. Flip-Chip11 package outline

1. Drawing not to scale.

Table 9. Flip-Chip11 mechanical data

Dim.	Data book (mm)			Drawing (mm)		
	Min	Typ	Max	Min	Typ	Max
A	0.585	0.65	0.715	0.60	0.65	0.70
A1	0.21	0.25	0.29	0.22	0.25	0.28
A2		0.4		0.38	0.4	0.42
b	0.265	0.315	0.365	0.290	0.315	0.340
D	1.518	1.568	1.618	1.553	1.568	1.583
D1		1		0.99	1	1.01
E	2.018	2.068	2.118	2.083	2.068	2.118
E1		1.5		1.49	1.5	1.51
e	0.45	0.5	0.55	0.46	0.5	0.54
f		0.284		0.272	0.284	0.292
ccc		0.08			0.08	

The terminal A1 on the bumps side is identified by a distinguishing feature (for instance by a circular "clear area" - typically 0.1 mm diameter) and/or a missing bump. The terminal A1 on the backside of the product is identified by a distinguishing feature (for instance by a circular "dot" - typically 0.5 mm diameter).

Figure 14. Foot print recommendations

Figure 15. Marking

Dot, ST logo
S2 = marking
$\mathrm{V}=$ manufacturing Location
$y w w=$ datecode $(y=y e a r, w w=$ week $)$

Figure 16. Flip-Chip11 tape specification

Figure 17. Flip-Chip11 reel information

Figure 18. Flip-Chip11 reel for carrier tape information

6 Revision history

Table 10. Document revision history

Date	Revision	Changes
03-Oct-2006	1	First release
16-Oct-2006	2	Schematic Figure 1 on page 3 updated
07-Aug-2007	3	Air discharge ESD rating updated
28-Aug-2007	4	Changed Figure 16 on page 15

Please Read Carefully

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2007 STMicroelectronics - All rights reserved

STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

