

SEMITRANS[®] 3

IGBT Modules

SKM 400GB123D

Features

- MOS input (voltage controlled)
- N channel, homgeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications

- AC inverter drives
- UPS

Absolute	e Maximum Ratings	T _c = 2	5 °C, unless otherwise	e specified
Symbol	Conditions	1	Values	Units
IGBT				
V _{CES}	T _j = 25 °C		1200	V
I _C	T _j = 150 °C	T _{case} = 25 °C	400	А
		T _{case} = 80 °C	330	А
I _{CRM}	I _{CRM} =2xI _{Cnom}		600	А
V _{GES}			± 20	V
t _{psc}	V_{CC} = 600 V; $V_{GE} \le 20$ V; VCES < 1200 V	T _j = 125 °C	10	μs
Inverse I	Diode			•
I _F	T _j = 150 °C	T _{case} = 25 °C	390	А
		T _{case} = 80 °C	260	А
I _{FRM}	I _{FRM} =2xI _{Fnom}		600	А
I _{FSM}	t _p = 10 ms; sin.	T _j = 150 °C	2880	А
Module	·			
I _{t(RMS)}			500	А
T _{vj}			- 40+ 150	°C
T _{stg}			- 40+ 125	°C
V _{isol}	AC, 1 min.		2500	V

Characteristics T _c =			25 $^\circ\text{C},$ unless otherwise specified				
Symbol	Conditions		min.	typ.	max.	Units	
IGBT							
V _{GE(th)}	V_{GE} = V_{CE} , I_C = 12 mA		4,5	5,5	6,5	V	
I _{CES}	V_{GE} = 0 V, V_{CE} = V_{CES}	T _j = 25 °C T _j = 25 °C		0,1	0,3	mA	
V _{CE0}		T _j = 25 °C		1,4	1,6	V	
		T _j = 125 °C		1,6	1,8	V	
r _{CE}	V _{GE} = 15 V	T _j = 25°C		3,66	4,66	mΩ	
		T _j = 125°C		5	6,33	mΩ	
V _{CE(sat)}	I _{Cnom} = 300 A, V _{GE} = 15 V	T _j = °C _{chiplev.}		2,5	3	V	
C _{ies}				22	30	nF	
C _{oes}	V_{CE} = 25, V_{GE} = 0 V	f = 1 MHz		3,3	4	nF	
C _{res}				1,2	1,6	nF	
Q _G	V _{GE} = -8V - +20V			3000		nC	
R _{Gint}	T _j = °C			1,25		Ω	
t _{d(on)}				200	400	ns	
Ţ,	R _{Gon} = 3,3 Ω	V _{CC} = 600V		115	220	ns	
E _{on}	D	I _{Cnom} = 300A		38		mJ	
t _{d(off)}	R_{Goff} = 3,3 Ω	$T_{j} = 125 ^{\circ}C$		720 80	900	ns	
t _f		V _{GE} = ± 15V			100	ns	
E _{off}				40		mJ	
R _{th(j-c)}	per IGBT				0,05	K/W	

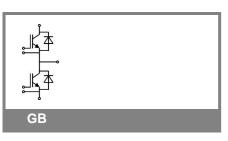
SEMITRANS[®] 3

IGBT Modules

SKM 400GB123D

Characteristics							
Symbol	Conditions		min.	typ.	max.	Units	
Inverse D							
V _F = V _{EC}	I_{Fnom} = 300 A; V_{GE} = 0 V			2	2,5	V	
		T _j = 125 °C _{chiplev.}		1,8		V	
V _{F0}		T _j = 25 °C		1,1	1,2	V	
		T _j = 125 °C				V	
r _F		T _j = 25 °C		3	4,3	mΩ	
		T _j = 125 °C				mΩ	
I _{RRM}	I _{Fnom} = 300 A	T _i = 125 °C		140		А	
Q _{rr}	di/dt = 2000 A/µs			13		μC	
E _{rr}	V_{GE} = 0 V; V_{CC} = 600 V					mJ	
R _{th(j-c)D}	per diode				0,125	K/W	
Module							
L _{CE}				15	20	nH	
R _{CC'+EE'}	res., terminal-chip	T _{case} = 25 °C		0,35		mΩ	
		T _{case} = 125 °C		0,5		mΩ	
R _{th(c-s)}	per module				0,038	K/W	
M _s	to heat sink M6		3		5	Nm	
w					325	g	

Features


- MOS input (voltage controlled)
- N channel, homgeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

Typical Applications

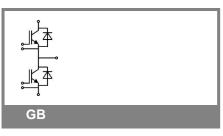
- AC inverter drives
- UPS

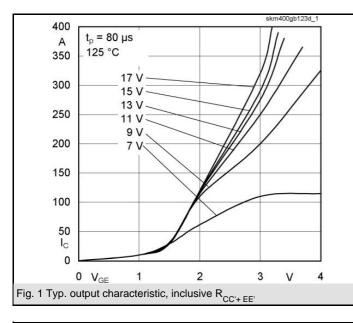
This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

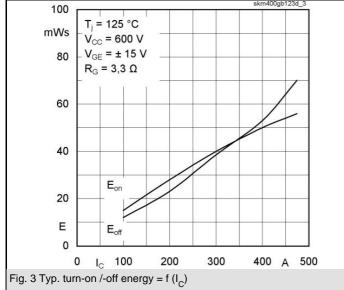
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.

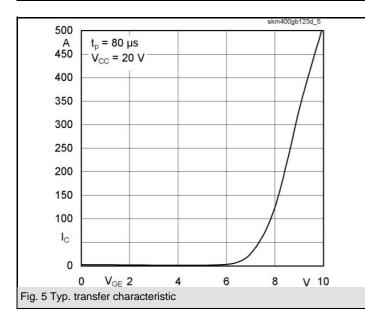
IGBT Modules

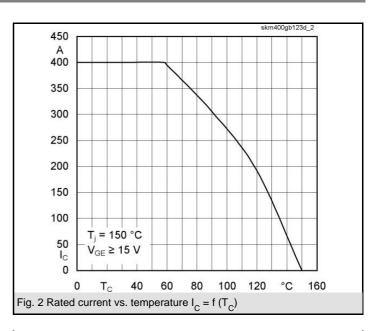
SKM 400GB123D

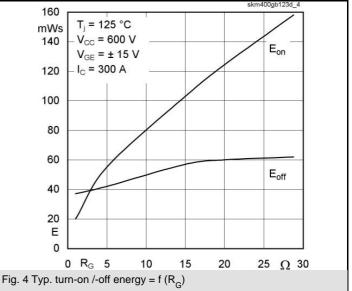

Z_{th} Symbol Conditions Values Units Z _th(j-c)l R i = 1 32 mk/W R_i i = 2 14 mk/W R_i i = 3 mk/W 3,4 R mk/W i = 4 0,6 i = 1 0,0447 tau_i s 0,0122 i = 2 tau_i s 0,004 tau_i i = 3 s tau, i = 4 0.0002 s Z Rith(j-c)D i = 1 80 mk/W R i = 2 33 mk/W R_i i = 3 mk/W 10,2 R i = 4 mk/W 1,8 0,05 tau, i = 1 s tau_i 0,0057 i = 2 s tau_i i = 3 0,0034 s tau_i i = 4 0,0003 s

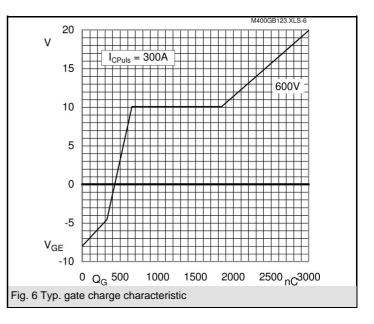

Features

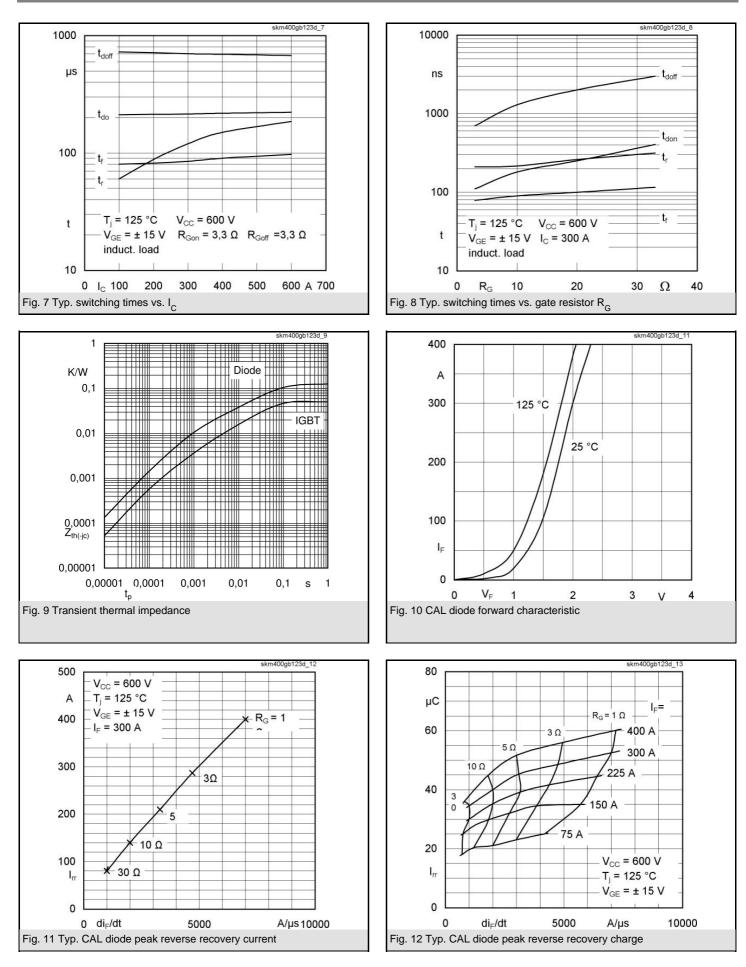

- MOS input (voltage controlled)
- N channel, homgeneous Si
- Low inductance case
- Very low tail current with low temperature dependence
- High short circuit capability, self limiting to 6 x I_{cnom}
- Latch-up free
- Fast & soft CAL diodes
- Isolated copper baseplate using DBC Direct Copper Bonding Technology
- Large clearance (12 mm) and creepage distances (20 mm)

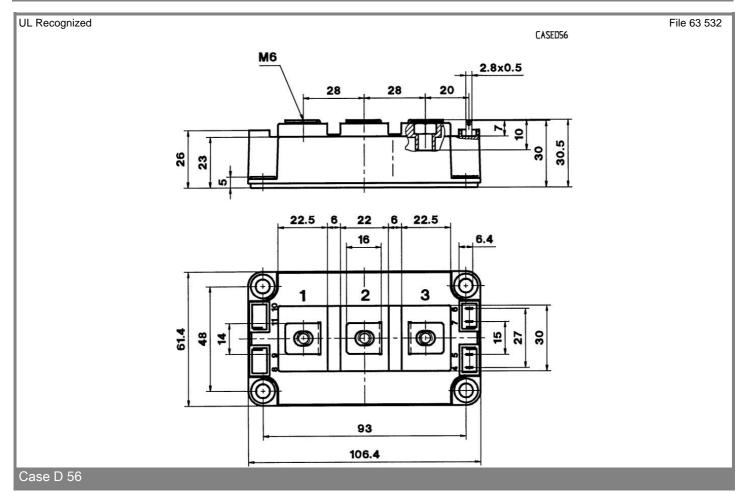

Typical Applications

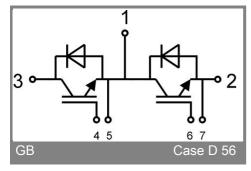

- AC inverter drives
- UPS











6