

M66257FP

5120×8 -Bit \times 2 Line Memory (FIFO)

REJ03F0251-0200 Rev.2.00 Sep 14, 2007

Description

The M66257FP is a high-speed line memory with a FIFO (First In First Out) structure of 5120-word \times 8-bit double configuration which uses high-performance silicon gate CMOS process technology.

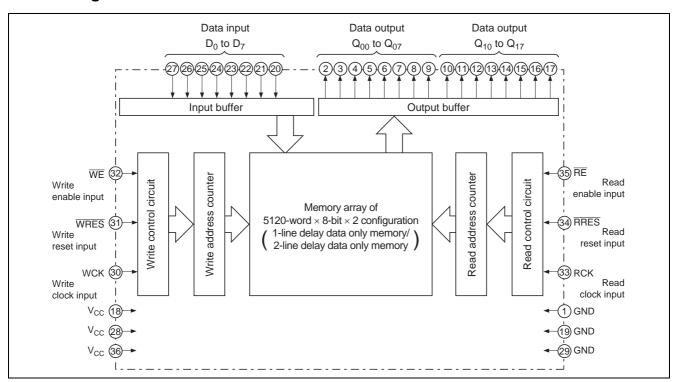
It allows simultaneous output of 1-line delay data and 2-line delay data, and is most suitable for data correction over multiple lines.

It has separate clock, enable and reset signals for write and read, and is most suitable as a buffer memory between devices with different data processing throughput.

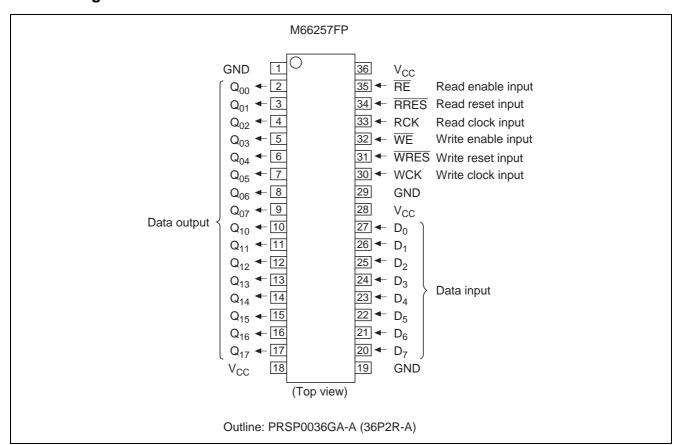
Features

• Memory configuration: $5120 \text{ words} \times 8 \text{ bits} \times 2 \text{ (dynamic memory)}$

High-speed cycle: 25 ns (Min)
High-speed access: 18 ns (Max)
Output hold: 3 ns (Min)


Fully independent, asynchronous write and read operations

Output: 3 states
 Q₀₀ to Q₀₇: 1-line delay
 Q₁₀ to Q₁₇: 2-line delay


Application

Digital photocopiers, high-speed facsimile, laser beam printers.

Block Diagram

Pin Arrangement

Absolute Maximum Ratings

(Ta = 0 to 70° C, unless otherwise noted)

Item	Symbol	Symbol Ratings		Conditions	
Supply voltage V _{CC}		−0.5 to +7.0	V	A value based on	
Input voltage	Vı	-0.5 to V_{CC} + 0.5	V	GND pin	
Output voltage	Vo	-0.5 to V_{CC} + 0.5	V		
Power dissipation	Pd	660	mW	Ta = 25°C	
Storage temperature	Tstg	-65 to 150	°C		

Recommended Operating Conditions

Item	Symbol	Min	Тур	Max	Unit
Supply voltage	V _{CC}	4.5	5	5.5	V
Supply voltage	GND	_	0	_	V
Operating ambient temperature	Topr	0	_	70	°C

Electrical Characteristics

(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit	Test Conditions		
"H" input voltage	V _{IH}	2.0	_	_	V			
"L" input voltage	V_{IL}	_		0.8	V			
"H" output voltage	V _{OH}	V _{CC} – 0.8	_	_	V	$I_{OH} = -4 \text{ m}$	Α	
"L" output voltage	V _{OL}	_	_	0.55	V	$I_{OL} = 4 \text{ mA}$		
"H" input current	Іін			1.0	μΑ	V _I = V _{CC}	WE, WRES, WCK, RE, RRES, RCK, D₀ to D ₇	
"L" input current	I _{IL}	_	_	-1.0	μА	V _I = GND	WE, WRES, WCK, RE, RRES, RCK, D₀ to D ₇	
Off state "H" output current	l _{OZH}	_	_	5.0	μА	Vo = Vcc		
Off state "L" output current	I _{OZL}	_	_	-5.0	μА	V _O = GND		
Operating mean current dissipation	Icc	_	_	120	mA	$V_I = V_{CC}$, GND, Output open t_{WCK} , $t_{RCK} = 25$ ns		
Input capacitance	Cı			10	pF	f = 1 MHz		
Off state output capacitance	Co			15	рF	f = 1 MHz		

Function

When write enable input \overline{WE} is "L", the contents of data inputs D_0 to D_7 are written into 1-line delay data only memory in synchronization with rise edge of write clock input WCK. At this time, the write address counter of 1-line delay data only memory is also incremented simultaneously.

The write functions given below are also performed in synchronization with rise edge of WCK.

When $\overline{\text{WE}}$ is "H", a write operation to 1-line delay data only memory is inhibited and the write address counter of 1-line delay data only memory is stopped.

When write reset input WRES is "L", the write address counter of 1-line delay data only memory is initialized.

When read enable input \overline{RE} is "L", the contents of 1-line delay data only memory are output to data outputs Q_{00} to Q_{07} and those of 2-line delay data only memory to data outputs Q_{10} to Q_{17} in synchronization with the rise of read clock input RCK. At this time, the read address counters of 1-line and 2-line delay data only memories is also incremented simultaneously.

Moreover, data of Q_{00} to Q_{07} are written into 2-line delay data only memory in synchronization with rise edge of RCK. At this time, the write address of 2-line delay data only memory is incremented.

The read functions given below are also performed in synchronization with rise edge of RCK.

When \overline{RE} is "H", a read operation from both of 1-line delay data only memory and 2-line delay data only memory is inhibited and the read address counter of each memory is stopped. The outputs of Q_{00} to Q_{07} and Q_{10} to Q_{17} are in the high impedance state.

Moreover, a write operation to 2-line delay data only memory is inhibited and the write address counter of 2-line delay data only memory is stopped.

When read reset input \overline{RRES} is "L", the read address counter of 1-line delay data only memory, and the write address counter and read address counter of 2-line delay data only memory are initialized.

Switching Characteristics

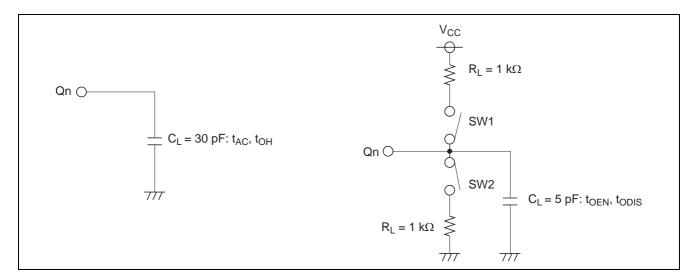
(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit
Access time	t _{AC}	_	_	18	ns
Output hold time	t _{OH}	3	_	_	ns
Output enable time	t _{OEN}	3	_	18	ns
Output disable time	todis	3	_	18	ns

Timing Conditions

(Ta = 0 to 70°C, V_{CC} = 5 V \pm 10%, GND = 0 V, unless otherwise noted)

Item	Symbol	Min	Тур	Max	Unit
Write clock (WCK) cycle	t _{WCK}	25		_	ns
Write clock (WCK) "H" pulse width	twckh	11		_	ns
Write clock (WCK) "L" pulse width	t _{WCKL}	11		_	ns
Read clock (RCK) cycle	t _{RCK}	25		_	ns
Read clock (RCK) "H" pulse width	t _{RCKH}	11	_	_	ns
Read clock (RCK) "L" pulse width	t _{RCKL}	11		_	ns
Input data setup time to WCK	t_{DS}	7	_	_	ns
Input data hold time to WCK	t _{DH}	3		_	ns
Reset setup time to WCK or RCK	t _{RESS}	7	_	_	ns
Reset hold time to WCK or RCK	t _{RESH}	3		_	ns
Reset nonselect setup time to WCK or RCK	t _{NRESS}	7		_	ns
Reset nonselect hold time to WCK or RCK	t _{NRESH}	3		—	ns
WE setup time to WCK	twes	7	_	_	ns
WE hold time to WCK	t _{WEH}	3		_	ns
WE nonselect setup time to WCK	t _{NWES}	7	_	_	ns
WE nonselect hold time to WCK	t _{NWEH}	3		_	ns
RE setup time to RCK	t _{RES}	7	_	_	ns
RE hold time to RCK	t _{REH}	3		_	ns
RE nonselect setup time to RCK	t _{NRES}	7	_	_	ns
RE nonselect hold time to RCK	t _{NREH}	3			ns
Input pulse rise/fall time	tr, tf	_		20	ns
Data hold time*	t _H	_	_	20	ms


Notes: Reset the IC after power is turned on.

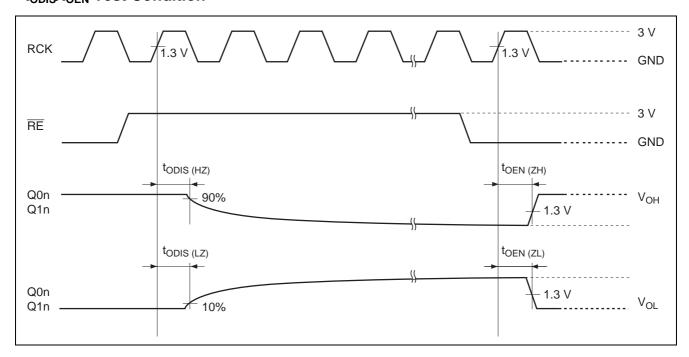
 \overline{WE} "H" level period $<20~ms-5120~t_{WCK}-\overline{WRES}$ "L" level period

 \overline{RE} "H" level period < 20 ms - 5120 t_{RCK} - \overline{RRES} "L" level period

^{*} For 1-line access, the following should be satisfied:

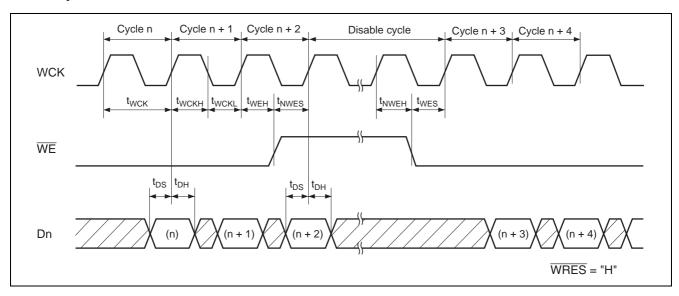
Test Circuit

Input pulse level: 0 to 3 V
Input pulse rise/fall time: 3 ns
Decision voltage input: 1.3 V


Decision voltage output: 1.3 V (However, t_{ODIS (LZ)} is 10% of output amplitude and t_{ODIS (HZ)} is 90% of that for

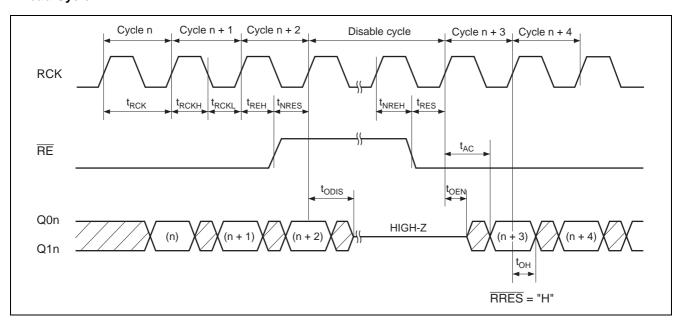
decision)

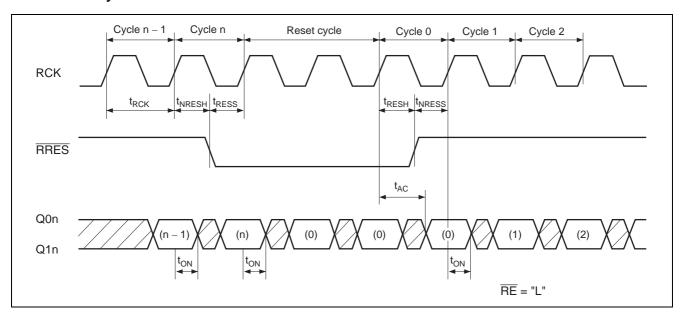
The load capacitance C_L includes the floating capacitance of connection and the input capacitance of probe.

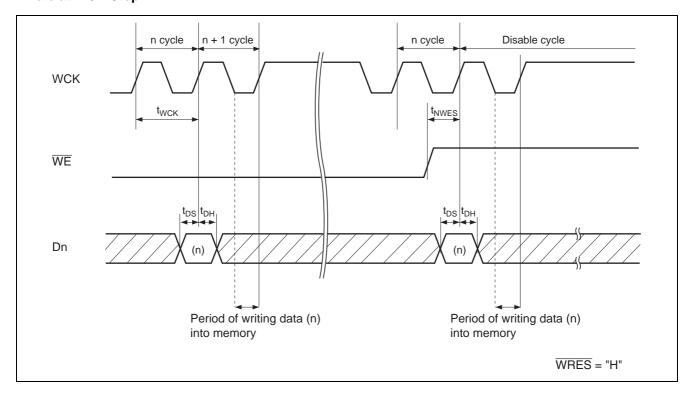

Parameter	SW1	SW2
t _{ODIS (LZ)}	Closed	Open
t _{ODIS (HZ)}	Open	Closed
t _{OEN (ZL)}	Closed	Open
t _{OEN (ZH)}	Open	Closed

todis/toen Test Condition

Operating Timing


Write Cycle

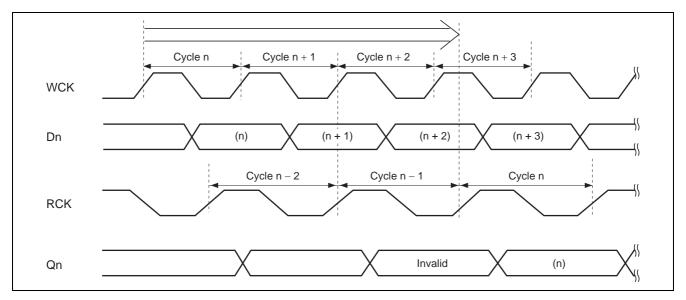

Write Reset Cycle


Read Cycle

Read Reset Cycle

Note at WCK Stop

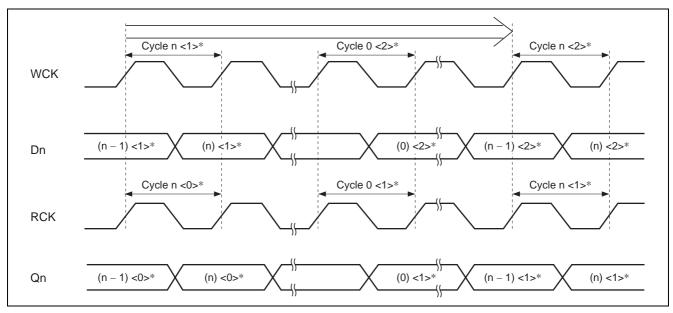
Input data Dn of n cycle is read at the rising edge after WCK of n cycle. Writing operation starts in the "L" period of WCK of n + 1 cycle and ends at the rising edge after n + 1 cycle.


To stop reading write data at n cycle, input WCK for up to the rising edge of n+1 cycle.

When the cycle next to n cycle is a disable cycle, input of WCK for a cycle is required after a disable cycle as well.

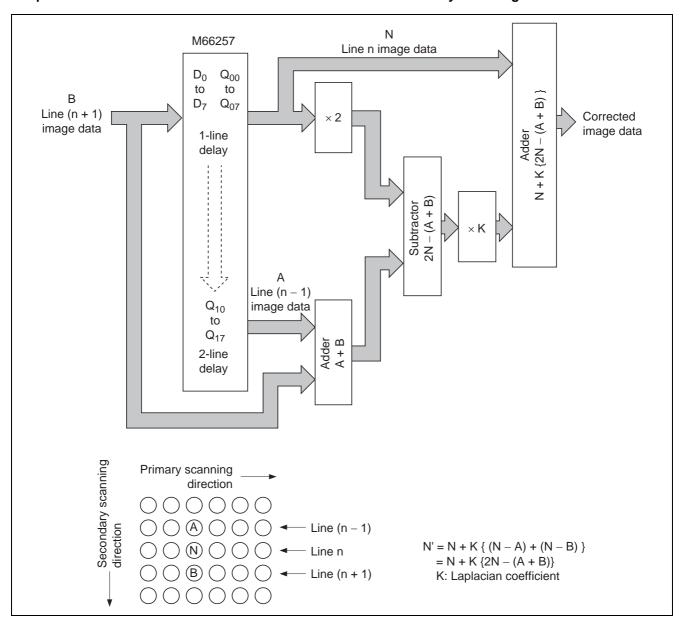
Shortest Read of Data "n" Written in Cycle n

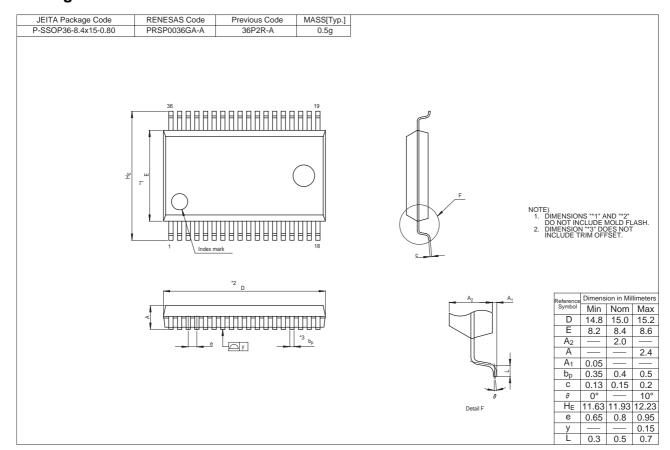
(Cycle n - 1 on read side should be started after end of cycle n + 1 on write side)


When the start of cycle n-1 on read side is earlier than the end of cycle n+1 on write side, output Qn of cycle n becomes invalid. In the figure shown below, the read of cycle n-1 is invalid.

Longest Read of Data "n" Written in Cycle n: 1-line Delay

(Cycle n <1>* on read side should be started when cycle n <2>* on write is started)


Output Qn of n cycle <1>* can be read until the start of reading side n cycle <1> and the start of writing side n cycle <2>* overlap each other.


Note: <0>*, <1>* and <2>* indicates a line value.

Application Example

Laplacian Filter Circuit for Correction of Resolution in the Secondary Scanning Direction

Package Dimensions

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect to the information in this document in the product data, diagrams, charts, programs, algorithms, and application circuit examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and procedures required to change without any plan protein. Before purchasing or using any Renesas products listed in this document, in the development is satisfied. The procedure is such as the development of the dev

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510