





January 2008



- Pletronics LV96/LV98 Series is a quartz crystal controlled precision square wave generator with an LVDS output.
- Solder pad compatible legacy LVDS oscillator solutions.
- FR4 base using the LV93 or LV99 5x7 mm ceramic packaged SMD device.
- · Tape and Reel packaging is available.

- 10.9 to 670 MHZ
- Enable/Disable Function:
   LV98 on pad 2
   LV96 on pad 1
- Low Jitter

This series, LV96 and LV98, is not recommended for new designs.

Use LV93 or LV99 series for new designs.

# Pletronics Inc. certifies this device is in accordance with the RoHS 6/6 (2002/95/EC) and WEEE (2002/96/EC) directives.

Pletronics Inc. guarantees the device does not contain the following: Cadmium, Hexavalent Chromium, Lead, Mercury, PBB's, PBDE's

Weight of the Device: 0.40 grams

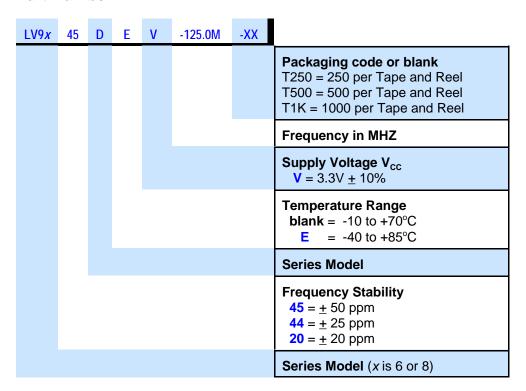
Moisture Sensitivity Level: 1 As defined in J-STD-020C

Second Level Interconnect code: e4

#### **Absolute Maximum Ratings:**

| Parameter                      | Unit                            |
|--------------------------------|---------------------------------|
| V <sub>cc</sub> Supply Voltage | -0.5V to +6.5V                  |
| Vi Input Voltage               | -0.5V to V <sub>CC</sub> + 0.5V |
| Vo Output Voltage              | -0.5V to V <sub>CC</sub> + 0.5V |

#### **Thermal Characteristics**


The maximum die or junction temperature is 155°C

The thermal resistance junction to board is 40 to 80°C/Watt depending on the solder pads, ground plane and construction of the PCB.



January 2008

#### Part Number:



Part Marking:

PLE LV9x FF.FFF M • YMDXX Marking Legend:

PLE = Pletronics X = 6 or 8

FF.FFFM = Frequency in MHZ

YMD = Date of Manufacture (year-month-day) All other marking is internal factory codes

#### Codes for Date Code YMD

| Code | 7    | 8    | 9    | 0    | 1    | 2    |
|------|------|------|------|------|------|------|
| Year | 2007 | 2008 | 2009 | 2010 | 2011 | 2012 |

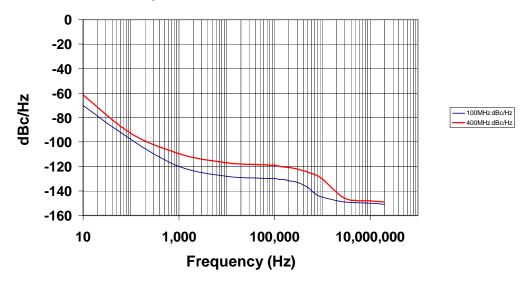
| Code  | Α   | В   | С   | D   | Е   | F   | G   | Н   | J   | K   | L   | M   |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Month | JAN | FEB | MAR | APR | MAY | JUN | JUL | AUG | SEP | OCT | NOV | DEC |
|       |     |     |     |     |     |     |     |     |     |     |     |     |

| Code | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | Α  | В  | С  |
|------|----|----|----|----|----|----|----|----|----|----|----|----|
| Day  | 1  | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
| Code | D  | E  | F  | G  | Н  | J  | K  | L  | М  | N  | Р  | R  |
| Day  | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 |
| Code | Т  | U  | ٧  | W  | Х  | Y  | Z  |    |    |    |    |    |
| Day  | 25 | 26 | 27 | 28 | 29 | 30 | 31 |    |    |    |    |    |
|      |    |    |    |    |    |    |    |    |    |    |    |    |

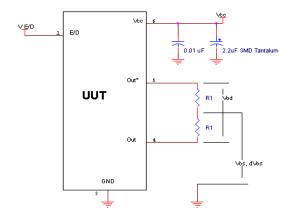


January 2008

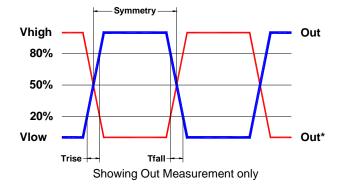
# Electrical Specification for 3.30V $\pm 10\%$ over the specified temperature range and the frequency range of 10.9 MHz to 670 MHz


| Item                                              | Min   | Max   | Unit   | Condition                                                                                  |
|---------------------------------------------------|-------|-------|--------|--------------------------------------------------------------------------------------------|
|                                                   |       |       |        |                                                                                            |
| Frequency Accuracy "45"                           | -50   | +50   | ppm    | For all supply voltages, load changes, aging for 1 year, shock, vibration and temperatures |
| "44"                                              | -25   | +25   |        | , you, onoon, moralion and tomporation                                                     |
| "20"                                              | -20   | +20   |        |                                                                                            |
| Output Waveform                                   |       | LVDS  |        |                                                                                            |
| Output High Level                                 | -     | 1.60  | Volts  |                                                                                            |
| Output Low Level                                  | 0.90  |       | Volts  | See load circuit                                                                           |
| Differential Output (V <sub>OD</sub> )            | 250   | 450   | mVolts | D4 50 1                                                                                    |
| Output Offset Voltage (Vos)                       | 1.125 | 1.375 | Volts  | R1 = 50 ohms                                                                               |
| Differential Output Error (dVos)                  |       | 50    | mVolts |                                                                                            |
| Output Symmetry                                   | 47    | 53    | %      | Referenced to 50% of amplitude or crossing point                                           |
| Output T <sub>RISE</sub> and T <sub>FALL</sub>    | 150   | 230   | pS     | Vth is 20% and 80% of waveform                                                             |
| Jitter                                            | -     | 0.6   | pS RMS | Measured from 12KHz to 20MHz from Fnominal                                                 |
|                                                   | -     | 2.8   |        | Measured from 10Hz to 20MHz from Fnominal                                                  |
| Output Short Circuit Current                      | -     | -20   | mA     | Vout = 0.0V                                                                                |
| Vcc Supply Current                                | -     | 80    | mA     |                                                                                            |
| Enable/Disable<br>Internal Pull-up                | 50    | -     | Kohm   | To Vcc (equivalent resistance)                                                             |
| V disable                                         | -     | 0.8   | Volts  | Referenced to Ground                                                                       |
| V enable                                          | 2.0   | -     | Volts  | Referenced to Ground                                                                       |
| Output leakage V <sub>OUT</sub> = V <sub>CC</sub> | -20   | +20   | uA     | Pad 1 low, device disabled                                                                 |
| V <sub>OUT</sub> = 0V                             | -20   | +20   | uA     |                                                                                            |
| Enable                                            | -     | 10    | nS     | Time for output to reach a logic state                                                     |
| Disable time                                      | -     | 10    | nS     | Time for output to reach a high Z state                                                    |
| Start up time                                     | -     | 5     | mS     | Measured from the time Vcc = 3.0V                                                          |
| Operating Temperature Range                       | -10   | +70   | °C     | Standard Temperature Range                                                                 |
|                                                   | -40   | +85   | °C     | Extended Temperature Range "E" Option                                                      |
| Storage Temperature Range                         | -55   | +125  | °C     |                                                                                            |

Specifications with E/D open circuit or connected to  $V_{\text{CC}}$ 




January 2008


### **Typical Phase-Noise Response**



#### **Load Circuit**



#### **Test Waveform**





January 2008

#### Reliability: Environmental Compliance

| Parameter        | Condition                            |
|------------------|--------------------------------------|
| Mechanical Shock | MIL-STD-883 Method 2002, Condition B |
| Vibration        | MIL-STD-883 Method 2007, Condition A |
| Solderability    | MIL-STD-883 Method 2003              |
| Thermal Shock    | MIL-STD-883 Method 1011, Condition A |

#### **ESD Rating**

| Model                | Minimum Voltage | Conditions              |  |  |
|----------------------|-----------------|-------------------------|--|--|
| Human Body Model     | 1500            | MIL-STD-883 Method 3115 |  |  |
| Charged Device Model | 1000            | JESD 22-C101            |  |  |

#### **Package Labeling**

Label is 1" x 2.6" (25.4mm x 66.7mm)
Font is Courier New
Bar code is 39-Full ASCII
(The part number will show as LV96xx or LV98xx)

P/N: LV9920DV-312.50M PERONICS

Customer P/N: 12345678

Qty: D/C 7AA-BT

Label is 1" x 2.6" (25.4mm x 66.7mm) Font is Arial

#### **RoHS Compliant**

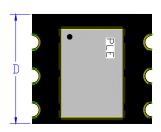
2nd LvL Interconnect

Category=e4

Max Safe Temp=245C for 10s 2X Max

#### Layout and application information

For Optimum Jitter Performance, Pletronics recommends:


- a ground plane under the device
- no large transient signals (both current and voltage) should be routed under the device
- do not layout near a large magnetic field such as a high frequency switching power supply
- do not place near piezoelectric buzzers or mechanical fans.

As much ground plane and thermal paths that can be realized under and to the side of the part is desired.



January 2008

#### Mechanical:



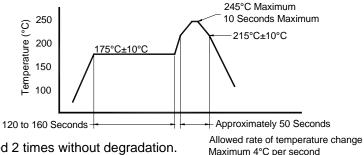
F 6 K

Label: laser marked lettering

FR4 PCB Base: Solder masked

All via holes tented on bottom Copper Clad 670  $\mu$ inch (17  $\mu$ m) Nickel plated 118  $\mu$ inch (3  $\mu$ m) Gold plated 0.8  $\mu$ inch (0.02  $\mu$ m) Typical thicknesses

Pin 3 Ground plane is typical **Not to scale** 


|                | Inches               | mm                 |
|----------------|----------------------|--------------------|
| В              | 0.356 <u>+</u> 0.005 | 9.04 <u>+</u> 0.13 |
| С              | 0.126 <u>+</u> 0.005 | 3.21 <u>+</u> 0.13 |
| D              | 0.324 <u>+</u> 0.005 | 8.23 <u>+</u> 0.13 |
| F¹             | 0.050                | 1.27               |
| Ğ              | 0.040                | 1.02               |
| H¹             | 0.059                | 1.50               |
| I <sup>1</sup> | 0.020                | 0.51               |
| J¹             | 0.040                | 1.02               |
| K¹             | 0.100                | 2.54               |
| L <sup>1</sup> | 0.062                | 1.57               |

| LV98<br>Pad | LV96<br>Pad | Function                          | Note                                                                                                                                                                                                                                                                         |  |  |  |  |
|-------------|-------------|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 2           | 1           | Output<br>Enable/Disable          | When this pad is not connected the oscillator shall operate. This is not a recommended condition!!!!!! When this pad is <0.80 volts, the output will be inhibited (High impedance state) Recommend connecting this pad to $V_{\rm CC}$ if the oscillator is to be always on. |  |  |  |  |
| 1           | 2           | No function                       | Recommend connecting this pad to ground. The is internal connection.                                                                                                                                                                                                         |  |  |  |  |
| 3           | 3           | Ground (GND)                      |                                                                                                                                                                                                                                                                              |  |  |  |  |
| 4           | 4           | Output                            | The outputs must be terminated, 100 ohms between the outputs is the ideal                                                                                                                                                                                                    |  |  |  |  |
| 5           |             | Output*                           | termination. Capacitor coupled terminations can be used.                                                                                                                                                                                                                     |  |  |  |  |
| 6           |             | Supply Voltage (V <sub>cc</sub> ) | Recommend connecting appropriate power supply bypass capacitors as close as possible.                                                                                                                                                                                        |  |  |  |  |

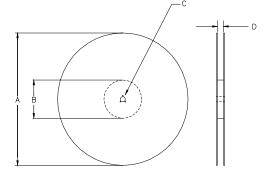


January 2008

## Reflow Cycle (typical for lead free processing)



The part may be reflowed 2 times without degradation.


Maximum 4°C per second

### Tape and Reel: available for quantities of 250 to 1000 per reel

| Constant Dimensions Table 1 |              |           |              |              |               |           |       |           |  |  |
|-----------------------------|--------------|-----------|--------------|--------------|---------------|-----------|-------|-----------|--|--|
| Tape<br>Size                | D0           | D1<br>Min | E1           | P0           | P2            | S1<br>Min | T Max | T1<br>Max |  |  |
| 8mm                         |              | 1.0       |              |              | 2.0           |           |       |           |  |  |
| 12mm                        | 1.5          | 1.5       | 1.75         | 4.0          | <u>+</u> 0.05 |           |       |           |  |  |
| 16mm                        | +0.1<br>-0.0 | 1.5       | <u>+</u> 0.1 | <u>+</u> 0.1 | 2.0           | 0.6       | 0.6   | 0.1       |  |  |
| 24mm                        |              | 1.5       |              |              | <u>+</u> 0.1  |           |       |           |  |  |

| Variable Dimensions Table 2 |           |        |                  |                   |           |          |                |  |  |  |
|-----------------------------|-----------|--------|------------------|-------------------|-----------|----------|----------------|--|--|--|
| Tape<br>Size                | B1<br>Max | E2 Min | F                | P1                | T2<br>Max | W<br>Max | Ao, Bo<br>& Ko |  |  |  |
| 24 mm                       | 12.1      | 14.25  | 7.5 <u>+</u> 0.1 | 16.0 <u>+</u> 0.1 | 8.0       | 16.3     | Note 1         |  |  |  |

Note 1: Embossed cavity to conform to EIA-481-B



|              | 10 PITCHES CUMULATIVE<br>TOLERANCE ON TAPE +/- 0.2 mm    | −E1     |
|--------------|----------------------------------------------------------|---------|
| ■<br>B1<br>■ | COVER TAPE  TO BO DO | E2<br>F |

USER DIRECTION OF UNREELING -

|  |   |        | REEL DIMENSIONS  |       |                      |               |
|--|---|--------|------------------|-------|----------------------|---------------|
|  | Α | inches | 7.0              | 10.0  | 13.0                 |               |
|  |   | mm     | 177.8            | 254.0 | 330.2                |               |
|  | В | inches | 2.50             | 4.00  | 3.75                 |               |
|  |   | mm     | 63.5             | 101.6 | 95.3                 | Tape<br>Width |
|  | С | mm     | 13.0 +0.5 / -0.2 |       |                      | vvidin        |
|  | D | mm     |                  |       | 24.4<br>+2.0<br>-0.0 | 24.0          |

Reel dimensions may vary from the above



January 2008

#### IMPORTANT NOTICE

Pletronics Incorporated (PLE) reserves the right to make corrections, improvements, modifications and other changes to this product at anytime. PLE reserves the right to discontinue any product or service without notice. Customers are responsible for obtaining the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to PLE's terms and conditions of sale supplied at the time of order acknowledgment.

PLE warrants performance of this product to the specifications applicable at the time of sale in accordance with PLE's limited warranty. Testing and other quality control techniques are used to the extent PLE deems necessary to support this warranty. Except where mandated by specific contractual documents, testing of all parameters of each product is not necessarily performed.

PLE assumes no liability for application assistance or customer product design. Customers are responsible for their products and applications using PLE components. To minimize the risks associated with the customer products and applications, customers should provide adequate design and operating safeguards.

PLE products are not designed, intended, authorized or warranted to be suitable for use in life support applications, devices or systems or other critical applications that may involve potential risks of death, personal injury or severe property or environmental damage. Inclusion of PLE products in such applications is understood to be fully at the risk of the customer. Use of PLE products in such applications requires the written approval of an appropriate PLE officer. Questions concerning potential risk applications should be directed to PLE.

PLE does not warrant or represent that any license, either express or implied, is granted under any PLE patent right, copyright, artwork or other intellectual property right relating to any combination, machine or process which PLE product or services are used. Information published by PLE regarding third-party products or services does not constitute a license from PLE to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from PLE under the patents or other intellectual property of PLE.

Reproduction of information in PLE data sheets or web site is permissible only if the reproduction is without alteration and is accompanied by associated warranties, conditions, limitations and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. PLE is not responsible or liable for such altered documents.

Resale of PLE products or services with statements different from or beyond the parameters stated by PLE for that product or service voids all express and implied warranties for the associated PLE product or service and is an unfair or deceptive business practice. PLE is not responsible for any such statements.

#### **Contacting Pletronics Inc.**

Pletronics Inc. Tel: 425-776-1880 19013 36<sup>th</sup> Ave. West Fax: 425-776-2760

Lynnwood, WA 98036-5761 USA E-mail: ple-sales@pletronics.com

URL: www.pletronics.com

Copyright © 2008, Pletronics Inc.