HA12231FP
 Audio Signal Processor for Car Deck (PB 1 Chip)

Description

HA12231FP is silicon monolithic bipolar IC providing PB equalizer system and music sensor system in one chip.

Functions

- PB equalizer $\times 2$ channel
- Music sensor $\times 1$ channel
- Line amp. $\times 2$ channel
- Line mute $\times 2$ channel

Features

- No use external parts for PB equalizer. (Fixed characteristics built-in)
- Available to change music sensing level by external resistor.
- Available to change frequency response of music sensor by external capacitor.
- Different type of PB equalizer characteristics selection $(120 \mu \mathrm{~s} / 70 \mu \mathrm{~s})$ is available.
- Line mute ON/OFF is available.
- This IC is strong for a cellular phone noise.

Ordering Information

Product	Package Code (Previous Code)	PBOUT-Level	Functions		PB-EQ
		Music Sensor	Mute		
HA12231FP	PRSP0020DD-A (FP-20DA)	450 mVrms	O	O	\bigcirc

Pin Description, Equivalent Circuit

($\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$, A system of single supply voltage, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, No Signal, The value in the table shows typical value.)

Pin No.	Pin Name	Note	Equivalent Circuit	Description
16	TAI(L)	$\mathrm{V}=\mathrm{V}_{\mathrm{cc}} / 2$		Tape input
5	TAI(R)			
14	RIP	$\mathrm{V}=\mathrm{V}_{\mathrm{cc}} / 2$		Ripple filter
13	MS DET	$\mathrm{V}=\mathrm{V}_{\mathrm{cc}}$		Time constant pin for rectifier
15	PBOUT(L)	$\mathrm{V}=\mathrm{V}_{\mathrm{cc}} / 2$		PB output
6	PBOUT(R)			
1	VREF	$\mathrm{V}=\mathrm{V}_{\mathrm{cc}} / 2$		Reference output
17	EQOUT(L)	$\mathrm{V}=\mathrm{V}_{\mathrm{cc}} / 2$		Equalizer output (120μ)
4	EQOUT(R)			
11	$\mathrm{V}_{\text {cc }}$	-		Power supply
19	FIN(L)	-		Equalizer input
18	RIN(L)			
3	RIN(R)			
2	FIN(R)			

Note: MS: Music Sensor

Pin Description, Equivalent Circuit (cont.)

($\mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}$, A system of single supply voltage, $\mathrm{Ta}=25^{\circ} \mathrm{C}$, No Signal, The value in the table shows typical value.)

Pin No.	Pin Name	Note	Equivalent Circuit	Description
9	Mute	-		Mode control input
10	FOR/REV			
8	$\overline{120 / 70}$			
12	MS	-		MS output (to MPU) *
7	MS Gv	$\mathrm{V}=\mathrm{V}_{\mathrm{cc}} / 2$		MS gain pin *
20	GND	-		GND pin

Note: MS: Music Sensor

Block Diagram

Absolute Maximum Ratings

Item	Symbol	Rating	Unit	Note
$\mathrm{Cax})$				
Supply voltage	V cc Max	15	V	
Power dissipation	Pd	400	mW	$\mathrm{Ta} \leq 85^{\circ} \mathrm{C}$
Operating temperature	Topr	-40 to +85	${ }^{\circ} \mathrm{C}$	
Storage temperature	Tstg	-55 to +125	${ }^{\circ} \mathrm{C}$	

Electrical Characteristics

Item	Symbol	$\left(\mathrm{Ta}=25^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{CC}}=9 \mathrm{~V}\right.$, PBOUT Level $=450 \mathrm{mVrms}(=0 \mathrm{~dB})$)															
		Test Condition					Specification			Unit	Application Terminal					$\begin{gathered} \mathrm{Re}- \\ \text { mark } \\ \hline \end{gathered}$	
		IC Condition				Other				Input	Output						
		INPUT	OUTPUT	$\mathrm{fin}(\mathrm{Hz})$	$\begin{array}{\|c\|} \hline \text { PBOUT } \\ \text { level(dB) } \end{array}$		Min	Typ	Max		R	L	R	L			
Quiescent current	I_{Q}	-	-	-	-	No signal	-	6.0	9		mA	-	-	-	-	11	
Input AMP. gain	$\mathrm{G}_{\mathrm{V}} / \mathrm{A}$	TAI	PBOUT	1k	0		22.5	23.5	24.5	dB	5	16	6	15	-		
Signal handling	Vomax	TAI	PBOUT	1k	-	THD = 1\%	12.0	13.0	-	dB	5	16	6	15	-	*1	
T.H.D.	THD	TAI	PBOUT	1k	0		-	0.05	0.3	\%	5	16	6	15	-		
Channel separation	CT RL	FIN	PBOUT	1k	12		50.0	60.0	-	dB	2	19	$\begin{array}{\|l\|} \hline 6 \rightarrow \\ 15 \\ \hline \end{array}$	$\begin{gathered} 15 \rightarrow \\ 6 \end{gathered}$	-		
PB-EQ gain	G_{V} EQ 1k	FIN/RIN	EQOUT	1k	0	$120 \mu \mathrm{~s}$	37.0	40.0	43.0	dB	2/3	19/18	4	17	-		
	G_{V} EQ 10k(1)	FIN	EQOUT	10k	0	$120 \mu \mathrm{~s}$	33.0	36.0	39.0	dB	2	19	4	17	-		
	G_{V} EQ 10k(2)	FIN	EQOUT	10k	0	$70 \mu \mathrm{~s}$	29.0	32.0	35.0	dB	2	19	4	17	-		
PB-EQ maximum output	$\mathrm{V}_{\text {OM }}$	FIN/RIN	EQOUT	1k	-	THD = 1\%	300	600	-	mVrms	2/3	19/18	4	17	-	*1	
PB-EQ THD	THD-EQ	FIN/RIN	EQOUT	1k	0		-	0.1	0.5	\%	2/3	19/18	4	17	-		
Noise voltage level converted in input	VN	FIN/RIN	EQOUT	(1k)	(0)	$\mathrm{Rg}=680 \Omega$, Din-Audio Filter	-	1.2	2.0	$\mu \mathrm{Vrms}$	2/3	19/18	4	17	-		
MS sensing level	V_{ON}	TAI	$\begin{array}{\|l\|} \hline \text { PBOUT } \\ \text { MSOUT } \\ \hline \end{array}$	5k	-		-18.0	-14.0	-10.0	dB	5	16	6	15	12		
MS output low level	V_{OL}	TAI	$\begin{aligned} & \hline \text { PBOUT } \\ & \text { MSOUT } \\ & \hline \end{aligned}$	5k	0		-	1.0	1.5	V	5	16	6	15	12		
MS output leak current	${ }^{\mathrm{OH}}$	-	MSOUT	-	-	No signal	-	0.0	2.0	$\mu \mathrm{A}$	-	-	12	12	-		
MUTE attenuation	Mute	TAI	PBOUT	1k	12		70.0	80.0	-	dB	5	16	6	15	-		
Control voltage	$\mathrm{V}_{\text {IL }}$	-	-	-	-		-0.2	-	1.0	V	-	-	—	-	$\begin{gathered} 8,9, \\ 10 \\ \hline \end{gathered}$		
	V_{IH}						3.5	-	V_{Cc}								

Test Circuit

Functional Description
Power Supply Range
HA12231FP is designed to operate on single supply only.

Table 1 Supply Voltage Range

Product	Single Supply
HA12231FP	7.2 V to 12.0 V

Reference Voltage

HA12231FP provides the reference voltage of half the supply voltage that is the signal grounds. As the peculiarity of this device, the capacitor for the ripple filter is very small about $1 / 100$ compared with their usual value. The block diagram is shown as figure 1.

Figure 1 The Block Diagram of Reference Supply Voltage

Operating Mode Control

HA12231FP provides fully electronic switching circuits. And each operating mode control are controlled by parallel data (DC voltage).

When a power supply of this IC is cut off, for a voltage, in addition to a mode control terminal even though as do not destruct it, in series for resistance.

Table 2 Threshold Voltage (\mathbf{V}_{TH})

Pin No.	Lo	Hi	Unit	Test Condition
$8,9,10$	-0.2 to 1.0	3.5 to V cc	V	Input Pin Measure 7 V

Table 3 Switching Truth Table

Pin No.	Pin Name	Low	High
8	$\overline{120} / 70$	$120 \mu($ Normal	70μ (Metal or Chrome)
9	Mute	Mute OFF	Mute ON
10	$\overline{\text { FOR/REV }}$	Forward	Reverse

Notes: 1. Each pins are on pulled down with $100 \mathrm{k} \Omega$ internal resistor.
Therefore, it will be low-level when each pins are open.
2. Over shoot level and under shoot level of input signal must be the standardized.
(High: Vcc, Low: -0.2 V)
3. Reducing pop noise is so much better for $10 \mathrm{k} \Omega$ to $22 \mathrm{k} \Omega$ resisitor and $1 \mu \mathrm{~F}$ to $22 \mu \mathrm{~F}$ capacitor shown figure 2 .

Figure 2 Interface for Reduction of Pop Noise

Input Block Diagram and Level Diagram

Figure 3 Input Block Diagram

Adjustment of Playback Reference Operate Level

After replace R1 and R2 with a half-fix volume of $10 \mathrm{k} \Omega$, adjust playback reference operate level.

The Sensitivity Adjustment of Music Sensor

Adjusting MS Amp. gain by external resistor, the sensitivity of music sensor can set up. The music sensor block diagram is shown in figure 4 , and frequency response is shown in figure 5.

Figure 4 Music Sensor Block Diagram

Figure 5 Frequency Response

1. Search mode
$G_{V 1}=(23.5 d B-3.5 d B)+20 \log \left(1+\frac{90 k}{R E X 2}\right)$
$\mathrm{f}_{1}=\frac{1}{2 \pi \cdot \mathrm{CEX} 2 \cdot \operatorname{REX} 2}[\mathrm{~Hz}], \mathrm{f}_{2}=25 \mathrm{k}[\mathrm{Hz}]$
2. Repeat mode
$G_{V 2}=(23.5 d B-3.5 d B)+20 \log \left(1+\frac{90 k}{R E X 1}\right)$
$\mathrm{f}_{3}=\frac{1}{2 \pi \cdot \text { CEX1 } \cdot \text { REX } 1}[\mathrm{~Hz}], \mathrm{f}_{4}=25 \mathrm{k}[\mathrm{Hz}]$

The sensitivity of music sensor (S) is computed by the formula mentioned below.
$\mathrm{S}=12.7-\mathrm{G}_{\mathrm{V}} \quad[\mathrm{dB}]$
S is 6 dB down in case of one-side channel.
Notes: 1. Search mode: $\mathrm{G}_{\mathrm{V} 1}$, Repeat mode: $\mathrm{G}_{\mathrm{V} 2}$
2. Standard level of TAI pin (Dolby level correspondence) $=30 \mathrm{mVrms}$
3. Standard sensing level of music sensor $=130 \mathrm{mVrms}$

Item	REX1, 2	CEX1, 2	$\mathrm{G}_{\mathrm{v} 1,2}$	$\mathbf{f}_{1,3}$	$\mathrm{f}_{2,4}$	S (one side channel)	
Search mode	$24 \mathrm{k} \Omega$	$0.01 \mu \mathrm{~F}$	33.5 dB	663 Hz	25 kHz	$-14.8 \mathrm{~dB}$	$-20.8 \mathrm{~dB}$
Repeat mode	$2.4 \mathrm{k} \Omega$	$1 \mu \mathrm{~F}$	51.7 dB	66.3 Hz	25 kHz	$-33.0 \mathrm{~dB}$	-39.0 dB

Note: This MS presented hysteresis lest MS(OUT) terminal should turn over again High level or Low level, in case of thresh S level constantly.

Music Sensor Time Constant

1. Sensing no signal to signal (Attack) is determined by $\mathrm{C} 1,0.01 \mu \mathrm{~F}$ to $1 \mu \mathrm{~F}$ capacitor C 1 can be applicable.
2. Sensing signal to no signal (Recovery) is determined by C 1 and R 1 , however preceding (1), $100 \mathrm{k} \Omega$ to $1 \mathrm{M} \Omega$ can be applicable.

Music Sensor Output (MS(OUT))

As for the internal circuit of music sensor block, music sensor output pin is connected to the collector of NPN type directly, therefore, output level will be "high" when sensing no signal. And output level will be "low" when sensing signal.

$$
\begin{aligned}
I_{L}= & \frac{D V_{C C}-M S(O U T)_{L O}{ }^{*}}{R_{L}} \\
& * M S(O U T)_{L O}: \text { Sensing signal (about } 1 \mathrm{~V} \text {) }
\end{aligned}
$$

Note: Supply voltage of MS (OUT) pin must be less than V_{CC} voltage.

Characteristic Curves

EQOUT Noise Output vs. Transmission Signal Input Level

Input Amp. Gain vs. Frequency

Signal to Noise Ratio vs. Supply Voltage

Crosstalk vs. Frequency (CTRL)

Package Dimensions

RenesasTechnology Corp. Sales Strategic Planning Div. Nippon Blidg, 2-6--2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan
Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.
Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's Renesas Technology Corp. convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party
diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.
2. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein
The information described here may contain technical inaccuracies or typographical errors.
Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
3. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.
or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
4. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials
5. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
6. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.
http://www.renesas.com

RENESAS SALES OFFICES

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.
Renesas Technology America, Inc.
450 Holger Way, San Jose, CA 95134-1368, U.S.A
Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501
Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology Hong Kong Ltd.

7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong
Tel: <852> 2265-6688, Fax: <852> 2730-6071
Renesas Technology Taiwan Co., Ltd.
10th Floor, No.99, Fushing North Road, Taipei, Taiwan
Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999
Renesas Technology (Shanghai) Co., Ltd.
Unit2607 Ruijing Building, No. 205 Maoming Road (S), Shanghai 200020, China
Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952
Renesas Technology Singapore Pte. Ltd.
1 Harbour Front Avenue, \#06-10, Keppel Bay Tower, Singapore 098632
Tel: <65> 6213-0200, Fax: <65> 6278-8001

