Features

- Industry-standard Architecture
- 12 ns Maximum Pin-to-pin Delay
- Zero Power - 25 (A Maximum Standby Power (Input Transition Detection)
- CMOS and TTL Compatible Inputs and Outputs
- Advanced Electrically-erasableTechnology
- Reprogrammable
- 100\% Tested
- Latch Feature Holds Inputs to Previous Logic State
- High-reliability CMOS Process
- 20 Year Data Retention
- 100 Erase/Write Cycles
- 2,000V ESD Protection
- 200 mA Latchup Immunity
- Commercial and Industrial Temperature Ranges
- Dual-in-line and Surface Mount Standard Pinouts
- PCI Compliant
- Green Package Options (Pb/Halide-free/RoHS Compliant) Available

1. Desscription

The ATF22V10CZ/CQZ is a high-performance CMOS (electrically-erasable) programmable logic device (PLD) which utilizes Atmel's proven electrically-erasable Flash memory technology. Speeds down to 12 ns with zero standby power dissipation are offered. All speed ranges are specified over the full $5 \mathrm{~V} \pm 10 \%$ range for industrial temperature ranges; $5 \mathrm{~V} \pm 5 \%$ for commercial range 5 -volt devices. The ATF22V10CZ/CQZ provides a low voltage and edge-sensing "zero" power CMOS PLD solution with "zero" standby power ($5 \mu \mathrm{~A}$ typical). The ATF22V10CZ/CQZ provides a "zero" power CMOS PLD solution with 5V operating voltages, powering down automatically to the zero power-mode through Atmel's patented Input Transition Detection (ITD) circuitry when the device is idle, offering "zero" ($25 \mu \mathrm{~A}$ worst case) standby power. This feature allows the user to manage total system power to meet specific application requirements and enhance reliability. Pin "keeper" circuits on input and output pins eliminate static power consumed by pull-up resistors. The "CQZ" combines the low high-frequency $I_{C C}$ of the "Q" design with the " Z " feature.

The ATF22V10CZ/CQZ incorporates a superset of the generic architectures, which allows direct replacement of the 22 V 10 family and most 24 -pin combinatorial PLDs. Ten outputs are each allocated 8 to 16 product terms. Three different modes of operation, configured automatically with software, allow highly complex logic functions to be realized.

Figure 1-1. Block Diagram

2. Pin Configurations

Table 2-1. \quad Pin Configurations (All Pinouts Top View)

Pin Name	Function
CLK	Clock
IN	Logic Inputs
I/O	Bi-directional Buffers
VCC	$+5 V$ Supply

Figure 2-1. TSSOP

Figure 2-3. PLCC

Note: For PLCC, P1, P8, P15 and P22 can be left unconnected. For superior performance, connect VCC to pin 1 and GND to 8,15 , and 22 .

Figure 2-2. DIP/SOIC

3. Absolute Maximum Ratings*

Temperature Under Bias............................... $40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	
Storage Temperature $65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Voltage on Any Pin with	
Respect to Ground-2.0V to +7.0V ${ }^{(1)}$	
Voltage on Input Pins with Respect to Ground	
During Programming................................-2.0V to +14.0V ${ }^{(1)}$	
Programming Voltage with	
Respect to Ground	2.0 V to $+14.0 \mathrm{~V}^{(1)}$

*NOTICE: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability
Note: 1. Minimum voltage is -0.6 V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is $\mathrm{V}_{\mathrm{CC}}+0.75 \mathrm{~V} \mathrm{DC}$, which may overshoot to 7.0 V for pulses of less than 20 ns .

4. DC and AC Operating Conditions

	Commercial	Industrial
Operating Temperature (Ambient)	$0^{\circ} \mathrm{C}-70^{\circ} \mathrm{C}$	$-40^{\circ} \mathrm{C}-85^{\circ} \mathrm{C}$
V_{cc} Power Supply	$5 \mathrm{~V} \pm 5 \%$	$5 \mathrm{~V} \pm 10 \%$

4.1 DC Characteristics

Symbol	Parameter	Condition			Min	Typ	Max	Units
$\mathrm{I}_{\text {IL }}$	Input or I/O Low Leakage Current	$\begin{aligned} & 0 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{IL}} \text { (Max) } \\ & 3.5 \leq \mathrm{V}_{\text {IN }} \leq \mathrm{V}_{\mathrm{CC}} \end{aligned}$					-10	$\mu \mathrm{A}$
I_{IH}	Input or I/O High Leakage Current						10	$\mu \mathrm{A}$
I_{CC}	Clocked Power Supply Current	$\begin{aligned} & V_{\mathrm{CC}}=\text { Max } \\ & \text { Outputs Open, } \\ & \mathrm{f}=15 \mathrm{MHz} \end{aligned}$	CZ-12, 15	Com		90	150	mA
			CZ-15	Ind		90	180	mA
			CQZ-20	Com		40	60	mA
			CQZ-20	Ind		40	80	mA
I_{SB}	Power Supply Current, Standby	$\begin{aligned} & V_{C C}=\operatorname{Max} \\ & V_{I N}=M A X \end{aligned}$ Outputs Open	CZ-12, 15	Com		5	25	$\mu \mathrm{A}$
			CZ-15	Ind		5	50	$\mu \mathrm{A}$
			CQZ-20	Com		5	25	$\mu \mathrm{A}$
			CQZ-20	Ind		5	50	$\mu \mathrm{A}$
$\mathrm{IOS}^{(1)}$	Output Short Circuit Current	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$					-130	mA
$\mathrm{V}_{\text {IL }}$	Input Low Voltage				-0.5		0.8	V
V_{IH}	Input High Voltage				2.0		$\mathrm{V}_{\mathrm{CC}}+0.75$	V
V_{OL}	Output Low Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CC}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OL}}=16 \mathrm{~mA} \end{aligned}$					0.5	V
V_{OH}	Output High Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\mathrm{IL}} \\ & \mathrm{~V}_{\mathrm{CCIO}}=\mathrm{Min}, \\ & \mathrm{I}_{\mathrm{OH}}=-4.0 \mathrm{~mA} \end{aligned}$			2.4			V

Note: 1. Not more than one output at a time should be shorted. Duration of short circuit test should not exceed 30 sec.

4.2 AC Waveforms

4.3 AC Characteristics ${ }^{(1)}$

Symbol	Parameter	-12		-15		-20		Units
		Min	Max	Min	Max	Min	Max	
t_{PD}	Input or Feedback to Non-registered Output	3	12	3	15	3	20	ns
t_{CF}	Clock to Feedback		6		4.5		8	ns
t_{CO}	Clock to Output	2	8	2	8	2	12	ns
t_{s}	Input or Feedback Setup Time	10		10		14		ns
$t_{\text {H }}$	Input Hold Time	0		0		0		ns
$t_{\text {w }}$	Clock Width	6		6		10		ns
$\mathrm{f}_{\text {MAX }}$	$\begin{aligned} & \text { External Feedback } 1 /\left(\mathrm{t}_{\mathrm{s}}+\mathrm{t}_{\mathrm{CO}}\right) \\ & \text { Internal Feedback } 1 /\left(\mathrm{t}_{\mathrm{S}}+\mathrm{t}_{\mathrm{CF}}\right) \\ & \text { No Feedback } 1 /\left(\mathrm{t}_{\mathrm{p}}\right) \end{aligned}$		$\begin{gathered} 55.5 \\ 62 \\ 83.3 \end{gathered}$		$\begin{gathered} 55.5 \\ 69 \\ 83.3 \\ \hline \end{gathered}$	$\begin{aligned} & 38.5 \\ & 45.5 \\ & 50.0 \\ & \hline \end{aligned}$		MHz MHz MHz
$t_{\text {EA }}$	Input to Output Enable - Product Term	3	12	3	15	3	20	ns
t_{ER}	Input to Output Disable - Product Term	2	15	3	15	3	20	ns
$\mathrm{t}_{\text {PZX }}$	OE Pin to Output Enable	2	12	2	15	2	20	ns
$\mathrm{t}_{\text {PXZ }}$	OE Pin to Output Disable	2	15	2	15	2	20	ns
t_{AP}	Input or I/O to Asynchronous Reset of Register	3	10	3	15	3	22	ns
$\mathrm{t}_{\text {SP }}$	Setup Time, Synchronous Preset	10		10		14		ns
t_{AW}	Asynchronous Reset Width	7		8		20		ns
$\mathrm{t}_{\text {AR }}$	Asynchronous Reset Recovery Time	5		6		20		ns
$\mathrm{t}_{\text {SPR }}$	Synchronous Preset to Clock Recovery Time	10		10		14		ns

Note: 1. See ordering information for valid part numbers.

4.4 Input Test Waveforms

4.4.1 Input Test Waveforms and Measurement Levels

4.4.2 Output Test Loads

Note: Similar competitors devices are specified with slightly different loads. These load differences may affect output signals' delay and slew rate. Atmel devices are tested with sufficient margins to meet compatible device specification conditions.

4.5 Pin Capacitance

Table 4-1. \quad Pin Capacitance ($\mathrm{f}=1 \mathrm{MHz}, \mathrm{T}=25 \mathrm{C}^{(1)}$)

	Typ	Max	Units	Conditions
C_{IN}	8	10	pF	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$
$\mathrm{C}_{\text {I/O }}$	8	10	pF	$\mathrm{V}_{\mathrm{OUT}}=0 \mathrm{~V} ; \mathrm{f}=1.0 \mathrm{MHz}$

Note: 1. Typical values for nominal supply voltage. This parameter is only sampled and is not 100% tested.

4.6 Power-up Reset

The registers in the ATF22V10CZ/CQZ are designed to reset during power-up. At a point delayed slightly from V_{CC} crossing $\mathrm{V}_{\mathrm{RST}}$, all registers will be reset to the low state. The output state will depend on the polarity of the buffer.

This feature is critical for state machine initialization. However, due to the asynchronous nature of reset and the uncertainty of how V_{CC} actually rises in the system, the following conditions are required:

1. The V_{CC} rise must be monotonic and start below 0.7 V .
2. The clock must remain stable during $T_{P R}$.
3. After $T_{P R}$ occurs, all input and feedback setup times must be met before driving the clock pin high.

4.7 Preload of Register Outputs

The ATF22V10CZ/CQZ's registers are provided with circuitry to allow loading of each register with either a high or a low. This feature will simplify testing since any state can be forced into the registers to control test sequencing. A JEDEC file with preload is generated when a source file
with vectors is compiled. Once downloaded, the JEDEC file preload sequence will be done automatically by most of the approved programmers after the programming.

5. Electronic Signature Word

There are 64 bits of programmable memory that are always available to the user, even if the device is secured. These bits can be used for user-specific data.

6. Security Fuse Usage

A single fuse is provided to prevent unauthorized copying of the ATF22V10CZ/CQZ fuse patterns. Once programmed, fuse verify and preload are inhibited. However, the 64-bit User Signature remains accessible. The security fuse should be programmed last, as its effect is immediate.

7. Programming/Erasing

Programming/erasing is performed using standard PLD programmers. See CMOS PLD Programming Hardware \& Software Support for information on software/programming.

Figure 7-1. Programming/Erasing Timing

Table 7-1. Programming/Erasing

Parameter	Description	Typ	Max	Units
T_{PR}	Power-up Reset Time	600	1000	ns
$\mathrm{~V}_{\mathrm{RST}}$	Power-up Reset Voltage	3.8	4.5	V

8. Input and I/O Pull-ups

All ATF22V10CZ/CQZ family members have internal input and I/O pin-keeper circuits. Therefore, whenever inputs or I/Os are not being driven externally, they will maintain their last driven state. This ensures that all logic array inputs and device outputs are at known states. These are relatively weak active circuits that can be easily overridden by TTL-compatible drivers (see input and I/O diagrams below).

Figure 8-1. Input Diagram

Figure 8-2. I/O Diagram

9. Compiler Mode Selection

Table 9-1. Compiler Mode Selection

	PAL Mode (5828 Fuses)	GAL Mode (5892 Fuses)
Synario	ATF22V10C (DIP)	ATF22V10C DIP (UES)
ATF22V10C (PLCC)	ATF22V10C PLCC (UES)	

10. Functional Logic Diagram Description

The Functional Logic Diagram describes the ATF22V10CZ/CQZ architecture.
The ATF22V10CZ/CQZ has 12 inputs and 10 I/O macrocells. Each macrocell can be configured into one of four output configurations: active high/low, registered/combinatorial output. The universal architecture of the ATF22V10CZ/CQZ can be programmed to emulate most 24-pin PAL devices.

Unused product terms are automatically disabled by the compiler to decrease power consumption. A security fuse, when programmed, protects the contents of the ATF22V10CZ/CQZ. Eight bytes (64 fuses) of User Signature are accessible to the user for purposes such as storing project name, part number, revision or date. The User Signature is accessible regardless of the state of the security fuse.

Figure 10-1. Functional Logic Diagram

NORMALIZED ICC VS. TEMP

ATF22V10CZ/CQZ OUTPUT SOURCE CURRENT
VS.

ATF22V10CZICQZ OUTPUT SINK CURRENT VS. SUPPLY VOLTAGE ($\mathrm{V}_{\mathrm{OL}}=0.5 \mathrm{~V}$)

ATF22V10CZ/CQZ INPUT CLAMP CURRENT VS INPUT VOLTAGE ($\left.\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=35^{\circ} \mathrm{C}\right)$

ATF22V10CZ/CQZ INPUT CURRENT VS INPUT VOLTAGE ($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

11. Ordering Information

11.1 Standard Package Options

$\begin{gathered} \hline \mathrm{t}_{\mathrm{PD}} \\ \mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ \mathrm{~ns}) \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{co}} \\ (\mathrm{~ns}) \end{gathered}$	Ordering Code	Package	Operation Range
12	10	8	ATF22V10CZ-12JC ATF22V10CZ-12PC ATF22V10CZ-12SC ATF22V10CZ-12XC	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
15	4.5	8	ATF22V10CZ-15JC ATF22V10CZ-15PC ATF22V10CZ-15SC ATF22V10CZ-15XC	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
			ATF22V10CZ-15JI ATF22V10CZ-15PI ATF22V10CZ-15SI ATF22V10CZ-15XI	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right) \end{gathered}$
20	14	12	ATF22V10CQZ-20JC ATF22V10CQZ-20PC ATF22V10CQZ-20SC ATF22V10CQZ-20XC	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	Commercial $\left(0^{\circ} \mathrm{C}\right.$ to $70^{\circ} \mathrm{C}$)
			ATF22V10CQZ-20JI ATF22V10CQZ-20PI ATF22V10CQZ-20SI ATF22V10CQZ-20XI	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	$\begin{gathered} \text { Industrial } \\ \left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right) \end{gathered}$

11.2 ATF22V10CQZ Green Package Options (Pb/Halide-free/RoHS Compliant)

$\begin{gathered} \mathrm{t}_{\mathrm{PD}} \\ \text { (ns) } \end{gathered}$	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ \mathrm{(ns}) \end{gathered}$	t_{co} (ns)	Ordering Code	Package	Operation Range
20	14	12	ATF22V10CQZ-20JU ATF22V10CQZ-20PU ATF22V10CQZ-20SU ATF22V10CQZ-20XU	$\begin{gathered} 28 \mathrm{~J} \\ 24 \mathrm{P} 3 \\ 24 \mathrm{~S} \\ 24 \mathrm{X} \end{gathered}$	Industrial $\left(-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C}\right)$

11.3 Using "C" Product for Industrial

To use commercial product for Industrial temperature ranges, down-grade one speed grade from the "l" to the "C" device (7 ns "C" = 10 ns " l ") and de-rate power by 30%.

Package Type	
$\mathbf{2 8 J}$	28-lead, Plastic J-leaded Chip Carrier (PLCC)
$\mathbf{2 4 P 3}$	24-pin, 0.300", Plastic Dual Inline Package (PDIP)
$\mathbf{2 4 S}$	24-lead, 0.300" Wide, Plastic Gull-Wing Small Outline (SOIC)
$\mathbf{2 4 X}$	24-lead, 4.4 mm Wide, Plastic Thin Shrink Small Outline (TSSOP)

12. Packaging Information

12.128 J - PLCC

12.2 24P3 - PDIP

Notes: 1. This package conforms to JEDEC reference MS-001, Variation AF.
2. Dimensions D and E1 do not include mold Flash or Protrusion. Mold Flash or Protrusion shall not exceed 0.25 mm (0.010 ").

COMMON DIMENSIONS
(Unit of Measure $=\mathrm{mm}$)

SYMBOL	MIN	NOM	MAX	NOTE
A	-	-	5.334	
A1	0.381	-	-	
D	31.623	-	32.131	Note 2
E	7.620	-	8.255	
E1	6.096	-	7.112	Note 2
B	0.356	-	0.559	
B1	1.270	-	1.651	
L	2.921	-	3.810	
C	0.203	-	0.356	
eB	-	-	10.922	
eC	0.000	-	1.524	
e	2.540 TYP			

	TITLE	DRAWING NO.	REV.
2325 Orchard Parkway San Jose, CA 95131	24P3, 24-lead (0.300"/7.62 mm Wide) Plastic Dual Inline Package (PDIP)	24P3	D

12.3 24S - SOIC

12.4 24X - TSSOP

Dimensions in Millimeter and (Inches)*
JEDEC STANDARD MO-153 AD
Controlling dimension: millimeters

13. Revision History

Version No./Release Date	History
Revision I - November 2005	1. Added Green Package options

Headquarters

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

International

Atmel Asia	Atmel Europe
Room 1219	Le Krebs
Chinachem Golden Plaza	8, Rue Jean-Pierre Timbaud
77 Mody Road Tsimshatsui	BP 309
East Kowloon	78054 Saint-Quentin-en-
Hong Kong	Yvelines Cedex
Tel: (852) 2721-9778	France
Fax: (852) 2722-1369	Tel: (33) 1-30-60-70-00
	Fax: (33) 1-30-60-71-11

Atmel Japan

9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

Product Contact

Web Site	Technical Support pld@atmel.com	Sales Contact
www.atmel.com	www.atmel.com/contacts	

Literature Requests

www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL'S TERMS AND CONDITIONS OF SALE LOCATED ON ATMEL'S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel's products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.
© 2007 Atmel Corporation. All rights reserved. Atmel ${ }^{\circledR}$, logo and combinations thereof, Everywhere You Are ${ }^{\circledR}$ and others, are registered trademarks or trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks of others.

