$\cdot M \cdot C \cdot C \cdot$

Micro Commercial Components

Micro Commercial Components 20736 Marilla Street Chatsworth CA 91311
Phone: (818) 701-4933
Fax: (818) 701-4939

Features

- Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors
- The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of almost completely eliminating parasitic effects.
- Only the on/off conditions need to be set for operation, making device design easy

Absolute maximum ratings @ $25^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply voltage	---	50	---	V
V_{IN}	Input voltage	-6	---	40	V
I_{O}	Output current	---	70	---	mA
$\mathrm{I}_{\mathrm{C}(\mathrm{MAX})}$	100				
P_{d}	Power dissipation	---	150	---	mW
T_{j}	Junction temperature	---	150	---	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {stg }}$	Storage temperature	-55	---	150	${ }^{\circ} \mathrm{C}$

Electrical Characteristics @ $25^{\circ} \mathrm{C}$

Symbol	Parameter	Min	Typ	Max	Unit
$\mathrm{V}_{\text {(off) }}$	$\begin{array}{r} \text { Input voltage }\left(\mathrm{V}_{\mathrm{Cc}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{o}}=100 \mu \mathrm{~A}\right) \\ \left(\mathrm{V}_{\mathrm{O}}=0.3 \mathrm{~V}, \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA}\right) \\ \hline \end{array}$	---	---	0.3	V
$\mathrm{V}_{\text {I(on) }}$		1.4	---	---	V
$\mathrm{V}_{\text {O(on) }}$	Output voltage ($\left.\mathrm{I}_{0} / \mathrm{I}_{1}=5 \mathrm{~mA} / 0.25 \mathrm{~mA}\right)$	---	0.1	0.3	V
1	Input current ($\mathrm{V}_{1}=5 \mathrm{~V}$)	---	---	0.88	mA
$\mathrm{l}_{\text {(off) }}$	Output current ($\mathrm{V}_{\mathrm{CC}}=50 \mathrm{~V}, \mathrm{~V}_{1}=0$)	---	---	0.5	$\mu \mathrm{A}$
G_{1}	DC current gain ($\mathrm{V}_{\mathrm{O}}=5 \mathrm{~V}, \mathrm{l}_{\mathrm{O}}=5 \mathrm{~mA}$)	68	---	---	
R_{1}	Input resistance	7.0	10	13	$\mathrm{K} \Omega$
$\mathrm{R}_{2} / \mathrm{R}_{1}$	Resistance ratio	3.7	4.7	5.7	
f_{T}	Transition frequency $\left(\mathrm{V}_{\mathrm{CE}}=10 \mathrm{~V}, \mathrm{I}_{\mathrm{E}}=5 \mathrm{~mA}, \mathrm{f}=100 \mathrm{MHz}\right)$	---	250	---	MHz

- Equivalent circuit

1. IN
2. GND
3. OUT

DIMENSIONS					
DIM	INCHES		MM		
	MIN	MAX	MIN	MAX	NOTE
	.059	.067	1.50	1.70	
B	.030	.033	0.75	0.85	
C	.057	.069	1.45		1.75
D	.020	Nominal	0.50 Nominal		
E	.035	.043	0.90	1.10	
G	.000	.004	.000	.100	
H	.028	.031	.70	0.80	
J	.004	.008	.100	.200	
K	.010	.014	.25	.35	

