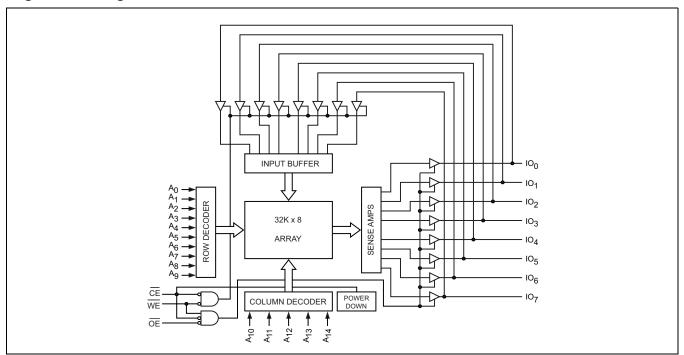


256K (32K x 8) Static RAM

Features

- Pin- and function-compatible with CY7C199C
- · High speed
 - $t_{AA} = 10 \text{ ns}$
- · Low active power
 - $I_{CC} = 80 \text{ mA} @ 10 \text{ ns}$
- · Low CMOS standby power
 - $I_{SB2} = 3 \text{ mA}$
- · 2.0V Data Retention
- · Automatic power-down when deselected
- · CMOS for optimum speed/power
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE and OE features
- Available in Pb-free 28-pin 300-Mil wide Molded SOJ and 28-pin TSOP I packages

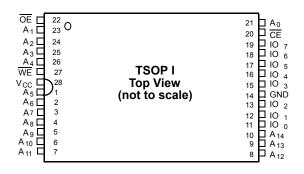

Functional Description [1]

The CY7C199D is a high-performance CMOS static RAM organized as 32,768 words by 8 bits. Easy memory expansion is provided by an active LOW Chip Enable ($\overline{\text{CE}}$), an active LOW Output Enable ($\overline{\text{OE}}$) and tri-state drivers. This device has an automatic power-down feature, reducing the power consumption when deselected. The input and output pins (IO₀ through IO₇) are placed in a high-impedance state when:

- Deselected (CE HIGH)
- Outputs are disabled (OE HIGH)
- When the write operation is active(\overline{CE} LOW and \overline{WE} LOW) Write to the device by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. Data on the eight IO pins (IO₀ through IO₇) is then written into the location specified on the address pins (A₀ through A₁₄).

Read from the device by taking Chip Enable (\overline{CE}) and Output Enable (\overline{OE}) LOW while forcing Write Enable (\overline{WE}) HIGH. Under these conditions, the contents of the memory location specified by the address pins appears on the IO pins.

Logic Block Diagram


Note

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Pin Configurations

Selection Guide

	CY7C199D-10	Unit
Maximum Access Time	10	ns
Maximum Operating Current	80	mA
Maximum CMOS Standby Current	3	mA

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested. Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied-55°C to +125°C Supply Voltage on V_{CC} to Relative GND $^{[2]}$... -0.5V to +6.0V DC Voltage Applied to Outputs in High-Z State $^{[2]}$ -0.5V to V_{CC} + 0.5V

DC Input Voltage [2]	0.5V to V _{CC} + 0.5V
Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	> 2001V
Latch-up Current	> 200 mA

Operating Range

Range	Ambient Temperature	V _{CC}	Speed
Industrial	–40°C to +85°C	$5\text{V} \pm 0.5\text{V}$	10 ns

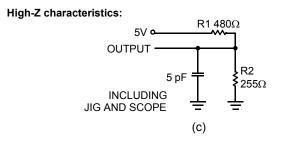
Electrical Characteristics (Over the Operating Range)

				7C19	9D-10	
Parameter	Description	Test Conditions	5	Min	Max	Unit
V _{OH}	Output HIGH Voltage	I _{OH} =–4.0 mA		2.4		V
V _{OL}	Output LOW Voltage	I _{OL} =8.0 mA			0.4	V
V _{IH}	Input HIGH Voltage [2]			2.0	V _{CC} + 0.5	V
V _{IL}	Input LOW Voltage [2]			-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \leq V_1 \leq V_{CC}$		– 1	+1	μΑ
I _{OZ}	Output Leakage Current	GND \leq V _O \leq V _{CC} , Output	Disabled	– 1	+1	μΑ
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max,	100 MHz		80	mA
		$I_{OUT} = 0 \text{ mA},$ $f = f_{max} = 1/t_{RC}$	83 MHz		72	mA
		axe	66 MHz		58	mA
			40 MHz		37	mA
I _{SB1}	Automatic CE Power-down Current— TTL Inputs	$\begin{aligned} &\text{Max V}_{\text{CC}}, \ \overline{\text{CE}} \geq \text{V}_{\text{IH}}, \\ &\text{V}_{\text{IN}} \geq \text{V}_{\text{IH}} \text{ or V}_{\text{IN}} \leq \text{V}_{\text{IL}}, \ \text{f = f} \end{aligned}$	max		10	mA
I _{SB2}	Automatic CE Power-down Current— CMOS Inputs	$\begin{array}{c} \text{Max V}_{\text{CC}}, \overline{\text{CE}} \geq \text{V}_{\text{CC}} - 0.3 \\ \text{V}_{\text{IN}} \geq \text{V}_{\text{CC}} - 0.3 \text{V or V}_{\text{IN}} \leq \end{array}$	V 0.3V, f = 0		3	mA

Note

^{2.} $V_{IL}(min) = -2.0V$ and $V_{IH}(max) = V_{CC} + 1V$ for pulse durations of less than 5 ns.

Capacitance [3]


Parameter	Description	Test Conditions	Max	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz, $V_{CC} = 5.0V$	8	pF
C _{OUT}	Output Capacitance		8	pF

Thermal Resistance [3]

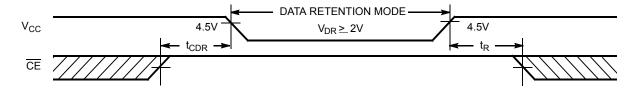
Parameter	Description	Test Conditions	SOJ	TSOP I	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	59.16	54.65	°C/W
Θ_{JC}	Thermal Resistance (Junction to Case)		40.84	21.49	°C/W

AC Test Loads and Waveforms [4]

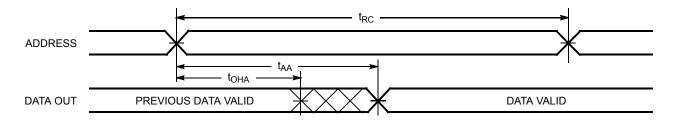
- 3. Tested initially and after any design or process changes that may affect these parameters.
- 4. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

Switching Characteristics (Over the Operating Range) [5]

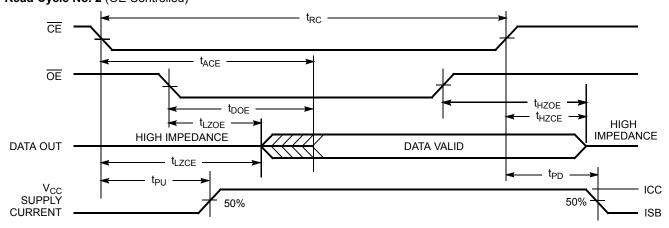
		7C19	9D-10	
Parameter	Description	Min	Max	Unit
Read Cycle		•		•
t _{power} ^[6]	V _{CC} (typical) to the first access	100		μS
t _{RC}	Read Cycle Time	10		ns
t _{AA}	Address to Data Valid		10	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		10	ns
t _{DOE}	OE LOW to Data Valid		5	ns
t _{LZOE} [7]	OE LOW to Low-Z	0		ns
t _{HZOE} [7, 8]	OE HIGH to High-Z		5	ns
t _{LZCE} [7]	CE LOW to Low-Z	3		ns
t _{HZCE} [7, 8]	CE HIGH to High-Z		5	ns
t _{PU} ^[9]	CE LOW to Power-up	0		ns
t _{PD} ^[9]	CE HIGH to Power-down		10	ns
Write Cycle [10, 11]	•	<u> </u>		•
t _{WC}	Write Cycle Time	10		ns
t _{SCE}	CE LOW to Write End	7		ns
t _{AW}	Address Set-up to Write End	7		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-up to Write Start	0		ns
t _{PWE}	WE Pulse Width	7		ns
t _{SD}	Data Set-up to Write End	5		ns
t _{HD}	Data Hold from Write End	0		ns
t _{HZWE} ^[7]	WE LOW to High-Z		6	ns
t _{LZWE} [7, 8]	WE HIGH to Low-Z	3		ns


- 5. Test conditions assume signal transition time of 3 ns or less for all speeds, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 30-pF load capacitance.
- 6. tpOWER gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
- 7. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.
- 8. t_{HZOE} , t_{HZOE} , and t_{HZWE} are specified with C_L = 5 pF as in part (b) of "AC Test Loads and Waveforms [4]" on page 4. Transition is measured ± 200 mV from steady-state voltage.
- $9. \ \,$ This parameter is guaranteed by design and is not tested.
- 10. The internal write time of the memory is defined by the overlap of $\overline{\text{CE}}$ LOW and $\overline{\text{WE}}$ LOW. Both signals must be LOW to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.
- 11. The minimum write cycle time for Write Cycle No. 3 ($\overline{\text{WE}}$ controlled, $\overline{\text{OE}}$ LOW) is the sum of t_{HZWE} and t_{SD} .

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions	Min	Max	Unit
V_{DR}	V _{CC} for Data Retention	$V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$	2.0		V
I _{CCDR}	Data Retention Current	$V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$		3	mA
t _{CDR} [3]	Chip Deselect to Data Retention Time		0		ns
t _R ^[12]	Operation Recovery Time		t _{RC}		ns

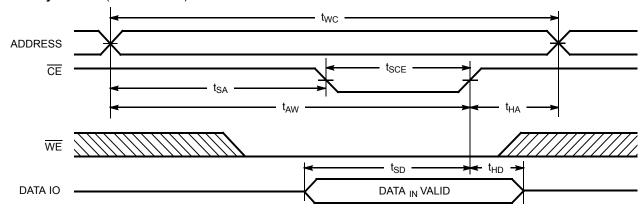
Data Retention Waveform



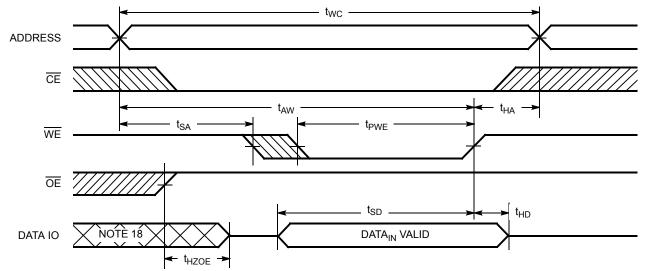
Switching Waveforms

Read Cycle No. 1 (Address Transition Controlled) [13, 14]

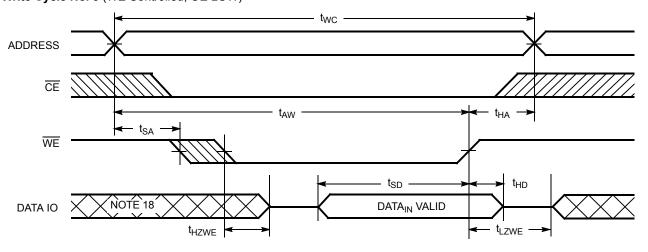
Read Cycle No. 2 (OE Controlled) [14, 15]



- 12. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 50 \, \mu s$ or stable at $V_{CC(min)} \ge 50 \, \mu s$.
- 13. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$.
- 14. $\overline{\text{WE}}$ is HIGH for read cycle.
- 15. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



Switching Waveforms (continued)


Write Cycle No. 1 (CE Controlled) [10, 16, 17]

Write Cycle No. 2 ($\overline{\text{WE}}$ Controlled) [10, 16, 17]

Write Cycle No. 3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW) [11, 17]

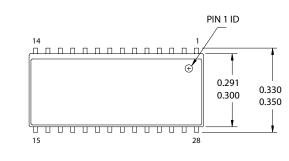
- 16. Data IO is high impedance if $\overline{OE} = V_{IH}$.
- 17. If $\overline{\text{CE}}$ goes HIGH simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.
- 18. During this period the IOs are in the output state and input signals should not be applied.

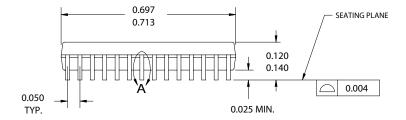
Truth Table

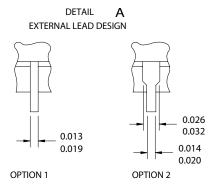
CE	WE	OE	Inputs/Outputs	Mode	Power
Н	Х	Х	High Z	Deselect/Power-down	Standby (I _{SB})
L	Н	L	Data Out	Read	Active (I _{CC})
L	L	Х	Data In	Write	Active (I _{CC})
L	Н	Н	High Z	Deselect, Output disabled	Active (I _{CC})

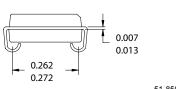
Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C199D-10VXI	51-85031	28-pin (300-Mil) Molded SOJ (Pb-Free)	Industrial
	CY7C199D-10ZXI	51-85071	28-pin TSOP Type I (Pb-free)	

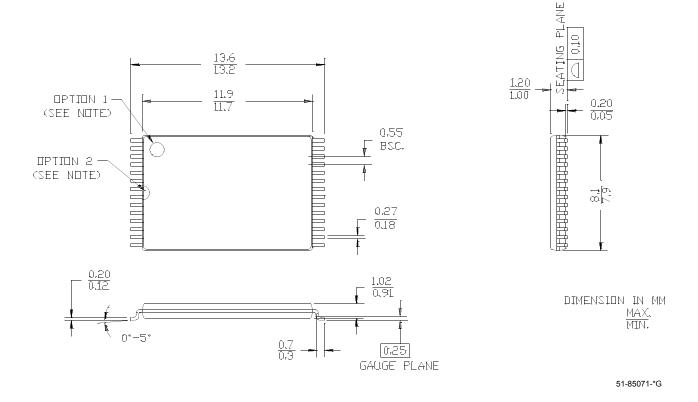

Please contact your local Cypress sales representative for availability of these parts.


Package Diagrams


Figure 1. 28-pin (300-Mil) Molded SOJ, 51-85031


NOTE:

- 1. JEDEC STD REF MO088
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES MIN. MAX.


51-85031-*C

Package Diagrams (continued)

Figure 2. 28-pin Thin Small Outline Package Type 1 (8x13.4 mm), 51-85071

NOTE: ORIENTATION I.D MAY BE LOCATED EITHER
AS SHOWN IN OPTION 1 OR OPTION 2

All products and company names mentioned in this document are the trademarks of their respective holders.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Information data sheet for C9 IPP
*A	233728	See ECN	RKF	DC parameters modified as per EROS (Spec # 01-02165) Pb-free Offering in Ordering Information
*B	262950	See ECN	RKF	Removed 28-LCC Pinout and Package Diagrams Added Data Retention Characteristics table Added T _{power} Spec in Switching Characteristics table Shaded Ordering Information
*C	307594	See ECN	RKF	Reduced Speed bins to -10, -12 and -15 ns
*D	820660	See ECN	VKN	Converted from Preliminary to Final Removed 12 ns and 15 ns speed bin Removed Commercial Operating range Removed "L" part Removed 28-pin PDIP and 28-pin SOIC package Changed Overshoot spec from V _{CC} +2V to V _{CC} +1V in footnote #2 Changed I _{CC} spec from 60 mA to 80 mA for 100 MHz speed bin Added I _{CC} specs for 83 MHz, 66 MHz and 40 MHz speed bins Updated Thermal Resistance table Updated Ordering Information Table