

Features

- Pin- and function-compatible with CY7C1020B
- · High speed
- t_{AA} = 10 ns
- · Low active power
- I_{CC} = 80 mA @ 10ns
- · Low CMOS Standby Power

— I_{SB2} = 3 mA

2.0V Data Retention

Logic Block Diagram

- Automatic power-down when deselected
- · CMOS for optimum speed/power
- · Independent control of upper and lower bits
- Available in Pb-free 44-pin 400-Mil wide Molded SOJ and 44-pin TSOP II packages

512K (32K x 16) Static RAM

Functional Description [1]

The CY7C1020D is a high-performance CMOS static RAM organized as 32,768 words by 16 bits. This device has an automatic power-down feature that significantly reduces power consumption when deselected. The input and output pins (IO₀ through IO₁₅) are placed in a high-impedance state when:

- Deselected (CE HIGH)
- Outputs are disabled (OE HIGH)
- BHE and BLE are disabled (BHE, BLE HIGH)
- When the write operation is active (\overline{CE} LOW, and \overline{WE} LOW)

Write to the device by taking Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (\overline{BLE}) is LOW, then data from IO pins (IO_0 through IO_7), is written into the location specified on the address pins (A_0 through A_{14}). If Byte High Enable (\overline{BHE}) is LOW, then data from IO pins (IO_8 through IO_{15}) is written into the location specified on the address pins (A_0 through A_{14}).

Reading from the device by taking Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable ($\overline{\text{WE}}$) HIGH. If Byte Low Enable ($\overline{\text{BLE}}$) is LOW, then data from the memory location specified by the address pins appears on IO₀ to IO₇. If Byte High Enable ($\overline{\text{BHE}}$) is LOW, then data from memory appears on IO₈ to IO₁₅. See the "Truth Table" on page 8 for a complete description of read and write modes.

DATA IN DRIVERS AMPS ROW DECODER 32K x 16 SENSE 100-107 RAM Array 108-1015 COLUMN DECODER BHE WE A10 A11 A12 CE OE BLE

Note

1. For guidelines on SRAM system design, please refer to the 'System Design Guidelines' Cypress application note, available on the internet at www.cypress.com.

Pin Configuration ^[2]

	То	p View		
NC A ₃ A ₁ C C C C C C C C C C C C C C C C C C C	1 2 3 4 5 6 7 8 9 10 11 22 3 4 5 6 7 8 9 10 11 12 3 14 15 16 17 18 9 20 21 22	44 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25 24 23	A5 A6 A7 OE BEE 1914 0110 10 10 10 10 10 10 10 10 10 10 10 10	5432;

SOJ/TSOP II

Selection Guide

	–10 (Industrial)	Unit
Maximum Access Time	10	ns
Maximum Operating Current	80	mA
Maximum CMOS Standby Current	3	mA

Maximum Ratings

Exceeding the maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage Temperature65°C to +	·150°C
Ambient Temperature with Power Applied55°C to +	∙125°C
Supply Voltage on V_{CC} to Relative GND $^{[3]}\ldots$ –0.5V to	+6.0V
DC Voltage Applied to Outputs in High Z State $^{[3]}$ 0.5V to V_{CC}	+ 0.5V

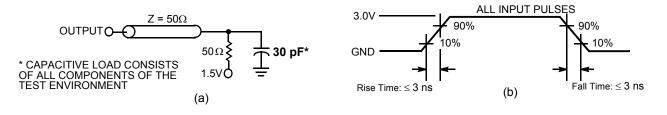
DC Input Voltage ^[3]	. –0.5V to V _{CC} + 0.5V
Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	>200mA

Operating Range

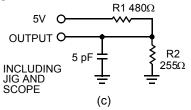
Range Ambient Temperature		V _{cc}	Speed
Industrial	–40°C to +85°C	$5V\pm0.5V$	10 ns

Electrical Characteristics (Over the Operating Range)

Baramatar	Description	Test Conditions		-10 (I	11	
Parameter	Description	Test Conditions		Min	Мах	Unit
V _{OH}	Output HIGH Voltage	I _{OH} = -4.0 mA	2.4		V	
V _{OL}	Output LOW Voltage	I _{OL} = 8.0 mA			0.4	V
V _{IH}	Input HIGH Voltage			2.2	V _{CC} + 0.5V	V
V _{IL}	Input LOW Voltage [3]			-0.5	0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	-1	+1	μA	
I _{OZ}	Output Leakage Current	$GND \leq V_I \leq V_{CC}$, Output Disab	led	-1	+1	μA
I _{CC}	V _{CC} Operating Supply Current	V _{CC} = Max,	100 MHz		80	mA
		$I_{OUT} = 0 \text{ mA},$ f = f _{max} = 1/t _{BC}	83 MHz		72	mA
			66 MHz		58	mA
			40 MHz		37	mA
I _{SB1}	Automatic CE Power-Down Current—TTL Inputs	$\begin{array}{ c c c c c } \hline Max \ V_{CC}, \ \hline \overline{CE} \geq V_{IH} \\ V_{IN} \geq V_{IH} \ or \ V_{IN} \leq V_{IL}, \ f = f_{max} \end{array}$			10	mA
I _{SB2}	Automatic CE Power-Down Current—CMOS Inputs	$\begin{array}{c} \mbox{Max V}_{CC}, \ensuremath{\overline{CE}} \geq V_{CC} - 0.3V, \\ \ensuremath{V_{\text{IN}}} \geq V_{CC} - 0.3V, \ensuremath{\text{or }V_{\text{IN}}} \leq 0.3V \end{array}$	/, f = 0		3	mA


Capacitance ^[4]

Parameter	Description	Test Conditions	Мах	Unit
C _{IN}	Input Capacitance	T _A = 25°C, f = 1 MHz, V _{CC} = 5.0V	8	pF
C _{OUT}	Output Capacitance		8	pF


Thermal Resistance [4]

Parameter	Description	Test Conditions	SOJ	TSOP II	Unit
Θ_{JA}		Still Air, soldered on a 3 × 4.5 inch, four-layer printed circuit board	59.52	53.91	°C/W
Θ ^{JC}	Thermal Resistance (Junction to Case)		36.75	21.24	°C/W

AC Test Loads and Waveforms ^[5]

High-Z characteristics:

Notes

- 4. Tested initially and after any design or process changes that may affect these parameters.
- 5. AC characteristics (except High-Z) are tested using the load conditions shown in Figure (a). High-Z characteristics are tested for all speeds using the test load shown in Figure (c).

Switching Characteristics (Over the Operating Range) [6]

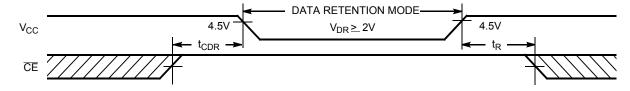
Doromotor	Description	–10 (In	dustrial)	l Init
Parameter	Description	Min	Мах	– Unit
Read Cycle	- !			
t _{power} ^[7]	V _{CC} (typical) to the first access	100		μs
t _{RC}	Read Cycle Time	10		ns
t _{AA}	Address to Data Valid		10	ns
t _{OHA}	Data Hold from Address Change	3		ns
t _{ACE}	CE LOW to Data Valid		10	ns
t _{DOE}	OE LOW to Data Valid		5	ns
t _{LZOE}	OE LOW to Low Z ^[9]	0		ns
t _{HZOE}	OE HIGH to High Z ^[8, 9]		5	ns
t _{LZCE}	CE LOW to Low Z ^[9]	3		ns
t _{HZCE}	CE HIGH to High Z ^[8, 9]		5	ns
t _{PU} ^[10]	CE LOW to Power-Up	0		ns
t _{PD} ^[10]	CE HIGH to Power-Down		10	ns
t _{DBE}	Byte Enable to Data Valid		5	ns
t _{LZBE}	Byte Enable to Low Z	0		ns
t _{HZBE}	Byte Disable to High Z		5	ns
Write Cycle [11, 12]	·			
t _{WC}	Write Cycle Time	10		ns
t _{SCE}	CE LOW to Write End	7		ns
t _{AW}	Address Set-Up to Write End	7		ns
t _{HA}	Address Hold from Write End	0		ns
t _{SA}	Address Set-Up to Write Start	0		ns
t _{PWE}	WE Pulse Width	7		ns
t _{SD}	Data Set-Up to Write End	6		ns
thd	Data Hold from Write End	0		ns
LZWE	WE HIGH to Low Z ^[9]	3		ns
t _{HZWE}	WE LOW to High Z ^[8, 9]		5	ns
t _{BW}	Byte Enable to End of Write	7		ns

Notes

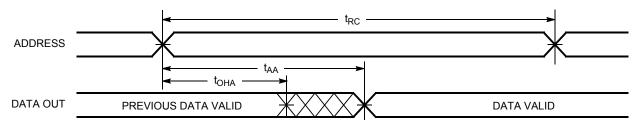
- 6. Test conditions assume signal transition time of 3 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified $I_{\mbox{OL}}/I_{\mbox{OH}}$ and 30-pF load capacitance.
- 7. t_{POWER} gives the minimum amount of time that the power supply should be at typical V_{CC} values until the first memory access can be performed.
- 8. t_{HZOE}, t_{HZBE}, t_{HZCE}, and t_{HZWE} are specified with a load capacitance of 5 pF as in part (c) of "AC Test Loads and Waveforms [5]" on page 4. Transition is measured when the outputs enter a high impedance state.

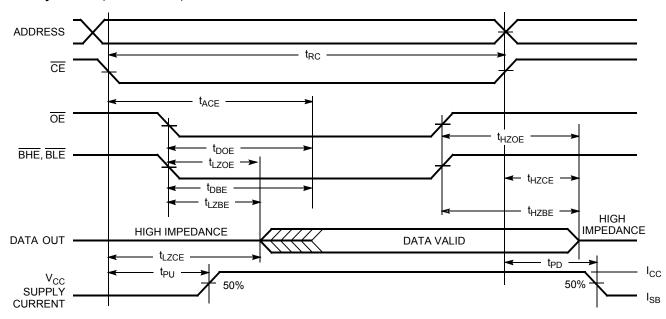
9. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE} , t_{HZOE} is less than t_{LZOE} , and t_{HZWE} is less than t_{LZWE} for any given device.

10. This parameter is guaranteed by design and is not tested.


11. The internal write time of the memory is defined by the overlap of CE LOW, WE LOW and BHE/BLE LOW. CE, WE and BHE/BLE must be LOW to initiate a write and the transition of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates the write.
 The minimum write cycle time for Write Cycle No. 3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Data Retention Characteristics (Over the Operating Range)


Parameter	Description	Conditions	Min	Max	Unit
V _{DR}	V _{CC} for Data Retention		2.0		V
I _{CCDR}	Data Retention Current	$V_{CC} = V_{DR} = 2.0V, \overline{CE} \ge V_{CC} - 0.3V,$ $V_{IN} \ge V_{CC} - 0.3V$ or $V_{IN} \le 0.3V$		3	mA
t _{CDR} ^[4]	Chip Deselect to Data Retention Time		0		ns
t _R ^[13]	Operation Recovery Time		t _{RC}		ns


Data Retention Waveform

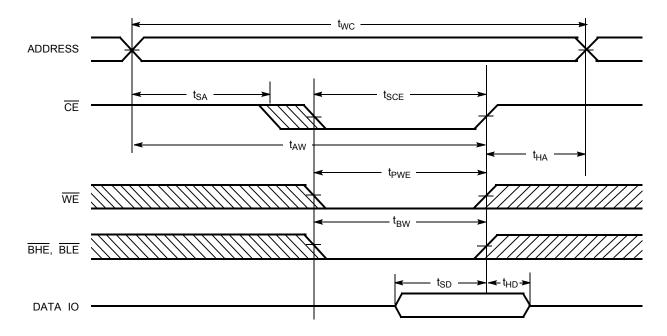
Switching Waveforms

Read Cycle No.1 (Address Transition Controlled) [14, 15]

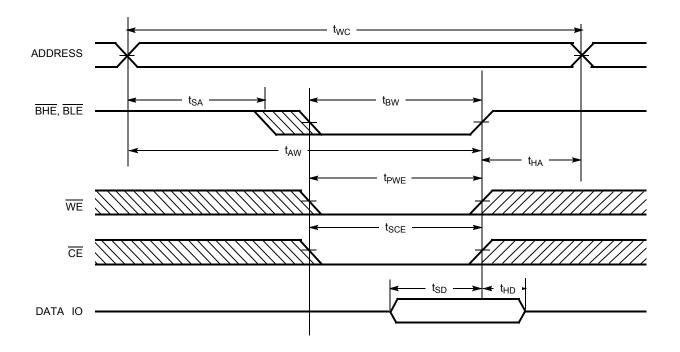
Read Cycle No.2 (OE Controlled) [15, 16]

Notes

13. Full device operation requires linear V_{CC} ramp from V_{DR} to V_{CC(min)} ≥ 50 µs or stable at V_{CC(min)} ≥ 50 µs.
 14. <u>Dev</u>ice is continuously selected. OE, CE, BHE and/or BLE = V_{IL}.


15. WE is HIGH for read cycle.

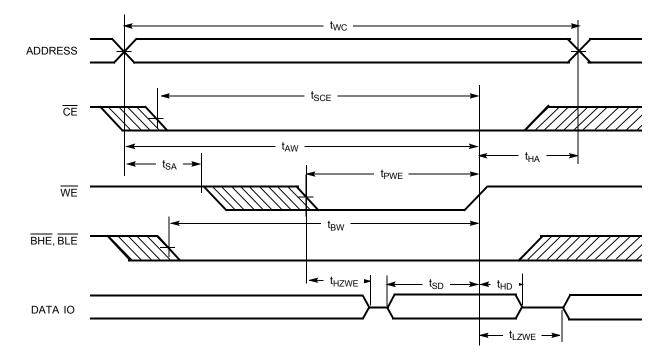
16. Address valid prior to or coincident with $\overline{\text{CE}}$ transition LOW.



Switching Waveforms(continued)

Write Cycle No. 1 (\overline{CE} Controlled) [17, 18]

Write Cycle No. 2 (BLE or BHE Controlled) [17, 18]


Notes

17. Data IO is high impedance if OE or BHE and/or BLE= V_{IH}.
 18. If CE goes HIGH simultaneously with WE going HIGH, the output remains in a high-impedance state.

Switching Waveforms(continued)

Write Cycle No. 3 (WE Controlled, OE LOW) ^[12, 18]

Truth Table

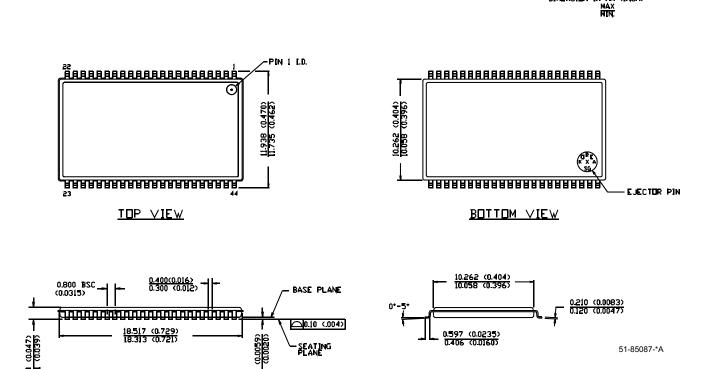
CE	OE	WE	BLE	BHE	10 ₀ –10 ₇	10 ₈ –10 ₁₅	Mode	Power
Н	Х	Х	Х	Х	High Z	High Z	Power-Down	Standby (I _{SB})
L	L	Н	L	L	Data Out	Data Out	Read – All bits	Active (I _{CC})
			L	Н	Data Out	High Z	Read – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data Out	Read – Upper bits only	Active (I _{CC})
L	Х	L	L	L	Data In	Data In	Write – All bits	Active (I _{CC})
			L	Н	Data In	High Z	Write – Lower bits only	Active (I _{CC})
			Н	L	High Z	Data In	Write – Upper bits only	Active (I _{CC})
L	Н	Н	Х	Х	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})
L	Х	Х	Н	Н	High Z	High Z	Selected, Outputs Disabled	Active (I _{CC})

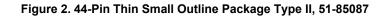
Ordering Information

Speed (ns)	Ordering Code	Package Diagram	Package Type	Operating Range
10	CY7C1020D-10VXI	51-85082	44-pin (400-Mil) Molded SOJ (Pb-free)	Industrial
	CY7C1020D-10ZSXI	51-85087	44-pin TSOP Type II (Pb-free)	

Please contact your local Cypress sales representative for availability of these parts.

Package Diagrams


Figure 1. 44-pin (400-Mil) Molded SOJ, 51-85082



DIMENSION IN MM (INCH)

Package Diagrams(continued)

All product and company names mentioned in this document may be the trademarks of their respective holders.

0150

194

© Cypress Semiconductor Corporation, 2006-2007. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Document History Page

REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change
**	201560	See ECN	SWI	Advance Data sheet for C9 IPP
*A	233695	See ECN	RKF	 DC parameters modified as per EROS (Spec # 01-0216) Pb-free Offering in the 'Ordering Information'
*В	263769	See ECN	RKF	1) Corrected pin #18 on SOJ/TSOPII Pinout (Page #1) from A_{15} to A_4 2) Changed IO ₁ - IO ₁₆ to IO ₀ - IO ₁₅ on the Pin-out diagram 3) Added T _{power} Spec in Switching Characteristics Table 4) Added Data Retention Characteristics Table and Waveforms 5) Shaded 'Ordering Information'
*C	307594	See ECN	RKF	Reduced Speed bins to -10, -12 and -15 ns
*D	560995	See ECN	VKN	Converted from Preliminary to Final Removed Commercial Operating range Removed 12 ns speed bin Added I_{CC} values for the frequencies 83MHz, 66MHz and 40MHz Updated Thermal Resistance table Updated Ordering Information Table Changed Overshoot spec from V_{CC} +2V to V_{CC} +1V in footnote #3
*E	802877	See ECN	VKN	Changed I _{CC} specs from 60 mA to 80 mA for 100MHz, 55 mA to 72 mA to 83MHz, 45 mA to 58 mA for 66MHz, 30 mA to 37 mA for 40MHz