RENESAS HD74LV4040A

12-stage Binary Counter

REJ03D0337–0200Z (Previous ADE-205-282 (Z)) Rev.2.00 Jul. 20, 2004

Description

The HD74LV4040A is a 12 stage counter. This device is incremented on the falling edge (negative transition) of the input clock, and all its output is reset to a low level by applying a logical high on its reset input. Low-voltage and high-speed operation is suitable for the battery-powered products (e.g., notebook computers), and the low-power consumption extends the battery life.

Features

- $V_{CC} = 2.0 \text{ V}$ to 5.5 V operation
- All inputs V_{IH} (Max.) = 5.5 V (@V_{CC} = 0 V to 5.5 V)
- All outputs V_0 (Max.) = 5.5 V (@V_{CC} = 0 V)
- Typical V_{OL} ground bounce < 0.8 V (@V_{CC} = 3.3 V, Ta = 25°C)
- Typical V_{OH} undershoot > 2.3 V (@V_{CC} = 3.3 V, Ta = 25°C)
- Output current $\pm 6 \text{ mA}$ (@V_{CC} = 3.0 V to 3.6 V), $\pm 12 \text{ mA}$ (@V_{CC} = 4.5 V to 5.5 V)
- Ordering Information

Part Name	Package Type	Package Code	Package Abbreviation	Taping Abbreviation (Quantity)
HD74LV4040AFPEL	SOP–16 pin (JEITA)	FP–16DAV	FP	EL (2,000 pcs/reel)
HD74LV4040ARPEL	SOP-16 pin (JEDEC)	FP–16DNV	RP	EL (2,500 pcs/reel)
HD74LV4040ATELL	TSSOP-16 pin	TTP–16DAV	Т	ELL (2,000 pcs/reel)

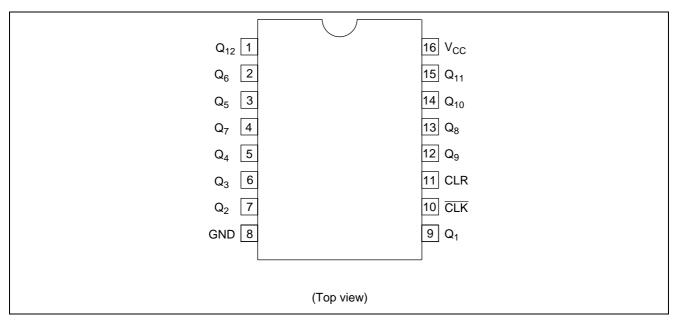
Note: Please consult the sales office for the above package availability.

Function Table

Inputs		Output
CLK	CLR	Q _n
\uparrow	L	Remains unchanged
\downarrow	L	Changed
X	Н	All outputs low

Note: H: High level

L: Low level


X: Immaterial

 \uparrow : Low to high transition

 \downarrow : High to low transition

Pin Arrangement

Absolute Maximum Ratings

ltem	Symbol	Ratings	Unit	Conditions
Supply voltage range	V _{CC}	–0.5 to 7.0	V	
Input voltage range*1	VI	–0.5 to 7.0	V	
Output voltage range* ^{1, 2}	Vo	–0.5 to V _{CC} + 0.5	V	Output: H or L
		–0.5 to 7.0		V _{CC} : OFF
Input clamp current	I _{IK}	-20	mA	V ₁ < 0
Output clamp current	l _{ок}	±50	mA	$V_{\rm O}$ < 0 or $V_{\rm O}$ > $V_{\rm CC}$
Continuous output current	lo	±25	mA	$V_{\rm O}$ = 0 to $V_{\rm CC}$
Continuous current through V_{CC} or GND	I_{CC} or I_{GND}	±50	mA	
Maximum power dissipation at	PT	785	mW	SOP
Ta = 25°C (in still air)* ³		500		TSSOP
Storage temperature	Tstg	–65 to 150	°C	

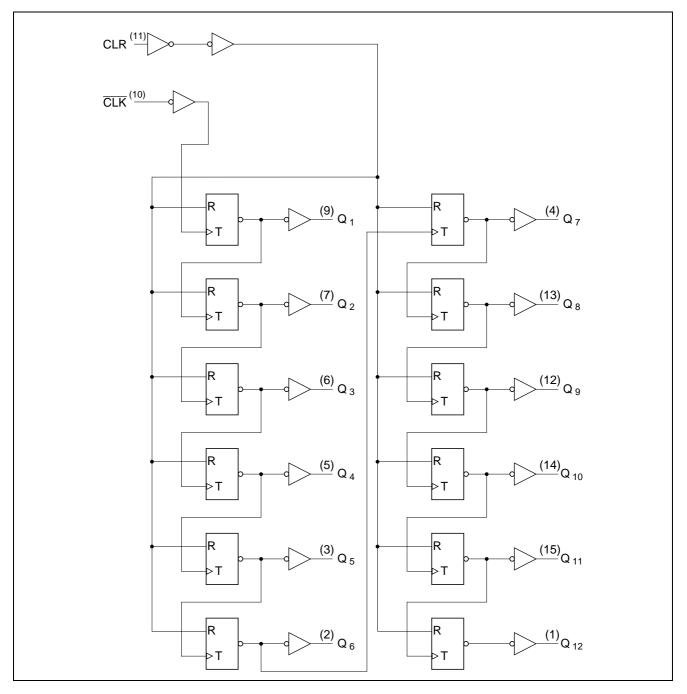
Notes: The absolute maximum ratings are values, which must not individually be exceeded, and furthermore, no two of which may be realized at the same time.

1. The input and output voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

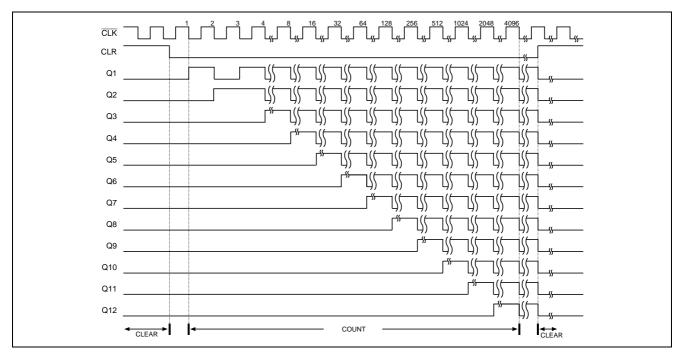
2. This value is limited to 5.5 V maximum.

3. The maximum package power dissipation was calculated using a junction temperature of 150°C.

Recommended Operating Conditions


ltem	Symbol	Min	Max	Unit	Conditions
Supply voltage range	V _{CC}	2.0	5.5	V	
Input voltage range	VI	0	5.5	V	
Output voltage range	Vo	0	V _{CC}	V	H or L
Output current	I _{OH}	_	-50	μA	V _{CC} = 2.0 V
		_	-2	mA	V_{CC} = 2.3 to 2.7 V
		_	6		V _{CC} = 3.0 to 3.6 V
		_	-12		V_{CC} = 4.5 to 5.5 V
	I _{OL}	_	50	μA	V _{CC} = 2.0 V
		_	2	mA	V_{CC} = 2.3 to 2.7 V
		_	6		V _{CC} = 3.0 to 3.6 V
		_	12		V_{CC} = 4.5 to 5.5 V
Input transition rise or fall rate	$\Delta t / \Delta v$	0	200	ns/V	V_{CC} = 2.3 to 2.7 V
		0	100		V _{CC} = 3.0 to 3.6 V
		0	20		V_{CC} = 4.5 to 5.5 V
Operating free-air temperature	Та	-40	85	°C	

Note: Unused or floating inputs must be held high or low.



HD74LV4040A

Logic Diagram

Timing Diagram

DC Electrical Characteristics

							$Ta = -40$ to $85^{\circ}C$
Item	Symbol	V _{cc} (V)*	Min	Тур	Max	Unit	Test Conditions
Input voltage	VIH	2.0	1.5			V	
		2.3 to 2.7	V _{CC} ×0.7			_	
		3.0 to 3.6	V _{CC} ×0.7	_		_	
		4.5 to 5.5	V _{CC} ×0.7	_	—	_	
	VIL	2.0	_	_	0.5	_	
		2.3 to 2.7	_	_	. V _{CC} ×0.3	_	
		3.0 to 3.6	—	—	V _{CC} ×0.3	_	
		4.5 to 5.5	—		. V _{CC} ×0.3		
Output voltage	V _{OH}	Min to Max	V _{CC} -0.1			V	I _{OH} = –50 μA
		2.3	2.0				I _{OH} = -2 mA
		3.0	2.48				I _{ОН} = –6 mA
		4.5	3.8				I _{OH} = -12 mA
	V _{OL}	Min to Max	_		0.1		I _{OL} = 50 μA
		2.3	_		0.4		I _{OL} = 2 mA
		3.0	—		0.44		I _{OL} = 6 mA
		4.5	—		0.55		I _{OL} = 12 mA
Input current	I _{IN}	0 to 5.5	—		±1	μA	V_{IN} = 5.5 V or GND
Quiescent supply current	I _{CC}	5.5	_	_	20	μA	$V_{IN} = V_{CC}$ or GND, $I_0 = 0$
Output leakage current	I _{OFF}	0	_		5	μA	V_1 or V_0 = 0 to 5.5 V
Input capacitance	CIN	3.3		3.7		pF	$V_{I} = V_{CC} \text{ or } GND$

Note: For conditions shown as Min or Max, use the appropriate values under recommended operating conditions.

RENESAS

Switching Characteristics

								$V_{CC}=2.5\pm0.2$			
		Ta =	25°C		Ta = –4	40 to 85°C		Test	FROM	то	
ltem	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)	
Maximum	f _{max}	50	90	_	40	_	MHz	C _L = 15 pF			
clock frequency		30	60	_	25	—		C _L = 50 pF			
Propagation	t _{PLH} /t _{PHL}	_	10.0	16.0	1.0	18.3	ns	C _L = 15 pF	CLK	Q ₁	
delay time		_	12.7	19.6	1.0	22.2		C _L = 50 pF			
	t _{PHL}		9.9	15.4	1.0	17.5		C _L = 15 pF	CLR	_	
		_	11.8	18.0	1.0	20.4		C _L = 50 pF			
Propagation delay time skew	Δt_{pd}	_	3.0	5.5	_	6.3	ns	C _L = 50 pF	Q _n	Q _n +1	
Setup time	t _{su}	7.0		_	7.0	—	ns		CLR inac CLK ↓	ctive before	
Pulse width	t _w	7.0	_		7.0	_	ns		CLK high	n or low	
		7.0	_		7.0				CLR high	า	

		Ta =	25°C		Ta = –	40 to 85°C		Test	FROM	то
Item	Symbol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
Maximum	f _{max}	75	140	_	70	—	MHz	C _L = 15 pF		
clock frequency		55	80	—	50	—		C _L = 50 pF		
Propagation	t _{PLH} /t _{PHL}	_	7.5	11.9	1.0	14.0	ns	C _L = 15 pF	CLK	Q1
delay time		_	10.0	15.4	1.0	17.5		C _L = 50 pF		
	t _{PHL}	_	8.3	12.8	1.0	15.0		C _L = 15 pF	CLR	
		_	10.8	16.3	1.0	18.5		C _L = 50 pF		
Propagation delay time skew	Δt_{pd}	_	2.4	4.4	—	5.0	ns	C∟ = 50 pF	Qn	Q _n +1
Setup time	t _{su}	5.0	_	-	5.0	_	ns		$\frac{CLR}{CLK}\downarrow$	ctive before
Pulse width	t _w	5.0	_	_	5.0		ns		CLK high	n or low
		5.0	_		5.0	_	_		CLR high	ı

 $V_{CC}=3.3\pm0.3~V$

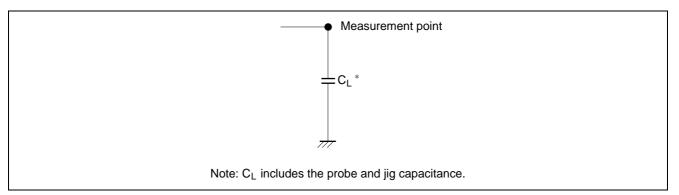
Switching Characteristics (Cont.)

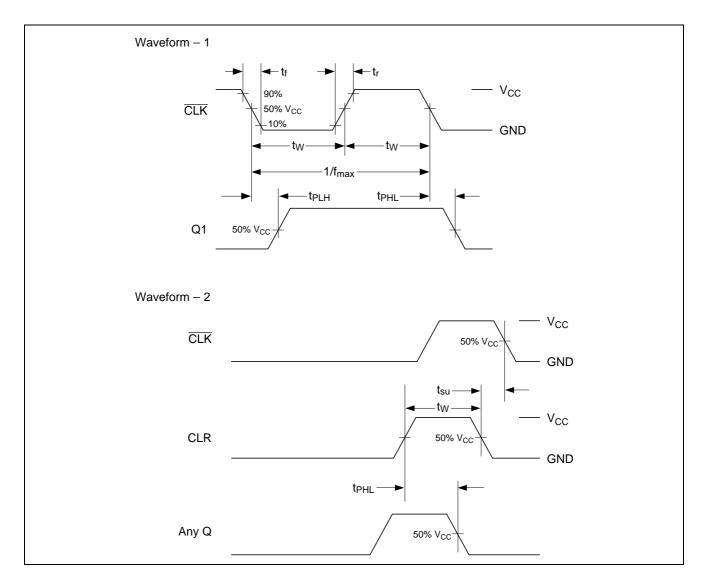
								•	$CC = 3.0 \pm 0.3$
	Ta =	25°C		Ta = –4	40 to 85°C		Test	FROM	то
Symbol	Min	Тур	Max	Min	Max	Unit	Conditions	(Input)	(Output)
f _{max}	150	210	_	125	_	MHz	C _L = 15 pF		
	95	125		80	_		C _L = 50 pF		
t _{PLH} /t _{PHL}	_	4.8	7.3	1.0	8.5	ns	C _L = 15 pF	CLK	Q ₁
	_	6.3	9.3	1.0	10.5		C _L = 50 pF		
t _{PHL}		5.6	8.6	1.0	10.0		C _L = 15 pF	CLR	_
	_	7.1	10.6	1.0	12.0		C _L = 50 pF		
Δt_{pd}	_	1.6	3.1	_	3.5	ns	C _L = 50 pF	Q _n	Q _n + 1
t _{su}	5.0			5.0	—	ns		CLR inac CLK ↓	ctive before
t _w	5.0	_	_	5.0	_	ns		CLK high	n or low
	5.0	_	_	5.0	_	_		CLR high	า
	f _{max} t _{PLH} /t _{PHL} t _{PHL} Δt _{pd} t _{SU}	$\begin{array}{c c} \mbox{Symbol} & \mbox{Min} \\ f_{max} & 150 \\ 95 \\ t_{PLH} & \\ \\ t_{PHL} & \\ t_{PHL} & \\ \\ t_{D} \\ t_{D} \\ \Delta t_{pd} & \\ t_{SU} & 5.0 \\ t_{W} & 5.0 \\ \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{tabular}{ c c c c } \hline Symbol & \hline Min & Typ & Max \\ \hline f_{max} & 150 & 210 & \\ \hline 95 & 125 & \\ \hline 95 & 125 & \\ \hline 95 & 125 & \\ \hline 0 & & 6.3 & 9.3 \\ \hline t_{PLH} & & 6.3 & 9.3 \\ \hline t_{PHL} & & 5.6 & 8.6 \\ \hline & 7.1 & 10.6 \\ \hline \Delta t_{pd} & & 1.6 & 3.1 \\ \hline t_{SU} & 5.0 & \\ \hline t_w & 5.0 & & \\ \hline \end{tabular}$	$\begin{array}{ c c c c c c c } \hline Symbol & Min & Typ & Max & Min \\ \hline f_{max} & 150 & 210 & & 125 \\ \hline 95 & 125 & & 80 \\ \hline t_{PLH}/t_{PHL} & & 4.8 & 7.3 & 1.0 \\ \hline t_{PHL} & & 6.3 & 9.3 & 1.0 \\ \hline t_{PHL} & & 5.6 & 8.6 & 1.0 \\ \hline t_{Q} & & 7.1 & 10.6 & 1.0 \\ \hline \Delta t_{pd} & & 1.6 & 3.1 & \\ \hline t_{SU} & 5.0 & & & 5.0 \\ \hline t_w & 5.0 & & & 5.0 \\ \hline \end{array}$	$\begin{array}{ c c c c c c c c } \hline Symbol & \hline Min & Typ & Max & Min & Max \\ \hline f_{max} & 150 & 210 & & 125 & \\ \hline 95 & 125 & & 80 & \\ \hline t_{PLH}/t_{PHL} & & 4.8 & 7.3 & 1.0 & 8.5 \\ \hline & 6.3 & 9.3 & 1.0 & 10.5 \\ \hline t_{PHL} & & 5.6 & 8.6 & 1.0 & 10.0 \\ \hline & 7.1 & 10.6 & 1.0 & 12.0 \\ \hline \Delta t_{pd} & & 1.6 & 3.1 & & 3.5 \\ \hline t_{SU} & 5.0 & & & 5.0 & \\ \hline t_w & 5.0 & & & 5.0 & \\ \hline \end{array}$	$\begin{array}{ c c c c c c c } \hline Symbol & \hline Min & Typ & Max & Min & Max & Unit \\ \hline f_{max} & 150 & 210 & & 125 & & MHz \\ \hline 95 & 125 & & 80 & & \\ \hline t_{PLH}/t_{PHL} & & 4.8 & 7.3 & 1.0 & 8.5 & ns \\ \hline t_{PHL} & & 6.3 & 9.3 & 1.0 & 10.5 & \\ \hline t_{PHL} & & 5.6 & 8.6 & 1.0 & 10.0 & \\ \hline & 7.1 & 10.6 & 1.0 & 12.0 & \\ \hline \Delta t_{pd} & & 1.6 & 3.1 & & 3.5 & ns \\ \hline t_{SU} & 5.0 & & & 5.0 & & ns \\ \hline t_w & 5.0 & & & 5.0 & & ns \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Operating Characteristics

			Ta = 25	5°C			
Item	Symbol	$V_{CC} = (V)$	Min	Тур	Max	Unit	Test Conditions
Power dissipation capacitance	CPD	3.3	_	17.3	_	pF	f = 10 MHz
		5.0	_	19.0	—		

Noise Characteristics

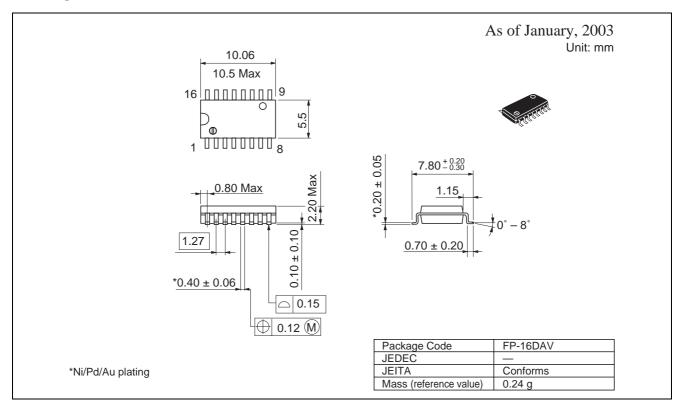

			Ta = 25	5°C			
Item	Symbol	$V_{CC} = (V)$	Min	Min Typ		Unit	Test Conditions
Quiet output, maximum dynamic V _{OL}	V _{OL (P)}	3.3	_	0.4	0.8	V	
Quiet output, minimum dynamic V _{OL}	V _{OL (V)}	3.3	—	-0.5	-0.8	V	
Quiet output, minimum dynamic V _{OH}	$V_{OH(V)}$	3.3	_	3.0	—	V	
High-level dynamic input voltage	V _{IH (D)}	3.3	2.31	—	—	V	
Low-level dynamic input voltage	VIL (D)	3.3	_	—	0.99	V	

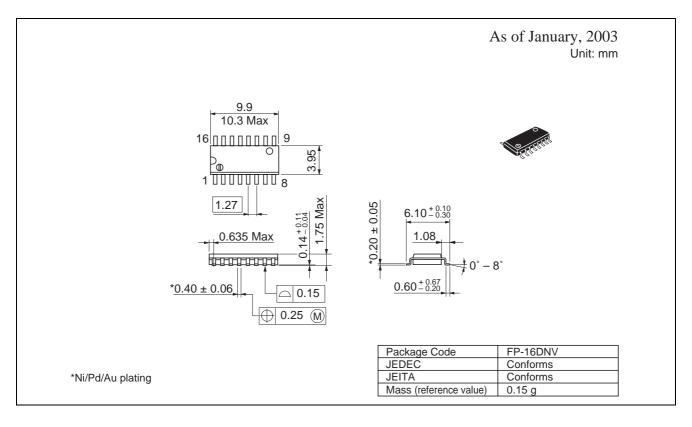

 $C_L = 50 \text{ pF}$

 $C_L = 50 \text{ pF}$

HD74LV4040A

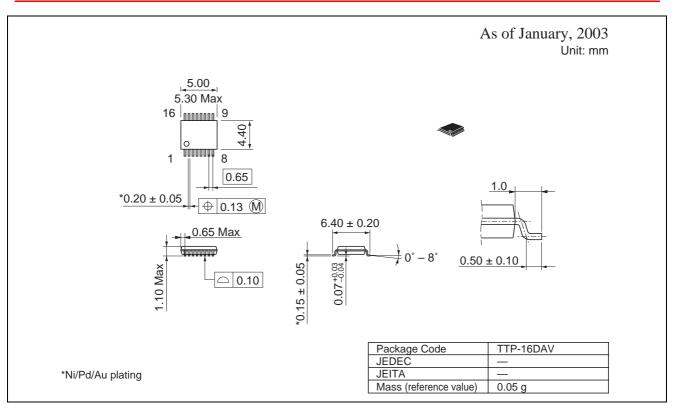
Test Circuit





Rev.2.00 Jul. 20, 2004 page 8 of 10

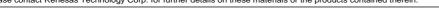
Package Dimensions



RENESAS

Rev.2.00 Jul. 20, 2004 page 9 of 10

HD74LV4040A



Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs! 1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

- Notes regarding these materials 1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party. 2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials. 3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.

- therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information before purchasing a product listed herein.
 The information described here may contain technical inaccuracies or typographical errors.
 Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.
 Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).
 4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as total system before making a final decision on the applicability of the information and products.
 5. Renesas Technology Corp. emiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use. use.
- use.
 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination. Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

http://www.renesas.com

RENESAS SALES OFFICES

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited. Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbH Dornacher Str. 3, D-85622 Feldkirchen, Germany Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd. 1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001