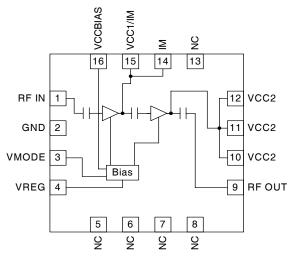
rfmd.com

RF5188

3V 1950MHZ W-CDMA LINEAR POWER AMPLIFIER MODULE

RoHS Compliant & Pb-Free Product Package Style: QFN, 16-Pin, 3 x 3



Features

- Input/Output Internally Matched@50Ω
- 27.5 dBm Linear Output Power
- 42% Peak Linear Efficiency
- 28dB Linear Gain
- -42dBc ACLR @ ±5MHz
- HSDPA Capable

Applications

- 3V W-CDMA Band 1 Handsets
- Multi-Mode W-CDMA 3G Handsets
- 3V TD-SCDMA Handsets
- Spread-Spectrum Systems

Functional Block Diagram

Product Description

The RF5188 is a high-power, high-efficiency linear amplifier module specifically designed for 3V handheld systems. The device is manufactured on an advanced third generation GaAs HBT process, and was designed for use as the final RF amplifier in 3V W-CDMA handheld digital cellular equipment, spread-spectrum systems, and other applications in the 1920MHz to 1980MHz band (Band 1). The RF5188 has a digital control line for low power applications to lower quiescent current. The RF5188 is assembled in at 16-pin, 3mmx3mm, QFN package.

Ordering Information

RF5188 3V 1950 MHz W-CDMA Linear Power Amplifier Module

RF5188PCBA-41X Fully Assembled Evaluation Board

Optimum Technology Matching® Applied

☑ GaAs HBT	☐ SiGe BiCMOS	☐ GaAs pHEMT	☐ GaN HEMT
☐ GaAs MESFET	☐ Si BiCMOS	☐ Si CMOS	
☐ InGaP HBT	☐ SiGe HBT	☐ Si BJT	

RF5188

Absolute Maximum Ratings

Parameter	Rating	Unit
Supply Voltage (RF off)	+8.0	V
Supply Voltage (P _{OUT} ≤31dBm)	+5.2	V
Control Voltage (V _{REG})	+3.9	V
Input RF Power	+10	dBm
Mode Voltage (V _{MODE})	+3.9	V
Operating Temperature	-30 to +110	°C
Storage Temperature	-40 to +150	°C
Moisture Sensitivity Level (IPC/JEDEC J-STD-20)	MSL 2 @ 260	°C

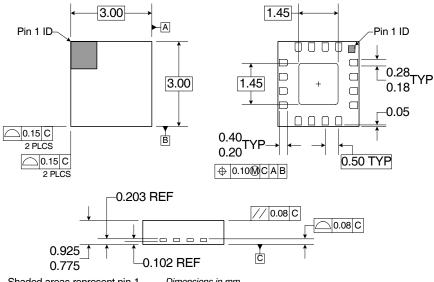
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical performance or functional operation of the device under Absolute Maximum Rating conditions is not implied.

RoHS status based on EU Directive 2002/95/EC (at time of this document revision).

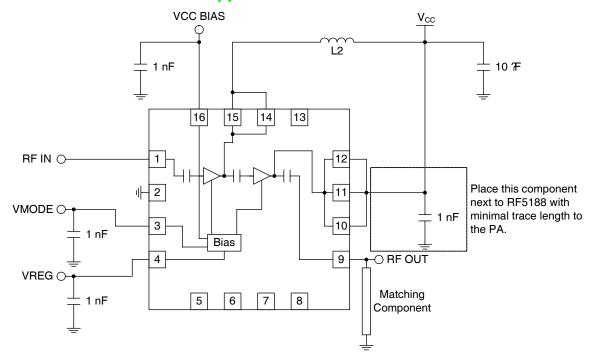
The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Davamatav	Specification		Hoit	Condition		
Parameter	Min.	Тур.	Max.	Unit	Condition	
High Gain Mode (V _{MODE} Low)					$T=25^{o}\text{C Ambient, V}_{\text{CCBIAS}}=3.4\text{V,}\\ \text{V}_{\text{CC}}=3.4\text{V, V}_{\text{REG}}=2.8\text{V, V}_{\text{MODE}}=0\text{V, and}\\ \text{P}_{\text{OUT}}=27.5\text{dBm for all parameters (unless otherwise specified). Modulation is 3GPP 3.2 03-00 DPCCH+1DPDCH.}$	
Operating Frequency Range	1920		1980	MHz		
Linear Gain	26	28.5	32	dB		
Harmonics			-10	dBm	f=2fo, 3fo	
Maximum Linear Output	27.5			dBm		
Linear Efficiency	38	42	47	%		
Maximum I _{CC}	352	394	435	mA		
ACLR1 @ ±5MHz		-42	-37	dBc		
ACLR2 @ ±10 MHz		-53	-48	dBc		
Input VSWR		1.7:1				
Output VSWR Stability Ruggedness			6:1		No oscillation>-70dBc	
			10:1		No damage	
Noise Power		-150		dBm/Hz	-50≤P _{OUT} ≤+27.5dBm, RX=925MHz to 960MHz (EGSM)	
		-133		dBm/Hz	-50 \le P _{OUT} \le +27.5 dBm, RX = 1805 MHz to 1880 MHz (DCS)	
		-140		dBm/Hz	-50 \(\leq P_{OUT} \leq +27.5 dBm, RX = 2110 MHz to \\ 2170 MHz (W-CDMA), TX / RX Offset = 130 MHz	
		-143		dBm/Hz	-50 \(\leq P_{\text{OUT}} \leq +27.5 \text{ dBm, RX} = 2110 \text{ MHz to} \\ 2170 \text{ MHz (W-CDMA), TX/RX Offset} = 190 \text{ MHz}	
		-147		dBm/Hz	-50 \(\le P_{\text{OUT}} \le +27.5 \text{dBm}, \text{ RX} = 2400 \text{ MHz to} \\ 2480 \text{ MHz (Bluetooth)}	
		-107		dBm/Hz	-50 \(\leq P_{\text{OUT}} \leq +27.5 \text{dBm}, \text{ TX} = 1932.3 \text{ MHz to} \\ 1980 \text{ MHz}, \text{ RX} = 1893.5 \text{ MHz to} \\ (PHS)	
IM Products						
IM 5MHz			-31	dBc	IF offset f ₀ +5MHz with CW signal=-40dBc	
IM 10MHz			-41	dBc	IF offset f ₀ +10MHz with CW signal=-40dBc	


Parameter	Specification		Unit	Condition		
raidilletei	Min.	Тур.	Max.	Ullit	Condition	
Low Gain Mode (V _{MODE} High)					$T=25^{\circ}\text{C Ambient, V}_{\text{CCBIAS}}=3.4\text{V,}\\ \text{V}_{\text{CC}}=1.5\text{V, V}_{\text{REG}}=2.8\text{V, V}_{\text{MODE}}=2.8\text{V, and}\\ \text{P}_{\text{OUT}}=16\text{dBm for all parameters (unless otherwise specified). Modulation is 3GPP 3.2 03-00 DPCCH+1DPDCH.}$	
Operating Frequency Range	1920		1980	MHz		
Linear Gain	22	26	31	dB		
Maximum Linear Output	16			dBm		
Linear Efficiency	18.3	21.0	25.3	%		
ACLR @ ±5MHz		-41	-37	dBc		
ACLR @ ±10MHz		-54	-48	dBc		
Maximum I _{CC}	105	125	145	mA		
Input VSWR		2:1				
Output VSWR Stability Ruggedness			6:1		No oscillation>-65dBc	
			10:1		No damage	
IM Products						
IM 5MHz			-31	dBc	IF offset f ₀ +5MHz with CW signal=-40dBc	
IM 10MHz			-41	dBc	IF offset f ₀ +10MHz with CW signal=-40dBc	
Power Supply						
Supply Voltage (V _{CC1} and V _{CC2})	3.2	3.4	4.2	V		
	0.6			V	Low power with DC to DC Converter	
V _{CC} Bias	1.5		4.2	V		
High Gain Idle Current (I _{CC1} /I _{CC2} /I _{CCBIAS})		70	93	mA	V_{MODE} =low and V_{REG} =2.8V, V_{CC} =3.4V	
Low Gain Idle Current (I _{CC1} /I _{CC2} /I _{CCBIAS})		60	83	mA	V_{MODE} = high and V_{REG} = 2.8 V, V_{CC} = 1.5 V	
V _{REG} Current		1	3	mA		
V _{MODE} Current		250		uA		
RF Turn On/Off Time		1.2	6	uS		
DC Turn On/Off Time		2	25	uS		
Total Current (Power Down)		0.2	0.5	uA		
V _{REG} Low Voltage (Power Down)	0		0.5	V		
V _{REG} High Voltage (Recommended)	2.75	2.8	2.95	V		
V _{REG} High Voltage (Operational)	2.7		3.0	V		
V _{MODE} Voltage	0		0.5	V	High Gain Mode	
V _{MODE} Voltage	2.0		3.0	V	Low Gain Mode	

RF5188

Pin	Function	Description	Interface Schematic
1	RF IN	RF input internally matched to 50Ω . This input is internally AC-coupled.	
2	GND	Ground connection.	
3	VMODE	For nominal operation (High Power mode), V _{MODE} is set LOW. When set HIGH, devices are biased lower to improve efficiency at lower output levels.	
4	VREG	Regulated voltage supply for amplifier bias circuit. In power down mode, both V_{REG} and V_{MODE} need to be LOW (<0.5V).	
5	NC	No connection. Do not connect this pin to any external circuit.	
6	NC	No connection. Do not connect this pin to any external circuit.	
7	NC	No connection. Do not connect this pin to any external circuit.	
8	NC	No connection. Do not connect this pin to any external circuit.	
9	RF OUT	RF output. Internally AC-coupled.	
10	VCC2	Output stage collector supply. Please see the schematic for required external components.	
11	VCC2	Same as pin 10.	
12	VCC2	Same as pin 10.	
13	NC	No connection. Do not connect this pin to any external circuit.	
14	IM	Interstage matching. Connect to pin 15.	
15	VCC1/IM	First stage collector supply and interstage matching. A 4.7 μ F decoupling capacitor may be required. Connect to pin 14.	
16	VCCBIAS	Power supply input for the DC bias circuitry.	
Pkg Base	GND	Ground connection. The backside of the package should be soldered to a top side ground pad which is connected to the ground plane with multiple vias. The pad should have a short thermal path to the ground plane.	


Package Drawing

Shaded areas represent pin 1. Dimensions in mm.

Application Schematic

VCC BIAS can be connected to VCC; however, VCC must be maintained above 1.5 V. L2 = 8.2 nH and may be needed to provide isolation between VCC1 and VCC2 depending on layout.

Circuit Optimization for Various Output Power Requirements

Output Power (dBm)	Matching Component	Sample Part Number	Typical Efficiency (%)		
28	12nH	LQG15HN12NJ02D (Murata)	41		
27.5	N/A		42		
26.5	0.5 pF	GRM1555C1HR50BZ01E (Murata)	42		
26	1.0 pF	GRM1555C1H1ROBZ01E (Murata)	42		
25	1.5 pF	GRM1555C1H1R5BZ01E (Murata)	41		

Evaluation Board Schematic

PCB Design Requirements

PCB Surface Finish

The PCB surface finish used for RFMD's qualification process is electroless nickel, immersion gold. Typical thickness is 3μ inch to 8μ inch gold over 180μ inch nickel.

PCB Land Pattern Recommendation

PCB land patterns for RFMD components are based on IPC-7351 standards and RFMD empirical data. The pad pattern shown has been developed and tested for optimized assembly at RFMD. The PCB land pattern has been developed to accommodate lead and package tolerances. Since surface mount processes vary from company to company, careful process development is recommended.

PCB Metal Land Pattern

A = 0.64 x 0.28 (mm) Typ. B = 0.28 x 0.64 (mm) Typ. C = 0.78 x 0.64 (mm) D = 0.64 x 1.28 (mm) E = 1.50 (mm) Sq.

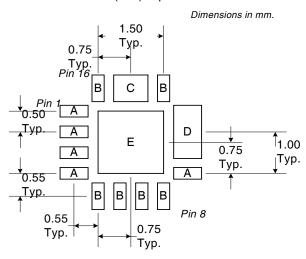


Figure 1. PCB Metal Land Pattern (Top View)

RF5188

PCB Solder Mask Pattern

Liquid Photo-Imageable (LPI) solder mask is recommended. The solder mask footprint will match what is shown for the PCB metal land pattern with a 2mil to 3mil expansion to accommodate solder mask registration clearance around all pads. The center-grounding pad shall also have a solder mask clearance. Expansion of the pads to create solder mask clearance can be provided in the master data or requested from the PCB fabrication supplier.

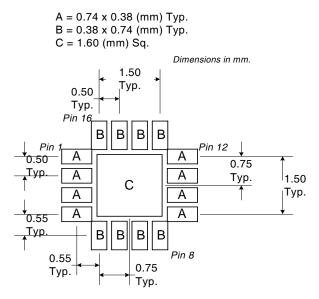


Figure 2. PCB Solder Mask Pattern (Top View)

Thermal Pad and Via Design

The PCB land pattern has been designed with a thermal pad that matches the die paddle size on the bottom of the device.

Thermal vias are required in the PCB layout to effectively conduct heat away from the package. The via pattern has been designed to address thermal, power dissipation and electrical requirements of the device as well as accommodating routing strategies.

The via pattern used for the RFMD qualification is based on thru-hole vias with 0.203mm to 0.330mm finished hole size on a 0.5mm to 1.2mm grid pattern with 0.025mm plating on via walls. If micro vias are used in a design, it is suggested that the quantity of vias be increased by a 4:1 ratio to achieve similar results.