BLC573

HF / VHF power LDMOS transistor

Rev. 01 — 11 December 2008

Preliminary data sheet

1. Product profile

1.1 General description

A 300 W LDMOS RF power transistor for broadcast applications and industrial, scientific and medical applications in the HF to 500 MHz band.

Table 1. Production test information

Mode of operation	f	V _{DS}	P _L	Gp	η_{D}
	(MHz)	(V)	(W)	(dB)	(%)
CW	225	50	300	26.5	70

CAUTION

This device is sensitive to ElectroStatic Discharge (ESD). Therefore care should be taken during transport and handling.

1.2 Features

- Typical CW performance at frequency of 225 MHz, a supply voltage of 50 V and an I_{Dq} of 900 mA:
 - ◆ Average output power = 300 W
 - ◆ Power gain = 26.5 dB
 - ◆ Efficiency = 70 %
- Easy power control
- Integrated ESD protection
- Excellent ruggedness
- High efficiency
- Excellent thermal stability
- Designed for broadband operation (HF and VHF band)
- Compliant to Directive 2002/95/EC, regarding Restriction of Hazardous Substances (RoHS)

1.3 Applications

- Industrial, scientific and medical applications
- Broadcast transmitter applications

HF / VHF power LDMOS transistor

2. Pinning information

Table 2. Pinning

Pin	Description		Simplified outline	Symbol
1	drain			
2	gate			1 <u> </u>
3	source	[1]		2 3 sym112

^[1] Connected to flange.

3. Ordering information

Table 3. Ordering information

Type number	Package	9	
	Name	Description	Version
BLC573	-	plastic flanged cavity package; 2 mounting slots; 2 leads	SOT895A

4. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{DS}	drain-source voltage		-	110	V
V_{GS}	gate-source voltage		-0.5	+11	V
I_D	drain current		-	42	Α
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	225	°C

5. Thermal characteristics

Table 5. Thermal characteristics

Symbol	Parameter	Conditions		Тур	Unit
R _{th(j-c)}	thermal resistance from junction to case	$T_{case} = 80 ^{\circ}C; P_{L} = 300 W$	<u>[1]</u>	0.21	K/W

^[1] $R_{th(j-c)}$ is measured under RF conditions.

BLC573_1 © NXP B.V. 2008. All rights reserved.

HF / VHF power LDMOS transistor

6. Characteristics

Table 6. DC characteristics

 $T_i = 25 \,^{\circ}C$ unless otherwise specified

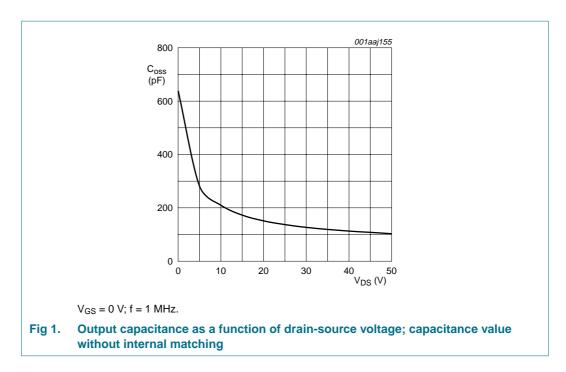

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
Syllibol				Тур	IVIAX	
$V_{(BR)DSS}$	drain-source breakdown voltage	$V_{GS} = 0 \text{ V}; I_D = 3.75 \text{ mA}$	110	-	-	V
$V_{\text{GS(th)}}$	gate-source threshold voltage	$V_{DS} = 10 \text{ V}; I_D = 375 \text{ mA}$	1.25	1.7	2.25	V
V_{GSq}	gate-source quiescent voltage	$V_{DS} = 50 \text{ V}; I_{D} = 900 \text{ mA}$	1.45	1.95	2.45	V
I _{DSS}	drain leakage current	$V_{GS} = 0 \text{ V}; V_{DS} = 50 \text{ V}$	-	-	4.2	μΑ
I _{DSX}	drain cut-off current	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $V_{DS} = 10 \text{ V}$	44	56	-	Α
I _{GSS}	gate leakage current	$V_{GS} = 11 \text{ V}; V_{DS} = 0 \text{ V}$	-	-	420	nΑ
9 _{fs}	forward transconductance	$V_{DS} = 10 \text{ V}; I_D = 18.75 \text{ A}$	-	20	-	S
R _{DS(on)}	drain-source on-state resistance	$V_{GS} = V_{GS(th)} + 3.75 \text{ V};$ $I_D = 12.49 \text{ A}$	-	0.09	-	Ω
C _{rs}	feedback capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 50 \text{ V};$ f = 1 MHz	-	2.3	-	pF
C _{iss}	input capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 50 \text{ V};$ f = 1 MHz	-	300	-	pF
C _{oss}	output capacitance	$V_{GS} = 0 \text{ V}; V_{DS} = 50 \text{ V};$ f = 1 MHz	-	103	-	pF

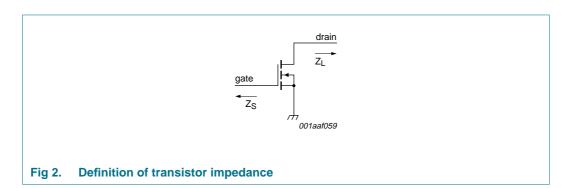
 Table 7.
 RF characteristics

Mode of operation: CW; f = 225 MHz; RF performance at $V_{DS} = 50$ V; $I_{Dq} = 900$ mA; $T_{case} = 25$ °C; unless otherwise specified; in a class-AB production test circuit

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
G_p	power gain	$P_L = 300 \text{ W}$	25	26.5	28	dB
RL_{in}	input return loss	$P_L = 300 \text{ W}$	10	13	-	dB
η_{D}	drain efficiency	$P_L = 300 \text{ W}$	67	70	-	%

HF / VHF power LDMOS transistor

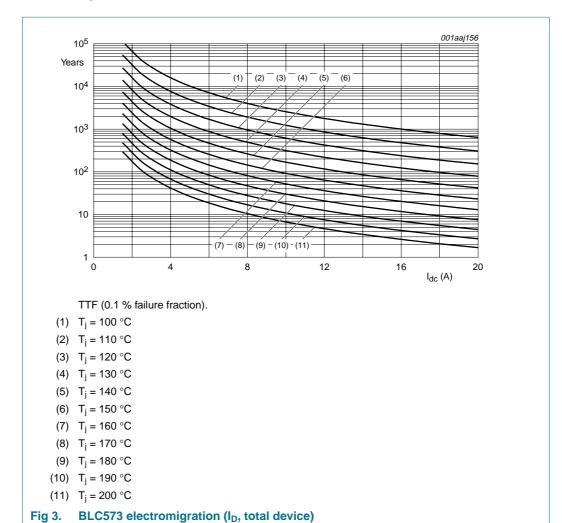
6.1 Ruggedness in class-AB operation


The BLC573 is capable of withstanding a load mismatch corresponding to VSWR = 13 : 1 through all phases under the following conditions: V_{DS} = 50 V; I_{Dq} = 900 mA; P_{L} = 300 W; f = 225 MHz.

7. Application information

7.1 Impedance information

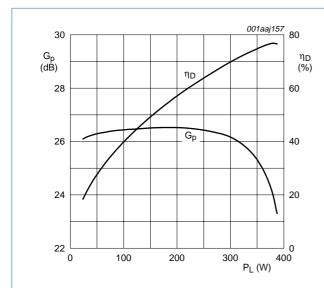
Table 8. Typical impedance *Measured* Z_S *and* Z_I *test circuit impedances.*


	 _		
f		Z _S	Z _L
MHz		Ω	Ω
225		0.7 + j2.0	1.95 + j2.0

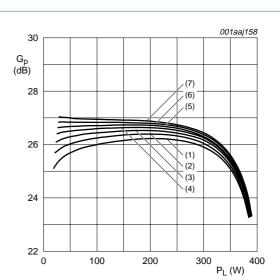
BLC573_1 © NXP B.V. 2008. All rights reserved.

HF / VHF power LDMOS transistor

7.2 Reliability



8. Test information

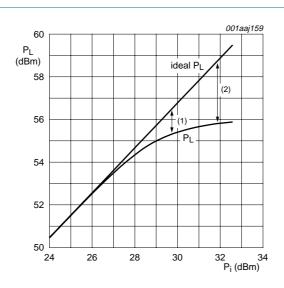

8.1 RF performance

The following figures are measured in a class-AB production test circuit.

8.1.1 1-Tone CW

 V_{DS} = 50 V; I_{Dq} = 900 mA; f = 225 MHz.

 $V_{DS} = 50 \text{ V}$; f = 225 MHz.

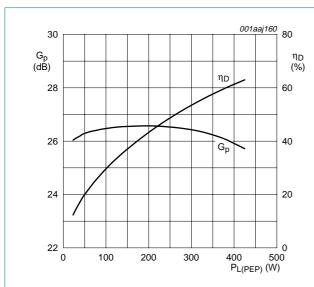

- (1) $I_{Dq} = 500 \text{ mA}$
- (2) $I_{Dq} = 700 \text{ mA}$
- (3) $I_{Dq} = 900 \text{ mA}$
- (4) $I_{Dq} = 1100 \text{ mA}$
- (5) $I_{Dq} = 1300 \text{ mA}$
- (6) $I_{Dq} = 1500 \text{ mA}$

(7) $I_{Dq} = 1700 \text{ mA}$

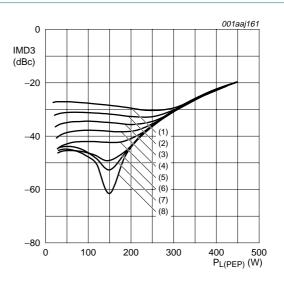
Fig 4. Power gain and drain efficiency as functions of load power; typical values

Fig 5. Power gain as function of load power; typical values

HF / VHF power LDMOS transistor


 V_{DS} = 50 V; I_{Dq} = 900 mA; f = 225 MHz.

- (1) $P_{L(1dB)} = 55.2 \text{ dBm } (331 \text{ W})$
- (2) $P_{L(3dB)} = 55.8 \text{ dBm } (380 \text{ W})$


Fig 6. Load power as function of input power; typical values

HF / VHF power LDMOS transistor

8.1.2 2-Tone CW

 $V_{DS} = 50 \text{ V}; I_{Dq} = 900 \text{ mA}; f_1 = 224.95 \text{ MHz}; f_2 = 225.05 \text{ MHz}.$

 $V_{DS} = 50 \text{ V}$; $f_1 = 224.95 \text{ MHz}$; $f_2 = 225.05 \text{ MHz}$.

(1) $I_{Dq} = 500 \text{ mA}$

(2) $I_{Dq} = 700 \text{ mA}$

(3) $I_{Dq} = 900 \text{ mA}$

(4) $I_{Dq} = 1100 \text{ mA}$ (5) $I_{Dq} = 1300 \text{ mA}$

(6) $I_{Dq} = 1500 \text{ mA}$

(7) $I_{Dq} = 1700 \text{ mA}$

(8) $I_{Dq} = 1800 \text{ mA}$

Fig 7. Power gain and drain efficiency as functions of peak envelope load power; typical values

Fig 8. Third order intermodulation distortion as a function of peak envelope load power; typical values

8.2 Test circuit

Table 9. List of components

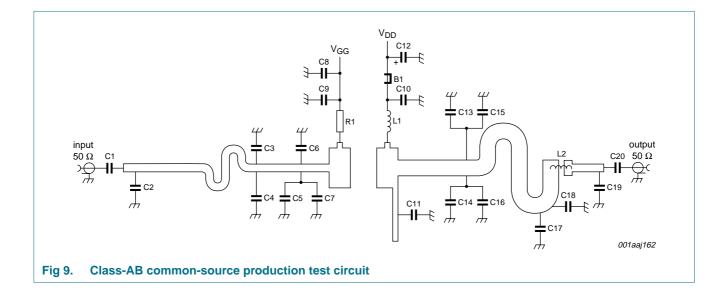
For production test circuit, see Figure 9 and Figure 10.

Printed-Circuit Board (PCB): Rogers 5880; $\varepsilon_r = 2.2$ F/m; height = 0.79 mm; Cu (top/bottom metallization); thickness copper plating = 35 mm.

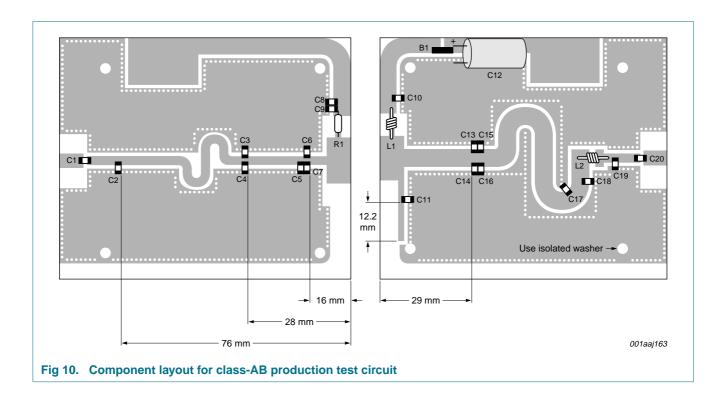
7 3				
Component	Description	Value		Remarks
B1	ferrite SMD bead	100 Ω ; 100 MHz		Ferroxcube BDS3/3/8.9-4S2 or equivalent
C1	multilayer ceramic chip capacitor	100 pF	<u>[1]</u>	
C2	multilayer ceramic chip capacitor	39 pF	<u>[1]</u>	
C3, C4	multilayer ceramic chip capacitor	180 pF	<u>[1]</u>	
C5, C6, C7	multilayer ceramic chip capacitor	220 pF	<u>[1]</u>	
C8	multilayer ceramic chip capacitor	4.7 μF		TDK C4532X7R1E475MT020U or equivalent
C9, C10, C20	multilayer ceramic chip capacitor	1 nF	<u>[1]</u>	
C11	multilayer ceramic chip capacitor	30 pF	<u>[1]</u>	
C12	electrolytic capacitor	220 μF; 63 V		

© NXP B.V. 2008. All rights reserved.

HF / VHF power LDMOS transistor


Table 9. List of components ... continued

For production test circuit, see Figure 9 and Figure 10.


Printed-Circuit Board (PCB): Rogers 5880; $\varepsilon_r = 2.2$ F/m; height = 0.79 mm; Cu (top/bottom metallization); thickness copper plating = 35 mm.

. •			
Component	Description	Value	Remarks
C13, C14, C15, C16	multilayer ceramic chip capacitor	47 pF	[2]
C17	multilayer ceramic chip capacitor	33 pF	[1]
C18	multilayer ceramic chip capacitor	36 pF	[1]
C19	multilayer ceramic chip capacitor	16 pF	[1]
L1	2 turns enamelled copper wire	D = 3 mm; d = 1 mm; length = 2 mm; leads = 2×6 mm	
L2	4 turns enamelled copper wire	D = 2 mm; d = 1 mm; length = 13 mm; leads = 2 × 5 mm	
R1	metal film resistor	100 Ω; 0.6 W	

- [1] American Technical Ceramics type 100B or capacitor of same quality.
- [2] American Technical Ceramics type 180R or capacitor of same quality.

HF / VHF power LDMOS transistor

HF / VHF power LDMOS transistor

9. Package outline

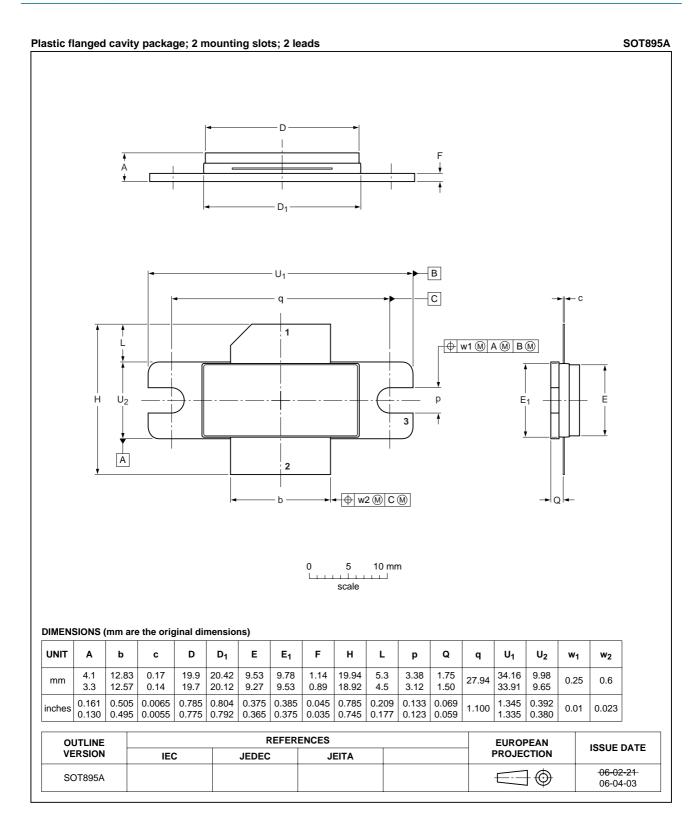


Fig 11. Package outline SOT895A

HF / VHF power LDMOS transistor

10. Handling information

10.1 Moisture sensitivity

Table 10. Moisture sensitivity level

Test methodology	Class
IPC/JEDEC J-STD-020-D	3

11. Abbreviations

Table 11. Abbreviations

Acronym	Description
CW	Continuous Wave
EDGE	Enhanced Data rates for GSM Evolution
GSM	Global System for Mobile communications
HF	High Frequency
LDMOS	Laterally Diffused Metal-Oxide Semiconductor
RF	Radio Frequency
SMD	Surface Mount Device
TTF	Time To Failure
VHF	Very High Frequency
VSWR	Voltage Standing-Wave Ratio

12. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
BLC573_1	20081211	Preliminary data sheet	-	-

© NXP B.V. 2008. All rights reserved.

HF / VHF power LDMOS transistor

13. Legal information

13.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

13.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

13.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental

damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

Quick reference data — The Quick reference data is an extract of the product data given in the Limiting values and Characteristics sections of this document, and as such is not complete, exhaustive or legally binding.

13.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

14. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

BLC573_1 © NXP B.V. 2008. All rights reserved.

HF / VHF power LDMOS transistor

15. Contents

1	Product profile
1.1	General description
1.2	Features
1.3	Applications
2	Pinning information 2
3	Ordering information 2
4	Limiting values
5	Thermal characteristics 2
6	Characteristics
6.1	Ruggedness in class-AB operation 4
7	Application information 4
7.1	Impedance information 4
7.2	Reliability 5
8	Test information 6
8.1	RF performance 6
8.1.1	1-Tone CW 6
8.1.2	2-Tone CW
8.2	Test circuit8
9	Package outline 11
10	Handling information 12
10.1	Moisture sensitivity
11	Abbreviations
12	Revision history
13	Legal information
13.1	Data sheet status
13.2	Definitions
13.3	Disclaimers
13.4	Trademarks
14	Contact information
15	Contents

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

