

4554 Group

SINGLE-CHIP 4-BIT CMOS MICROCOMPUTER

REJ03B0043-0300Z Rev.3.00 Aug 06, 2004

DESCRIPTION

The 4554 Group is a 4-bit single-chip microcomputer designed with CMOS technology. Its CPU is that of the 4500 series using a simple, high-speed instruction set. The computer is equipped with main clock selection function, four 8-bit timers (each timer has one or two reload registers), interrupts, and LCD control circuit.

The various microcomputers in the 4554 Group include variations of the built-in memory size as shown in the table below.

FEATURES

$ullet$ Minimum instruction execution time 0.5 μ s
(at 6 MHz oscillation frequency, in high-speed through-mode)
Supply voltage

Timers

Timer 1	8-bit timer with a reload register
Timer 2	8-bit timer with a reload register
Timer 3	8-bit timer with a reload register
Timer 4 8-b	oit timer with two reload registers
Timer 5 16-b	it timer (fixed dividing frequency)

●Interrupt	7 sources
●Key-on wakeup function pins	10
LCD control circuit	
Segment output	32
Common output	4
● Voltage drop detection circuit (Reset)	Typ. 1.5 V

Watchdog timer

Clock generating circuit

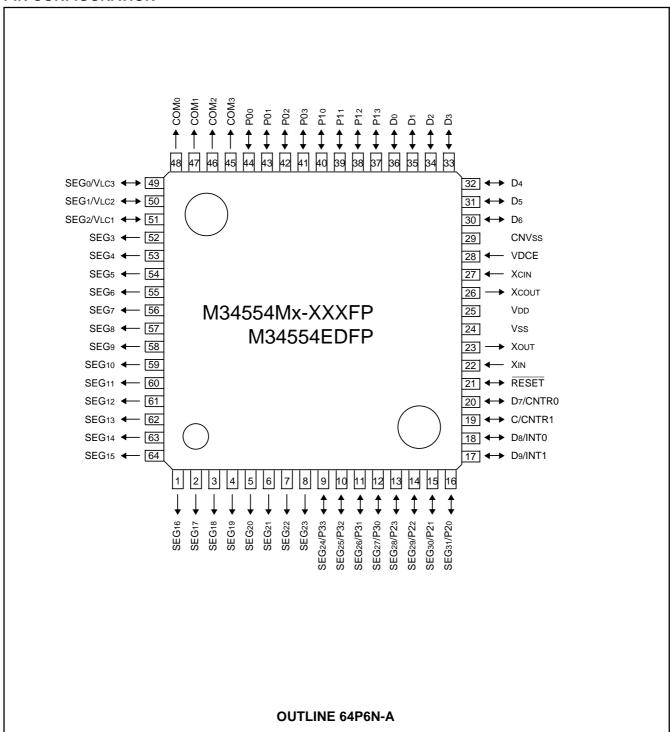
Main clock

(ceramic resonator/RC oscillation/on-chip oscillator)

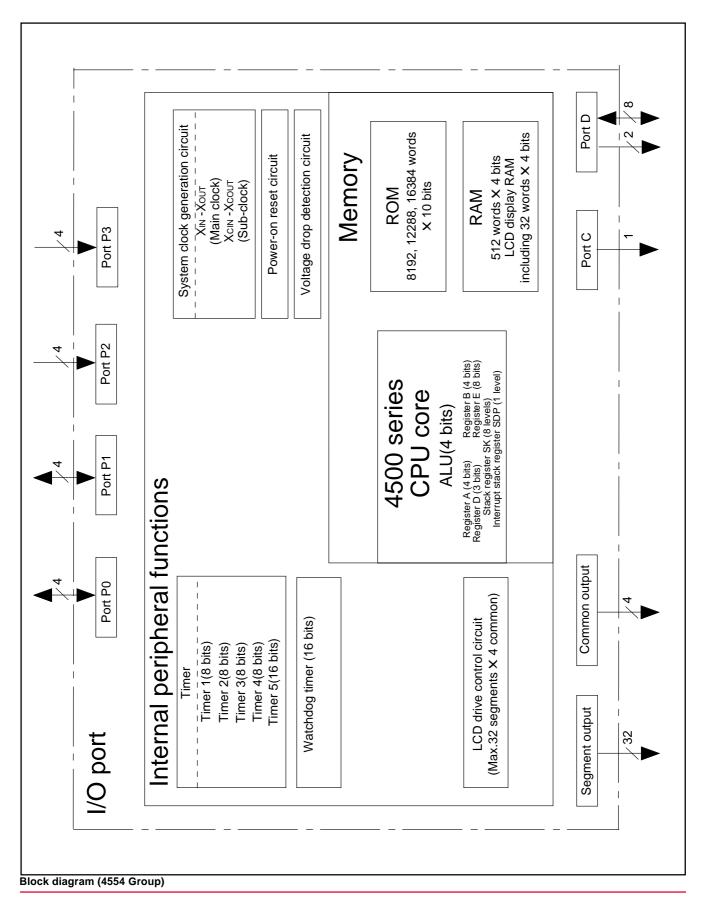
Sub-clock

(quartz-crystal oscillation)

●LED drive directly enabled (port D)


APPLICATION

Remot control transmitter


Part number	ROM (PROM) size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34554M8-XXXFP	8192 words	512 words	64P6N-A	Mask ROM
M34554MC-XXXFP	12288 words	512 words	64P6N-A	Mask ROM
M34554EDFP (Note)	16384 words	512 words	64P6N-A	One Time PROM

Note: Shipped in blank.

PIN CONFIGURATION

Pin configuration (top view) (4554 Group)

PERFORMANCE OVERVIEW

	Paramete	r	Function			
Number of ba	sic instruct	ions	136			
Minimum instr	uction exe	cution time	0.5 μs (at 6 MHz oscillation frequency, in high-speed through mode)			
Memory sizes	ROM	M34554M8	8192 words X 10 bits			
		M34554MC	12288 words X 10 bits			
		M34554ED	16384 words X 10 bits			
	RAM		512 words X 4 bits (including LCD display RAM 32 words X 4 bits)			
Input/Output ports	D0-D7 I/O		Eight independent I/O ports. Input is examined by skip decision. The output structure can be switched by software. Port D7 is also used as CNTR0 pin.			
	D8, D9	Output	Two independent output ports. Ports D8 and D9 are also used as INT0 and INT1, respectively.			
	P00-P03	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.			
	P10-P13	I/O	4-bit I/O port; A pull-up function, a key-on wakeup function and output structure can be switched by software.			
	P20-P23	Input	4-bit input port; Port P20–P23 are also used as SEG31–SEG28 pins.			
	P30-P33	Input	4-bit input port; Port P30–P33 are also used as SEG27–SEG24 pins.			
	С	Output	1-bit output; Port C is also used as CNTR1 pin.			
Timers	Timer 1		8-bit programmable timer with a reload register and has an event counter.			
	Timer 2		8-bit programmable timer with a reload register.			
	Timer 3		8-bit programmable timer with a reload register and has an event counter.			
	Timer 4		8-bit programmable timer with two reload registers.			
	Timer 5		16-bit timer, fixed dividing frequency			
LCD control	Selective	bias value	1/2, 1/3 bias			
circuit	Selective	duty value	2, 3, 4 duty			
	Common	output	4			
	Segment	output	32			
	Internal resistor for power supply		2r X 3, 2r X 2, r X 3, r X 2 (they can be switched by software.)			
Interrupt	Sources		7 (two for external, five for timer)			
	Nesting		1 level			
Subroutine ne	sting		8 levels			
Device structu	ıre		CMOS silicon gate			
Package			64-pin plastic molded QFP (64P6N)			
Operating tem	perature r	ange	−20 °C to 85 °C			
Supply	Mask RO	M version	2 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)			
voltage	One Time	PROM version	2.5 to 5.5 V (It depends on the operation source clock, operation mode and oscillation frequency.)			
Power	Active mo	de	2.8 mA (Ta=25°C, VDD = 5 V, f(XIN) = 6 MHz, f(XCIN) = 32 kHz, f(STCK) = f(XIN))			
dissipation	Clock ope	rating mode	20 μA (Ta=25°C, VDD = 5 V, f(XCIN) = 32 kHz)			
	At RAM b	ack-up	$0.1 \mu\text{A} (\text{Ta}=25^{\circ}\text{C},\text{VDD}=5\text{V})$			

PIN DESCRIPTION

Pin	Name	Input/Output	Function	
VDD	Power supply	_	Connected to a plus power supply.	
Vss	Ground	_	Connected to a 0 V power supply.	
CNVss	CNVss	_	Connect CNVss to Vss and apply "L" (0V) to CNVss certainly.	
VDCE	Voltage drop detection circuit enable	Input	This pin is used to operate/stop the voltage drop detection circuit. When "H" level is input to this pin, the circuit starts operating. When "L" level is input to this pin, the circuit stops operating.	
RESET	Reset input/output	I/O	An N-channel open-drain I/O pin for a system reset. When the watchdog timer, the built-in power-on reset or the voltage drop detection circuit causes the system to be reset, the RESET pin outputs "L" level.	
XIN	Main clock input Main clock output	Input Output	I/O pins of the main clock generating circuit. When using a ceramic resonator, connect it between pins XIN and XOUT. A feedback resistor is built-in between them. When using the RC oscillation, connect a resistor and a capacitor to XIN, and leave	
7001	Main clock output	Output	Xout pin open.	
XCIN	Sub-clock input	Input	I/O pins of the sub-clock generating circuit. Connect a 32 kHz quartz-crystal oscillator	
Хсоит	Sub-clock output	Output	between pins XCIN and XCOUT. A feedback resistor is built-in between them.	
D0-D7	I/O port D Input is examined by skip decision.	I/O	Each pin of port D has an independent 1-bit wide I/O function. The output structure can be switched to N-channel open-drain or CMOS by software. For input use, set the latch of the specified bit to "1" and select the N-channel open-drain. Port D7 is also used as CNTR0 pin.	
D8, D9	Output port D	Output	Each pin of port D has an independent 1-bit wide output function. The output structure is N-channel open-drain. Ports D8 and D9 are also used as INT0 pin and INT pin, respectively.	
P00-P03	I/O port P0	I/O	Port P0 serves as a 4-bit I/O port. The output structure can be switched to N-chann open-drain or CMOS by software. For input use, set the latch of the specified bit "1" and select the N-channel open-drain. Port P0 has a key-on wakeup function ar a pull-up function. Both functions can be switched by software.	
P10-P13	I/O port P1	I/O	Port P1 serves as a 4-bit I/O port. The output structure can be switched to N-chann open-drain or CMOS by software. For input use, set the latch of the specified bit "1" and select the N-channel open-drain. Port P1 has a key-on wakeup function ar a pull-up function. Both functions can be switched by software.	
P20-P23	Input port P2	Input	Port P2 serves as a 4-bit input port. Ports P20–P23 are also used as SEG31–SEG28, respectively.	
P30-P33	Input port P3	Input	Port P3 serves as a 4-bit input port. Ports P30–P33 are also used as SEG27–SEG24, respectively.	
Port C	Output port C	Output	1-bit output port. The output structure is CMOS. Port C is also used as CNTR1 pin.	
COM ₀ – COM ₃	Common output	Output	LCD common output pins. Pins COMo and COM1 are used at 1/2 duty, pins COM0–COM2 are used at 1/3 duty and pins COM0–COM3 are used at 1/4 duty.	
SEG0-SEG31	Segment output	Output	LCD segment output pins. SEG0-SEG2 pins are used as VLC3-VLC1 pins, respectively.	
VLC3-VLC1	LCD power supply	_	LCD power supply pins. When the internal resistor is used, VDD pin is connected to VLC3 pin (if luminance ac justment is required, VDD pin is connected to VLC3 pin through a resistor). When the external power supply is used, apply the voltage 0 ≤ VLC1 ≤ VLC2 ≤ VLC3 ≤ VDD VLC3–VLC1 pins are used as SEG0–SEG2 pins, respectively.	
CNTR0, CNTR1	Timer input/output	I/O	CNTR0 pin has the function to input the clock for the timer 1 event counter, and to output the timer 1 or timer 2 underflow signal divided by 2. CNTR1 pin has the function to input the clock for the timer 3 event counter, and to output the PWM signal generated by timer 4.CNTR0 pin and CNTR1 pin are also used as Ports D7 and C, respectively.	
INTO, INT1	Interrupt input	Input	INT0 pin and INT1 pin accept external interrupts. They have the key-on wakeup function which can be switched by software. INT0 pin and INT1 pin are also used as Ports D8 and D9, respectively.	

MULTIFUNCTION

Pin	Multifunction	Pin	Multifunction	Pin	Multifunction	Pin	Multifunction
С	CNTR1	CNTR1	С	P20	SEG31	SEG31	P20
D7	CNTR0	CNTR0	D7	P21	SEG30	SEG30	P21
D8	INT0	INT0	D8	P22	SEG29	SEG29	P22
D9	INT1	INT1	D9	P23	SEG28	SEG28	P23
VLC3	SEG ₀	SEG ₀	VLC3	P30	SEG27	SEG27	P30
VLC2	SEG1	SEG1	VLC2	P31	SEG26	SEG26	P31
VLC1	SEG2	SEG ₂	VLC1	P32	SEG25	SEG25	P32
				P33	SEG24	SEG24	P33

Notes 1: Pins except above have just single function.

- 2: The output of D8 and D9 can be used even when INT0 and INT1 are selected.
- 3: The input/output of D7 can be used even when CNTR0 (input) is selected.
- 4: The input of D7 can be used even when CNTR0 (output) is selected.
- 5: The port C "H" output function can be used even when CNTR1 (output) is selected.

DEFINITION OF CLOCK AND CYCLE

Operation source clock

The operation source clock is the source clock to operate this product. In this product, the following clocks are used.

- Clock (f(XIN)) by the external ceramic resonator
- Clock (f(XIN)) by the external RC oscillation
- Clock (f(XIN)) by the external input
- Clock (f(RING)) of the on-chip oscillator which is the internal oscillator
- Clock (f(XCIN)) by the external quartz-crystal oscillation

System clock (STCK)

The system clock is the basic clock for controlling this product. The system clock is selected by the clock control register MR shown as the table below.

Instruction clock (INSTCK)

The instruction clock is the basic clock for controlling CPU. The instruction clock (INSTCK) is a signal derived by dividing the system clock (STCK) by 3. The one instruction clock cycle generates the one machine cycle.

Machine cycle

The machine cycle is the standard cycle required to execute the instruction.

Table Selection of system clock

	Register MR			System clock	Operation mode
MR ₃	MR2	MR1	MR ₀		
0	0	0	0	f(STCK) = f(XIN) or f(RING)	High-speed through mode
		0 or 1	1	f(STCK) = f(XCIN)	Low-speed through mode
0	1	0	0	f(STCK) = f(XIN)/2 or f(RING)/2	High-speed frequency divided by 2 mode
		0 or 1	1	f(STCK) = f(XCIN)/2	Low-speed frequency divided by 2 mode
1	0	0	0	f(STCK) = f(XIN)/4 or f(RING)/4	High-speed frequency divided by 4 mode
		0 or 1	1	f(STCK) = f(XCIN)/4	Low-speed frequency divided by 4 mode
1	1	0	0	f(STCK) = f(XIN)/8 or f(RING)/8	High-speed frequency divided by 8 mode
		0 or 1	1	f(STCK) = f(XCIN)/8	Low-speed frequency divided by 8 mode

Note: The f(RING)/8 is selected after system is released from reset.

PORT FUNCTION

. •	1 011011011	Lancet	T	1.10	0 (1		
Port	Pin	Input	Output structure	I/O	Control	Control	Remark
		Output	o aspat ottactaro	unit	instructions	registers	T.o.na.n
Port D	Do-D6, D7/CNTR0	I/O	N-channel open-drain/	1	SD, RD	FR1, FR2	Output structure selection
		(8)	CMOS		SZD	W6	function (programmable)
					CLD		
	D8/INT0, D9/INT1	Output	N-channel open-drain			I1, I2	Key-on wakeup function
		(2)				K2	(programmable)
Port P0	P00-P03	I/O	N-channel open-drain/	4	OP0A	FR0	Built-in programmable pull-up
		(4)	CMOS		IAP0	PU0	functions and key-on wakeup
						K0	functions (programmable)
Port P1	P10-P13	I/O	N-channel open-drain/	4	OP1A	FR0	Built-in programmable pull-up
		(4)	CMOS		IAP1	PU1	functions and key-on wakeup
						K1	functions (programmable)
Port P2	SEG31/P20-SEG28/P23	Input		4	IAP2	L3	
		(4)					
Port P3	SEG27/P30-SEG24/P33	Input		4	IAP3	L3	
		(4)					
Port C	C/CNTR1	Output	CMOS	1	RCP	W4	
		(1)			SCP		

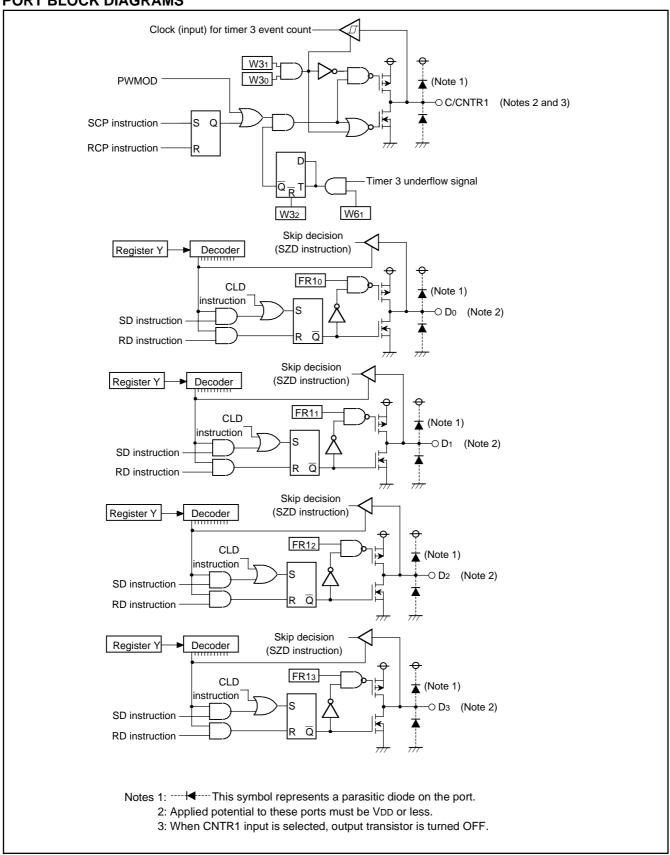
CONNECTIONS OF UNUSED PINS

Pin	Connection	Usage condition	
XIN	Connect to Vss.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.)	
		(Note 1)	
		Sub-clock input is selected for system clock (MR0=1). (Note 2)	
Хоит	Open.	Internal oscillator is selected (CMCK and CRCK instructions are not executed.)	
		(Note 1)	
		RC oscillator is selected (CRCK instruction is executed)	
		External clock input is selected for main clock (CMCK instruction is executed).	
		(Note 3)	
		Sub-clock input is selected for system clock (MR0=1). (Note 2)	
Xcin	Connect to Vss.	Sub-clock is not used.	
Хсоит	Open.	Sub-clock is not used.	
		External clock input is selected for sub-clock.	
D0-D6	Open.	(Note 4)	
	Connect to Vss.	N-channel open-drain is selected for the output structure.	
D7/CNTR0	Open.	CNTR0 input is not selected for timer 1 count source.	
	Connect to Vss.	N-channel open-drain is selected for the output structure.	
D8/INT0	Open.	"0" is set to output latch.	
	Connect to Vss.	 	
D9/INT1	Open.	"0" is set to output latch.	
	Connect to Vss.		
C/CNTR1	Open.	CNTR1 input is not selected for timer 3 count source.	
P00-P03	Open.	The key-on wakeup function is not selected. (Note 4)	
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 5)	
		The pull-up function is not selected. (Note 4)	
		The key-on wakeup function is not selected. (Note 4)	
P10-P13	Open.	The key-on wakeup function is not selected. (Note 4)	
	Connect to Vss.	N-channel open-drain is selected for the output structure. (Note 5)	
		The pull-up function is not selected. (Note 4)	
		The key-on wakeup function is not selected. (Note 4)	
SEG31/P20-	Open.		
SEG28/P23	Connect to Vss.	Ports P20–P23 selected.	
SEG27/P30-	Open.		
SEG24/P33	Connect to Vss.	Ports P30–P33 selected.	
COM ₀ –COM ₃	Open.	<u> </u>	
SEG ₀ /V _{LC3}	Open.	SEGo pin is selected.	
SEG1/VLC2	Open.	SEG1 pin is selected.	
	0	SEG2 pin is selected.	
SEG ₂ /V _{LC} ₁	Open.	SEG2 pin is selected.	

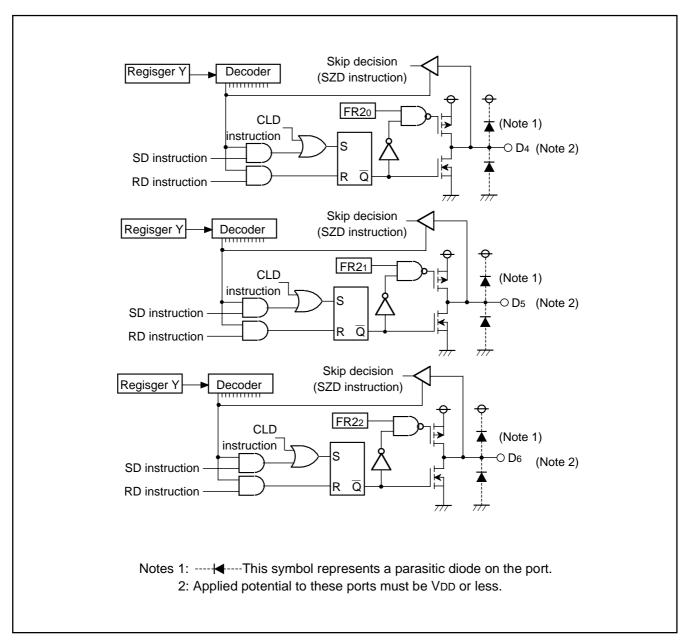
Notes 1: When the CMCK and CRCK instructions are not executed, the internal oscillation (on-chip oscillator) is selected for main clock.

(Note when connecting to Vss and VDD)

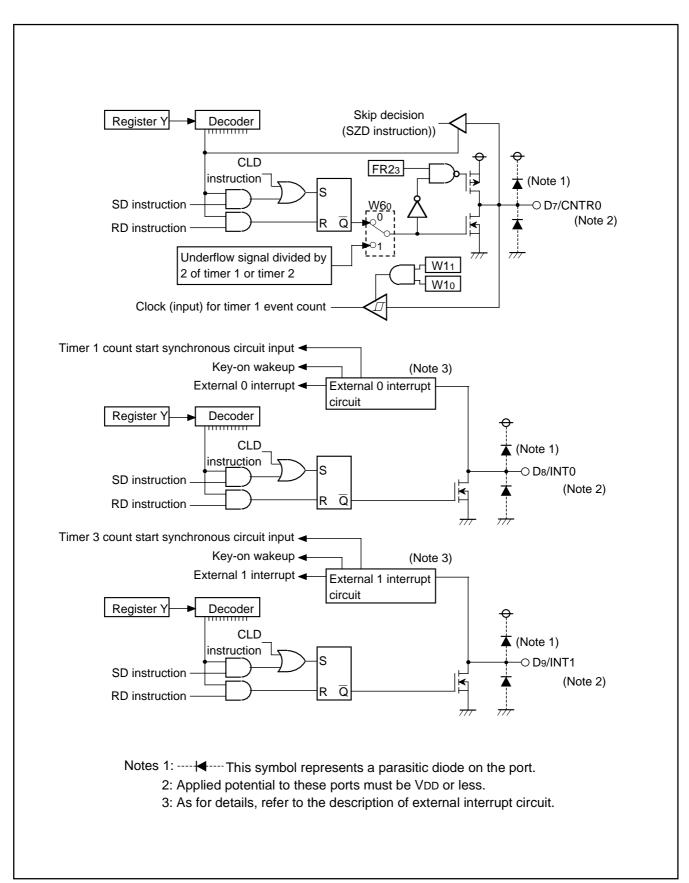
• Connect the unused pins to Vss and VDD using the thickest wire at the shortest distance against noise.

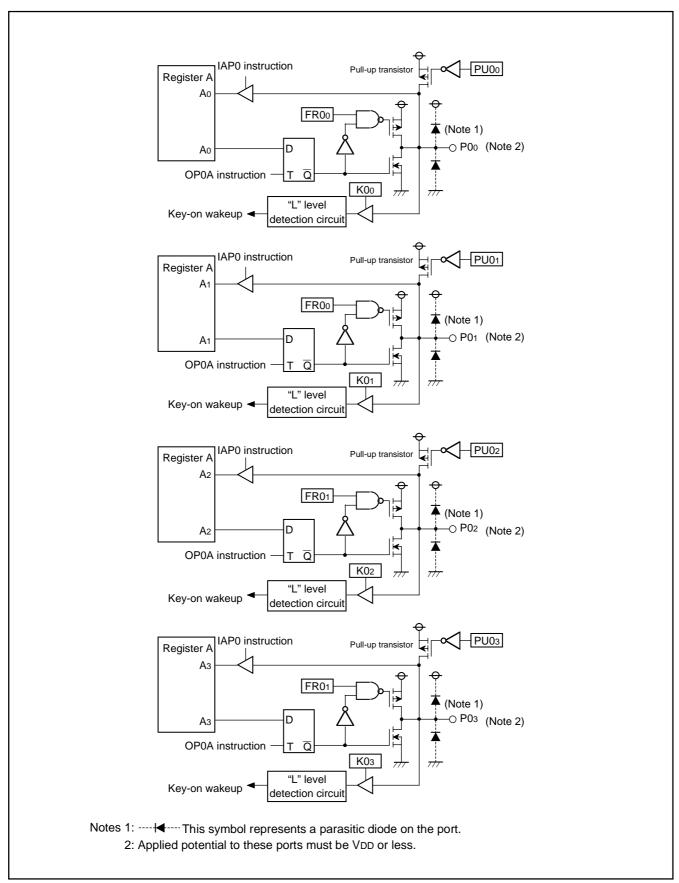

^{2:} When sub-clock (XCIN) input is selected (MRo = 1) for the system clock by setting "1" to bit 1 (MR1) of clock control register MR, main clock is stopped.

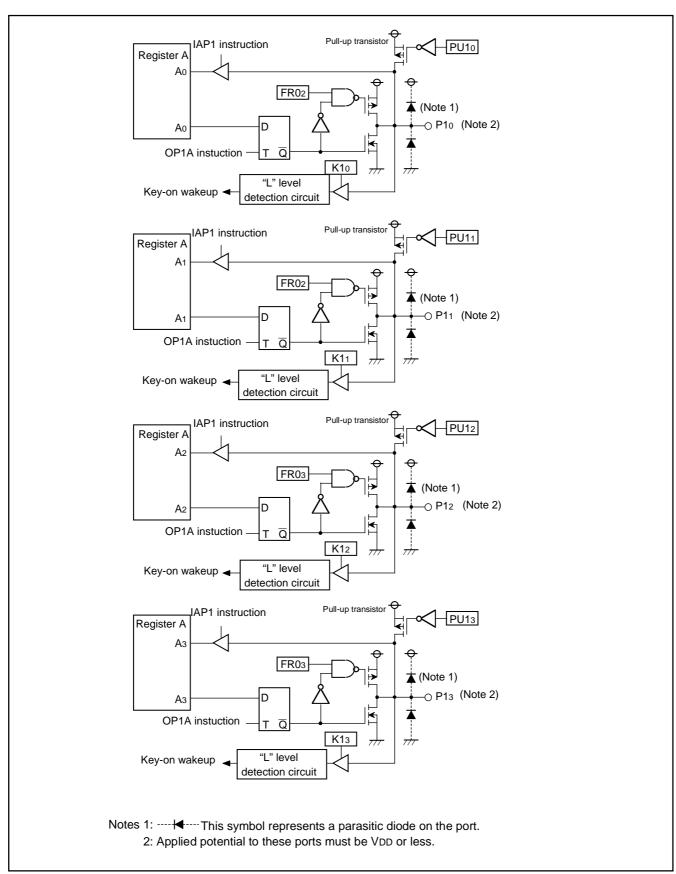
^{3:} Select the ceramic resonance by executing the CMCK instruction to use the external clock input for the main clock.

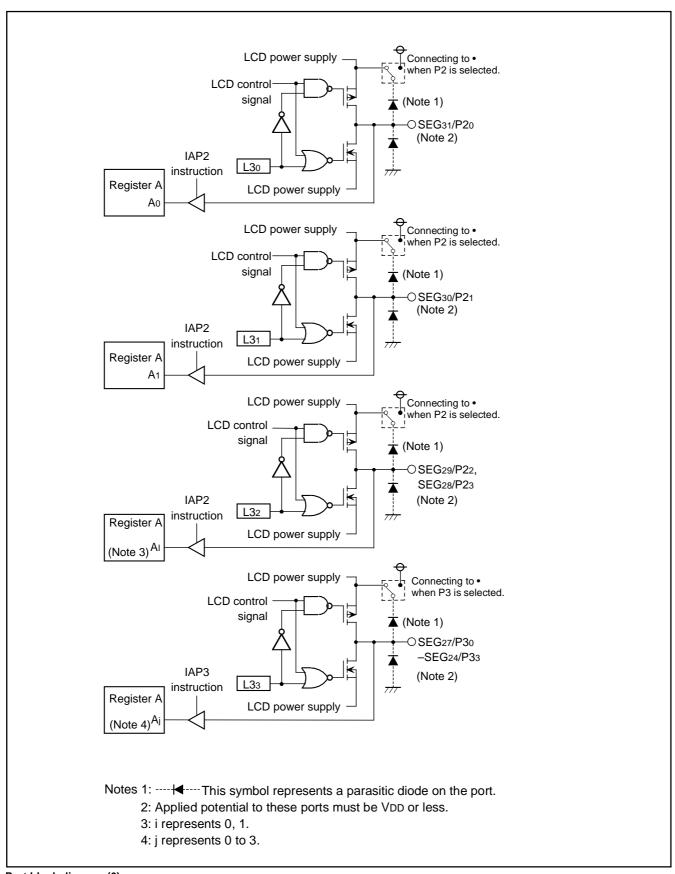

^{4:} Be sure to select the output structure of ports D0–D6 and the pull-up function and key-on wakeup function of P00–P03 and P10–P13 with every one port. Set the corresponding bits of registers for each port.

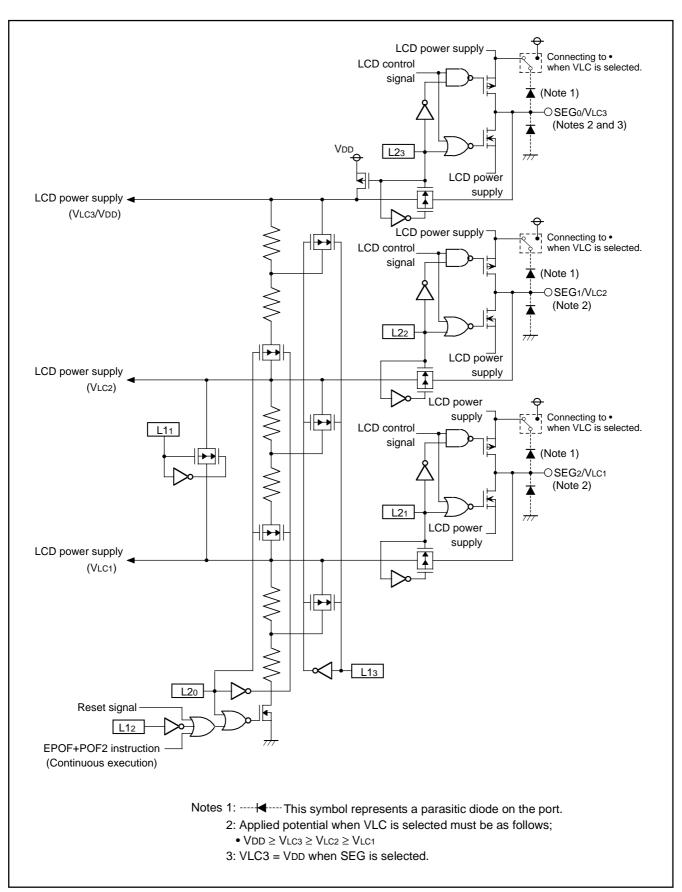
^{5:} Be sure to select the output structure of ports P00-P03 and P10-P13 with every two ports. If only one of the two pins is used, leave another one open.

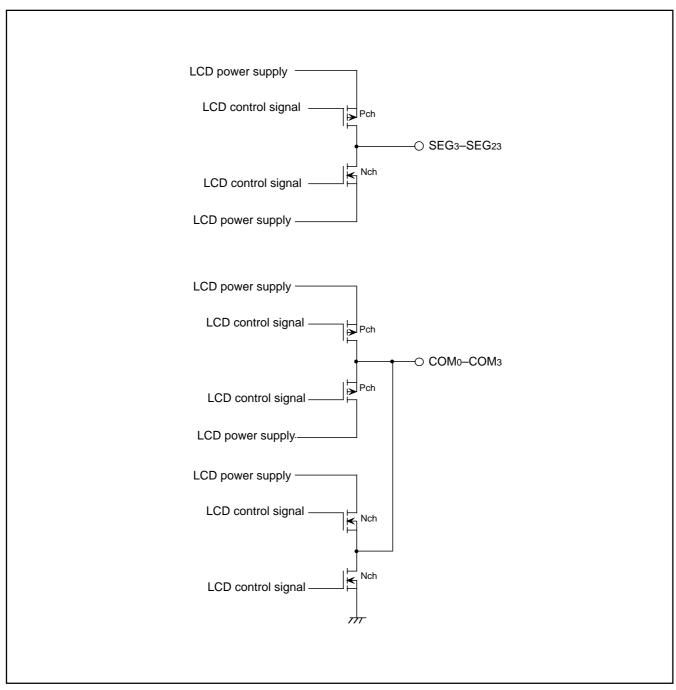

PORT BLOCK DIAGRAMS




Port block diagram (1)


Port block diagram (2)





Port block diagram (5)

Port block diagram (8)

FUNCTION BLOCK OPERATIONS CPU

(1) Arithmetic logic unit (ALU)

The arithmetic logic unit ALU performs 4-bit arithmetic such as 4-bit data addition, comparison, AND operation, OR operation, and bit manipulation.

(2) Register A and carry flag

Register A is a 4-bit register used for arithmetic, transfer, exchange, and I/O operation.

Carry flag CY is a 1-bit flag that is set to "1" when there is a carry with the AMC instruction (Figure 1).

It is unchanged with both A n instruction and AM instruction. The value of Ao is stored in carry flag CY with the RAR instruction (Figure 2).

Carry flag CY can be set to "1" with the SC instruction and cleared to "0" with the RC instruction.

(3) Registers B and E

Register B is a 4-bit register used for temporary storage of 4-bit data, and for 8-bit data transfer together with register A.

Register E is an 8-bit register. It can be used for 8-bit data transfer with register B used as the high-order 4 bits and register A as the low-order 4 bits (Figure 3).

Register E is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

(4) Register D

Register D is a 3-bit register.

It is used to store a 7-bit ROM address together with register A and is used as a pointer within the specified page when the TABP p, BLA p, or BMLA p instruction is executed (Figure 4).

Register D is undefined after system is released from reset and returned from the RAM back-up. Accordingly, set the initial value.

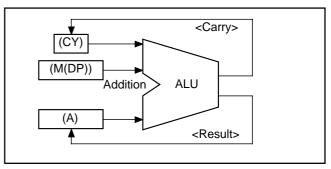


Fig. 1 AMC instruction execution example

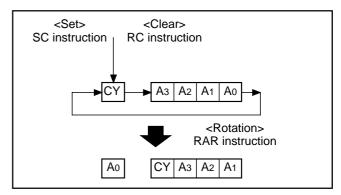


Fig. 2 RAR instruction execution example

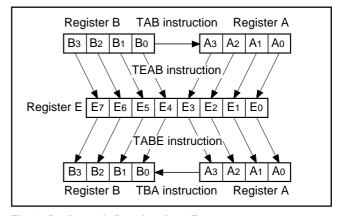


Fig. 3 Registers A, B and register E

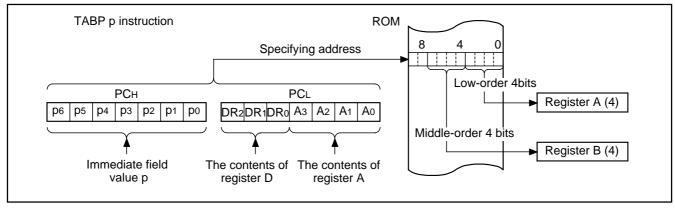


Fig. 4 TABP p instruction execution example

(5) Stack registers (SKs) and stack pointer (SP)

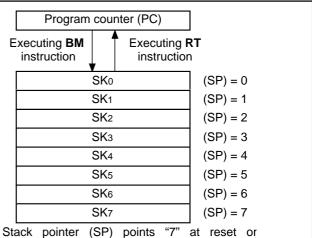
Stack registers (SKs) are used to temporarily store the contents of program counter (PC) just before branching until returning to the original routine when;

- branching to an interrupt service routine (referred to as an interrupt service routine),
- performing a subroutine call, or
- executing the table reference instruction (TABP p).

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together. The contents of registers SKs are destroyed when 8 levels are exceeded.

The register SK nesting level is pointed automatically by 3-bit stack pointer (SP). The contents of the stack pointer (SP) can be transferred to register A with the TASP instruction.

Figure 5 shows the stack registers (SKs) structure.


Figure 6 shows the example of operation at subroutine call.

(6) Interrupt stack register (SDP)

Interrupt stack register (SDP) is a 1-stage register. When an interrupt occurs, this register (SDP) is used to temporarily store the contents of data pointer, carry flag, skip flag, register A, and register B just before an interrupt until returning to the original routine. Unlike the stack registers (SKs), this register (SDP) is not used when executing the subroutine call instruction and the table reference instruction.

(7) Skip flag

Skip flag controls skip decision for the conditional skip instructions and continuous described skip instructions. When an interrupt occurs, the contents of skip flag is stored automatically in the interrupt stack register (SDP) and the skip condition is retained.

returning from RAM back-up mode. It points "0" by executing the first **BM** instruction, and the contents of program counter is stored in SKo. When the **BM** instruction is executed after eight stack registers are used ((SP) = 7), (SP) = 0 and the contents of SKo is destroyed.

Fig. 5 Stack registers (SKs) structure

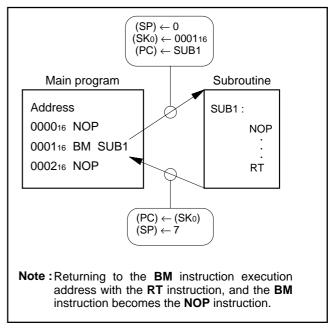


Fig. 6 Example of operation at subroutine call

(8) Program counter (PC)

Program counter (PC) is used to specify a ROM address (page and address). It determines a sequence in which instructions stored in ROM are read. It is a binary counter that increments the number of instruction bytes each time an instruction is executed. However, the value changes to a specified address when branch instructions, subroutine call instructions, return instructions, or the table reference instruction (TABP p) is executed.

Program counter consists of PCH (most significant bit to bit 7) which specifies to a ROM page and PCL (bits 6 to 0) which specifies an address within a page. After it reaches the last address (address 127) of a page, it specifies address 0 of the next page (Figure 7).

Make sure that the PCH does not specify after the last page of the built-in ROM.

(9) Data pointer (DP)

Data pointer (DP) is used to specify a RAM address and consists of registers Z, X, and Y. Register Z specifies a RAM file group, register X specifies a file, and register Y specifies a RAM digit (Figure 8).

Register Y is also used to specify the port D bit position.

When using port D, set the port D bit position to register Y certainly and execute the SD, RD, or SZD instruction (Figure 9).

Note

Register Z of data pointer is undefined after system is released from reset

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

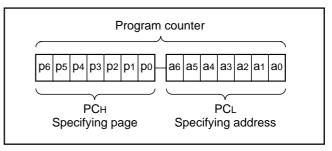


Fig. 7 Program counter (PC) structure

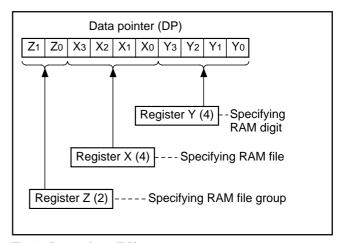


Fig. 8 Data pointer (DP) structure

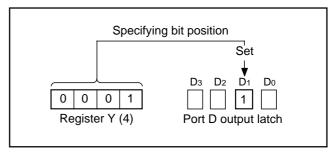


Fig. 9 SD instruction execution example

PROGRAM MEMORY (ROM)

The program memory is a mask ROM. 1 word of ROM is composed of 10 bits. ROM is separated every 128 words by the unit of page (addresses 0 to 127). Table 1 shows the ROM size and pages. Figure 10 shows the ROM map of M34554ED.

Table 1 ROM size and pages

Part number	ROM (PROM) size (X 10 bits)	Pages
M34554M8	8192 words	64 (0 to 63)
M34554MC	12288 words	96 (0 to 95)
M34554ED	16384 words	128 (0 to 127)

Note: Data in pages 64 to 127 can be referred with the TABP p instruction after the SBK instruction is executed.

Data in pages 0 to 63 can be referred with the TABP p instruction after the RBK instruction is executed.

A part of page 1 (addresses 008016 to 00FF16) is reserved for interrupt addresses (Figure 11). When an interrupt occurs, the address (interrupt address) corresponding to each interrupt is set in the program counter, and the instruction at the interrupt address is executed. When using an interrupt service routine, write the instruction generating the branch to that routine at an interrupt address.

Page 2 (addresses 010016 to 017F16) is the special page for subroutine calls. Subroutines written in this page can be called from any page with the 1-word instruction (BM). Subroutines extending from page 2 to another page can also be called with the BM instruction when it starts on page 2.

ROM pattern (bits 7 to 0) of all addresses can be used as data areas with the TABP p instruction.

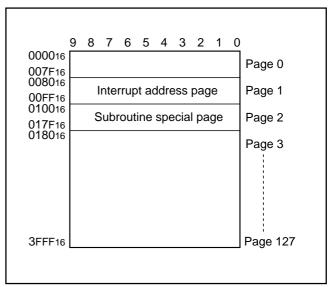


Fig. 10 ROM map of M34554ED

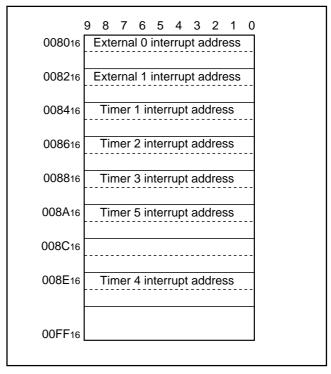


Fig. 11 Page 1 (addresses 008016 to 00FF16) structure

DATA MEMORY (RAM)

1 word of RAM is composed of 4 bits, but 1-bit manipulation (with the SB j, RB j, and SZB j instructions) is enabled for the entire memory area. A RAM address is specified by a data pointer. The data pointer consists of registers Z, X, and Y. Set a value to the data pointer certainly when executing an instruction to access RAM (also, set a value after system returns from RAM back-up). RAM includes the area for LCD.

When writing "1" to a bit corresponding to displayed segment, the segment is turned on.

Table 2 shows the RAM size. Figure 12 shows the RAM map.

Note

Register Z of data pointer is undefined after system is released from reset.

Also, registers Z, X and Y are undefined in the RAM back-up. After system is returned from the RAM back-up, set these registers.

Table 2 RAM size

Part number	RAM size
M34554M8	512 words X 4 bits (2048 bits)
M34554MC	512 words X 4 bits (2048 bits)
M34554ED	512 words X 4 bits (2048 bits)

RAM 512 words X 4 bits (2048 bits)

	Register Z	0					1												
	Register X	0	1	2	3		12	13	14	15	0	1	2		11	12	13	14	15
	0																		
	1																		
	2																		
	3																		
	4																		
	5																		
≻	6																		
stel	7																		
Register Y	8															0	8	16	
œ	9															1	9	17	25
	10															2	10	18	
	11															3	11	19	
	12															4	12	20	28
	13															5		21	29
	14															6	14		
	15															7	15	23	31

Note: The numbers in the shaded area indicate the corresponding segment output pin numbers.

Fig. 12 RAM map

INTERRUPT FUNCTION

The interrupt type is a vectored interrupt branching to an individual address (interrupt address) according to each interrupt source. An interrupt occurs when the following 3 conditions are satisfied.

- An interrupt activated condition is satisfied (request flag = "1")
- Interrupt enable bit is enabled ("1")
- Interrupt enable flag is enabled (INTE = "1")

Table 3 shows interrupt sources. (Refer to each interrupt request flag for details of activated conditions.)

(1) Interrupt enable flag (INTE)

The interrupt enable flag (INTE) controls whether the every interrupt enable/disable. Interrupts are enabled when INTE flag is set to "1" with the EI instruction and disabled when INTE flag is cleared to "0" with the DI instruction. When any interrupt occurs, the INTE flag is automatically cleared to "0," so that other interrupts are disabled until the EI instruction is executed.

(2) Interrupt enable bit

Use an interrupt enable bit of interrupt control registers V1 and V2 to select the corresponding interrupt or skip instruction.

Table 4 shows the interrupt request flag, interrupt enable bit and skip instruction.

Table 5 shows the interrupt enable bit function.

(3) Interrupt request flag

When the activated condition for each interrupt is satisfied, the corresponding interrupt request flag is set to "1." Each interrupt request flag is cleared to "0" when either;

- an interrupt occurs, or
- the next instruction is skipped with a skip instruction.

Each interrupt request flag is set when the activated condition is satisfied even if the interrupt is disabled by the INTE flag or its interrupt enable bit. Once set, the interrupt request flag retains set until a clear condition is satisfied.

Accordingly, an interrupt occurs when the interrupt disable state is released while the interrupt request flag is set.

If more than one interrupt request flag is set when the interrupt disable state is released, the interrupt priority level is as follows shown in Table 3.

Table 3 Interrupt sources

	terrupt sources		
Priority level	Interrupt name	Activated condition	Interrupt address
1	External 0 interrupt	Level change of INT0 pin	Address 0 in page 1
2	External 1 interrupt	Level change of INT1 pin	Address 2 in page 1
3	Timer 1 interrupt	Timer 1 underflow	Address 4 in page 1
4	Timer 2 interrupt	Timer 2 underflow	Address 6 in page 1
5	Timer 3 interrupt	Timer 3 underflow	Address 8 in page 1
6	Timer 5 interrupt	Timer 5 underflow	Address A in page 1
7	Timer 4 interrupt	Timer 4 underflow	Address E in page 1

Table 4 Interrupt request flag, interrupt enable bit and skip instruction

311 4011011			
Interrupt name	Interrupt request flag	Skip instruction	Interrupt enable bit
External 0 interrupt	EXF0	SNZ0	V10
External 1 interrupt	EXF1	SNZ1	V11
Timer 1 interrupt	T1F	SNZT1	V12
Timer 2 interrupt	T2F	SNZT2	V13
Timer 3 interrupt	T3F	SNZT3	V20
Timer 5 interrupt	T5F	SNZT5	V21
Timer 4 interrupt	T4F	SNZT4	V23

Table 5 Interrupt enable bit function

Interrupt enable bit	Occurrence of interrupt	Skip instruction
1	Enabled	Invalid
0	Disabled	Valid

(4) Internal state during an interrupt

The internal state of the microcomputer during an interrupt is as follows (Figure 14).

- Program counter (PC)
 An interrupt address is set in program counter. The address to be executed when returning to the main routine is automatically stored in the stack register (SK).
- Interrupt enable flag (INTE)
 INTE flag is cleared to "0" so that interrupts are disabled.
- Interrupt request flag
 Only the request flag for the current interrupt source is cleared to "0"
- Data pointer, carry flag, skip flag, registers A and B
 The contents of these registers and flags are stored automatically in the interrupt stack register (SDP).

(5) Interrupt processing

When an interrupt occurs, a program at an interrupt address is executed after branching a data store sequence to stack register. Write the branch instruction to an interrupt service routine at an interrupt address.

Use the RTI instruction to return from an interrupt service routine. Interrupt enabled by executing the EI instruction is performed after executing 1 instruction (just after the next instruction is executed). Accordingly, when the EI instruction is executed just before the RTI instruction, interrupts are enabled after returning the main routine. (Refer to Figure 13)

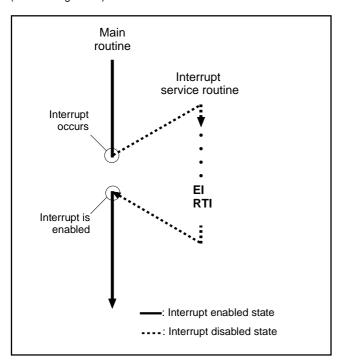


Fig. 13 Program example of interrupt processing

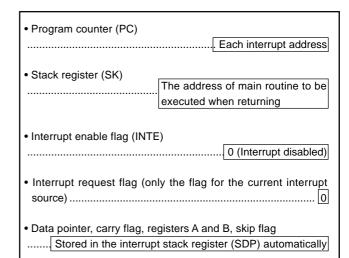


Fig. 14 Internal state when interrupt occurs

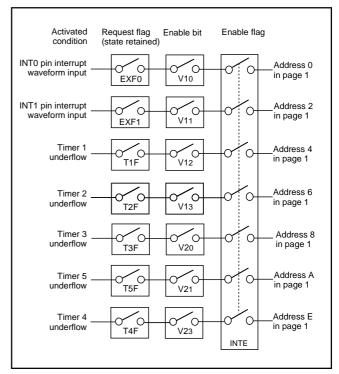


Fig. 15 Interrupt system diagram

(6) Interrupt control registers

- Interrupt control register V1
 Interrupt enable bits of external 0, external 1, timer 1 and timer 2
 are assigned to register V1. Set the contents of this register
 through register A with the TV1A instruction. The TAV1 instruction
 can be used to transfer the contents of register V1 to register A.
- Interrupt control register V2

The timer 3, timer 5, timer 4 interrupt enable bit is assigned to register V2. Set the contents of this register through register A with the TV2A instruction. The TAV2 instruction can be used to transfer the contents of register V2 to register A.

Table 6 Interrupt control registers

	Interrupt control register V1	at	reset : 00002	at power down: 00002	R/W TAV1/TV1A
\/10	V13 Timer 2 interrupt enable bit		Interrupt disabled	(SNZT2 instruction is valid)	•
V 13			Interrupt enabled (SNZT2 instruction is invalid)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)	
V 12	Timer i interrupt enable bit	1	Interrupt enabled (SNZT1 instruction is invalid)	
\///	External 1 interrupt enable bit	0	Interrupt disabled	(SNZ1 instruction is valid)	
V11	External i interrupt enable bit	1	Interrupt enabled (SNZ1 instruction is invalid)	
1/40	External 0 interrupt enable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
V10	External o interrupt enable bit	1	Interrupt enabled (SNZ0 instruction is invalid)	

	Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A		
1/20	V23 Timer 4 interrupt enable bit		Interrupt disabled (SNZT4 instruction is valid)				
V 23			Interrupt enabled ((SNZT4 instruction is invalid)			
1/20	V22 Not used	0	This bit has no function, but read/write is enabled.				
V Z Z	Not used	1	- This bit has no function, but read/write is enabled.				
V21	Timer 5 interrupt enable bit	0	Interrupt disabled	(SNZT5 instruction is valid)			
V21	Timer 5 interrupt enable bit	1	Interrupt enabled ((SNZT5 instruction is invalid)			
V20	Timer 3 interrupt enable bit	0	Interrupt disabled	(SNZT3 instruction is valid)			
V 20	Timer 3 interrupt enable bit	1	Interrupt enabled ((SNZT3 instruction is invalid)			

Note: "R" represents read enabled, and "W" represents write enabled.

(7) Interrupt sequence

Interrupts only occur when the respective INTE flag, interrupt enable bits (V10–V13, V20, V21, V23), and interrupt request flag are "1." The interrupt actually occurs 2 to 3 machine cycles after the cycle in which all three conditions are satisfied. The interrupt occurs after 3 machine cycles only when the three interrupt conditions are satisfied on execution of other than one-cycle instructions (Refer to Figure 16).

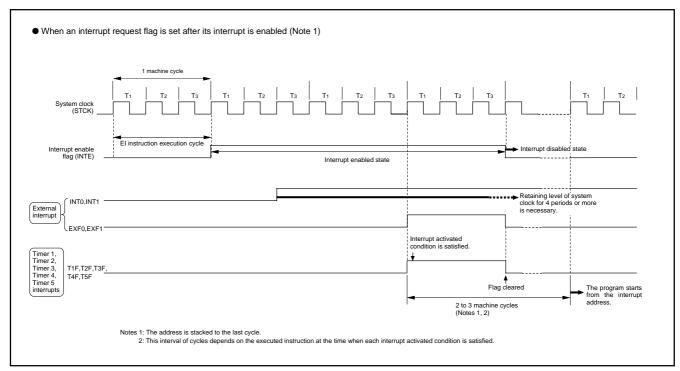


Fig. 16 Interrupt sequence

EXTERNAL INTERRUPTS

The 4554 Group has the external 0 interrupt and external 1 interrupt.

An external interrupt request occurs when a valid waveform is input to an interrupt input pin (edge detection).

The external interrupt can be controlled with the interrupt control registers I1 and I2.

Table 7 External interrupt activated conditions

Name	Input pin	Activated condition	Valid waveform selection bit
External 0 interrupt	D8/INT0	When the next waveform is input to D8/INT0 pin	l11
		 Falling waveform ("H"→"L") 	l12
		 Rising waveform ("L"→"H") 	
		Both rising and falling waveforms	
External 1 interrupt	D9/INT1	When the next waveform is input to D9/INT1 pin	I21
		 Falling waveform ("H"→"L") 	122
		Rising waveform ("L"→"H")	
		Both rising and falling waveforms	

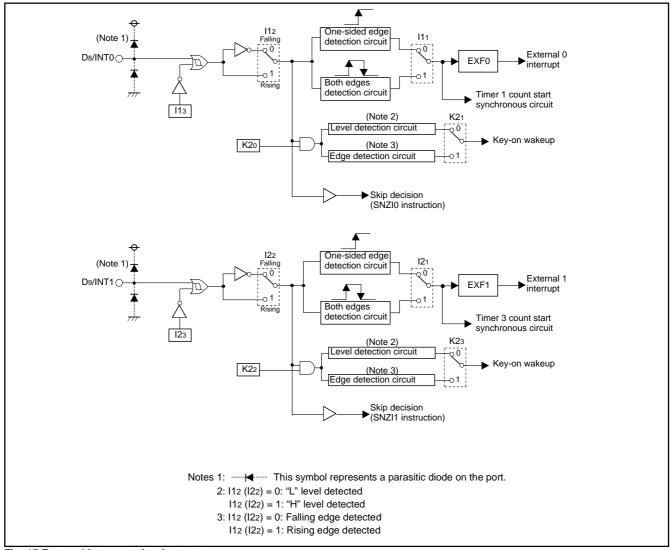


Fig. 17 External interrupt circuit structure

(1) External 0 interrupt request flag (EXF0)

External 0 interrupt request flag (EXF0) is set to "1" when a valid waveform is input to D8/INT0 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF0 flag can be examined with the skip instruction (SNZ0). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF0 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction.

- External 0 interrupt activated condition
 - External 0 interrupt activated condition is satisfied when a valid waveform is input to D8/INT0 pin.
 - The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 0 interrupt is as follows.
- ① Set the bit 3 of register I1 to "1" for the INT0 pin to be in the input enabled state.
- 2 Select the valid waveform with the bits 1 and 2 of register I1.
- ③ Clear the EXF0 flag to "0" with the SNZ0 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ0 instruction.
- Set both the external 0 interrupt enable bit (V10) and the INTE flag to "1."

The external 0 interrupt is now enabled. Now when a valid waveform is input to the D8/INT0 pin, the EXF0 flag is set to "1" and the external 0 interrupt occurs.

(2) External 1 interrupt request flag (EXF1)

External 1 interrupt request flag (EXF1) is set to "1" when a valid waveform is input to D9/INT1 pin.

The valid waveforms causing the interrupt must be retained at their level for 4 clock cycles or more of the system clock (Refer to Figure 16).

The state of EXF1 flag can be examined with the skip instruction (SNZ1). Use the interrupt control register V1 to select the interrupt or the skip instruction. The EXF1 flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with the skip instruction

- External 1 interrupt activated condition
- External 1 interrupt activated condition is satisfied when a valid waveform is input to D9/INT1 pin.
- The valid waveform can be selected from rising waveform, falling waveform or both rising and falling waveforms. An example of how to use the external 1 interrupt is as follows.
- ① Set the bit 3 of register I2 to "1" for the INT1 pin to be in the input enabled state.
- ② Select the valid waveform with the bits 1 and 2 of register I2.
- ③ Clear the EXF1 flag to "0" with the SNZ1 instruction.
- Set the NOP instruction for the case when a skip is performed
 with the SNZ1 instruction.
- Set both the external 1 interrupt enable bit (V11) and the INTE flag to "1."

The external 1 interrupt is now enabled. Now when a valid waveform is input to the D9/INT1 pin, the EXF1 flag is set to "1" and the external 1 interrupt occurs.

(3) External interrupt control registers

• Interrupt control register I1

Register I1 controls the valid waveform for the external 0 interrupt. Set the contents of this register through register A with the TI1A instruction. The TAI1 instruction can be used to transfer the contents of register I1 to register A.

• Interrupt control register I2

Register I2 controls the valid waveform for the external 1 interrupt. Set the contents of this register through register A with the TI2A instruction. The TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 8 External interrupt control register

	Interrupt control register I1	at	reset : 00002	at power down : state retained	R/W TAI1/TI1A				
110	INTO pin input control bit (Note 2)		INT0 pin input disa	INT0 pin input disabled					
113			INT0 pin input ena	bled					
		0	Falling waveform/"L" level ("L" level is recognized with the SNZI0						
110	Interrupt valid waveform for INT0 pin/		instruction)						
112	return level selection bit (Note 2)	eturn level selection bit (Note 2)	4	Rising waveform/"H" level ("H" level is recognized with the SNZI0					
		'	instruction)						
I1 1	INT0 pin edge detection circuit control bit	0	One-sided edge de	etected					
'''	in 10 pin eage detection circuit control bit	1	Both edges detected						
110	INT0 pin Timer 1 count start synchronous	0	Timer 1 count start	t synchronous circuit not selected					
110	circuit selection bit	1	Timer 1 count start	t synchronous circuit selected					

	Interrupt control register I2	at	reset : 00002	at power down : state retained	R/W TAI2/TI2A			
120	INT1 pin input control bit (Note 2)		INT1 pin input disabled					
123			INT1 pin input ena	bled				
120	Interrupt valid waveform for INT1 pin/		Falling waveform/"L" level ("L" level is recognized with the SNZI instruction)					
l2 2	return level selection bit (Note 2)	1	Rising waveform/"I instruction)	H" level ("H" level is recognized with	the SNZI1			
I 21	INT1 pip odgo detection circuit central bit	0	One-sided edge de	etected				
121	INT1 pin edge detection circuit control bit	1	Both edges detected					
120	INT1 pin Timer 3 count start synchronous	0	Timer 3 count start	t synchronous circuit not selected				
120	circuit selection bit	1	Timer 3 count start synchronous circuit selected					

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of these bits (I12, I13, I22 and I23) are changed, the external interrupt request flag (EXF0, EXF1) may be set.

(4) Notes on External 0 interrupts

- ① Note [1] on bit 3 of register I1
 - When the input of the INTO pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.
- Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 18⁽¹⁾) and then, change the bit 3 of register I1.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 182).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 18³).

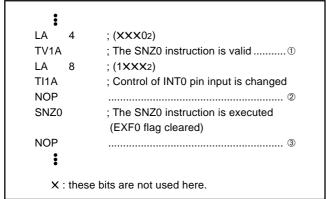


Fig. 18 External 0 interrupt program example-1

- 2 Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT0 pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 19①).

```
LA 0 ; (00XX2)

TI1A ; Input of INT0 disabled .......

DI

EPOF

POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 19 External 0 interrupt program example-2

- 3 Note on bit 2 of register I1
- When the interrupt valid waveform of the Ds/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 20⁽¹⁾) and then, change the bit 2 of register I1.
 - In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 202).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 20③).

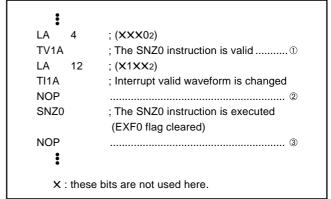


Fig. 20 External 0 interrupt program example-3

(5) Notes on External 1 interrupts

- ① Note [1] on bit 3 of register I2
 - When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.
- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 21⁽¹⁾) and then, change the bit 3 of register I2.
 - In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 21®).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 21③).

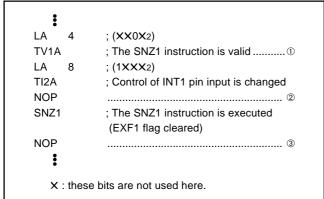


Fig. 21 External 1 interrupt program example-1

- 2 Note [2] on bit 3 of register I2
 - When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register I2 before system enters to the RAM back-up mode. (refer to Figure 22①).

```
LA 0 ; (00XX2)
TI2A ; Input of INT1 disabled ......①
DI
EPOF
POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 22 External 1 interrupt program example-2

- 3 Note on bit 2 of register I2
- When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the De/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 23⁽¹⁾) and then, change the bit 2 of register I2.
 - In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 23⁽²⁾).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 23³).

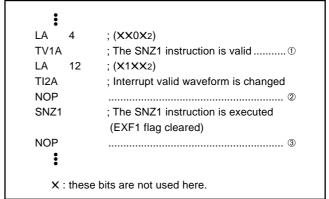


Fig. 23 External 1 interrupt program example-3

TIMERS

The 4554 Group has the following timers.

· Programmable timer

The programmable timer has a reload register and enables the frequency dividing ratio to be set. It is decremented from a setting value n. When it underflows (count to n + 1), a timer interrupt request flag is set to "1," new data is loaded from the reload register, and count continues (auto-reload function).

Fixed dividing frequency timer
 The fixed dividing frequency timer has the fixed frequency dividing ratio (n). An interrupt request flag is set to "1" after every n count of a count pulse.

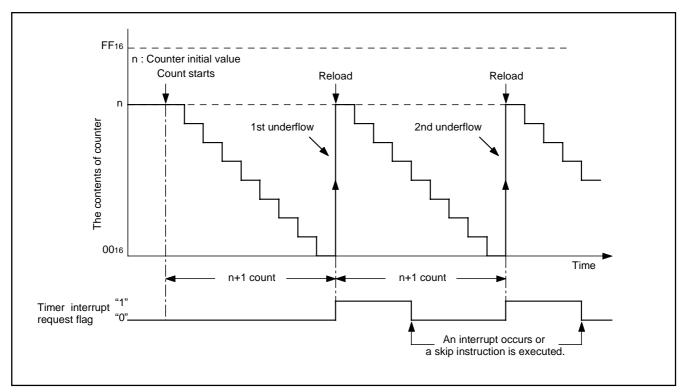


Fig. 24 Auto-reload function

The 4554 Group timer consists of the following circuits.

- Prescaler : 8-bit programmable timer
- Timer 1 : 8-bit programmable timer
- Timer 2 : 8-bit programmable timer
- Timer 3 : 8-bit programmable timer
- Timer 4: 8-bit programmable timer
- Timer 5: 16-bit fixed dividing frequency timer
- Timer LC: 4-bit programmable timer
- Watchdog timer: 16-bit fixed dividing frequency timer
 (Timers 1, 2, 3, 4 and 5 have the interrupt function, respectively)

Prescaler and timers 1, 2, 3, 4, 5 and LC can be controlled with the timer control registers PA, W1 to W6. The watchdog timer is a free counter which is not controlled with the control register. Each function is described below.

Table 9 Function related timers

Circuit	Structure	Count source	Frequency dividing ratio	Use of output signal	Control register
Prescaler	8-bit programmable binary down counter	Instruction clock (INSTCK)	1 to 256	• Timer 1, 2, 3, 4 and LC count sources	PA
Timer 1	8-bit programmable	Instruction clock (INSTCK)	1 to 256	Timer 2 count source	W1
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	W2
	(link to INT0 input)	Timer 5 underflow		Timer 1 interrupt	
		(T5UDF) • CNTR0 input			
Timer 2	8-bit programmable	System clock (STCK)	1 to 256	Timer 3 count source	W2
	binary down counter	Prescaler output (ORCLK)		CNTR0 output	
		• Timer 1 underflow (T1UDF)		Timer 2 interrupt	
		PWM output (PWMOUT)			
Timer 3	8-bit programmable	PWM output (PWMOUT)	1 to 256	CNTR1 output control	W3
	binary down counter	Prescaler output (ORCLK)		Timer 3 interrupt	
	(link to INT1 input)	Timer 2 underflow			
		(T2UDF)			
		CNTR1 input			
Timer 4	8-bit programmable	XIN input	1 to 256	Timer 2, 3 count source	W4
	binary down counter	Prescaler output (ORCLK)		CNTR1 output	
	(PWM output function)			Timer 4 interrupt	
Timer 5	16-bit fixed dividing	XCIN input	8192	Timer 1, LC count source	W5
	frequency		16384	Timer 5 interrupt	
			32768		
			65536		
Timer LC	4-bit programmable	Bit 4 of timer 5	1 to 16	• LCD clock	W6
	binary down counter	Prescaler output (ORCLK)			
Watchdog	16-bit fixed dividing	Instruction clock (INSTCK)	65534	System reset (count twice)	
timer	frequency			WDF flag decision	

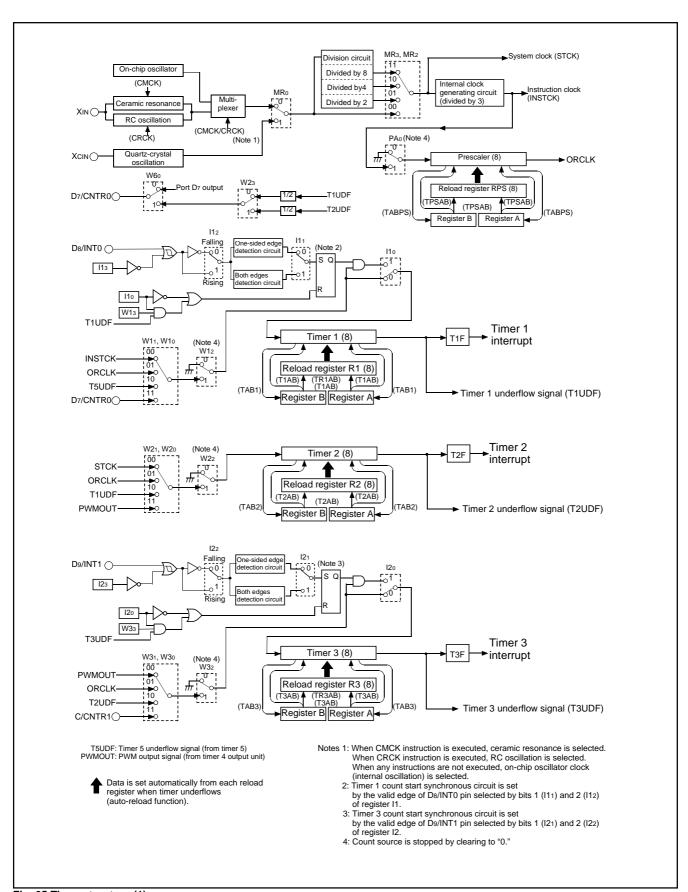


Fig. 25 Timer structure (1)

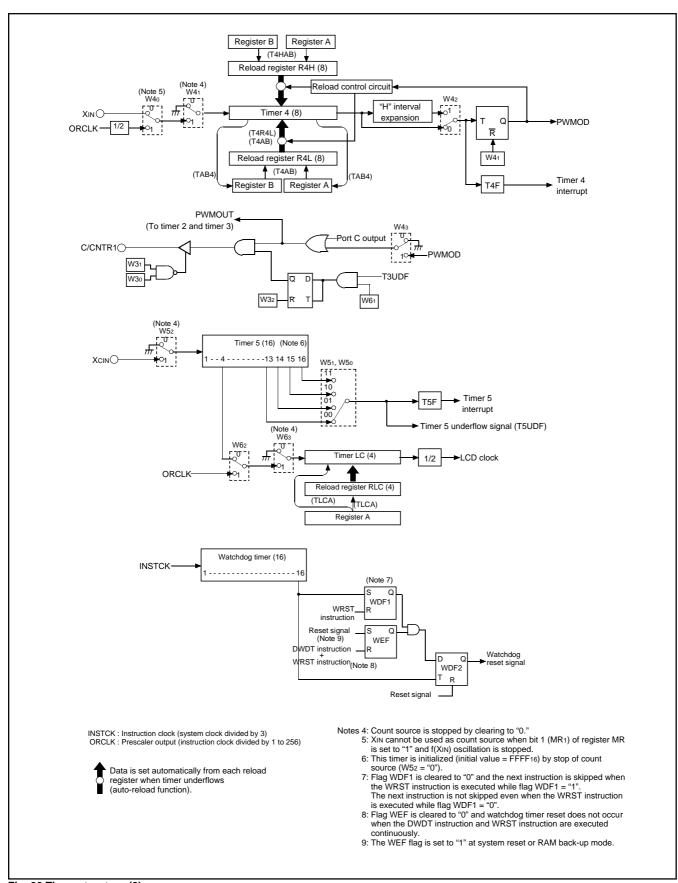


Fig. 26 Timer structure (2)

Table 10 Timer related registers

Timer control register PA		at reset : 02		at power down : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	
PAU Prescaler control bit		1	Operating		

	Timer control register W1		at reset : 00002		at power down : state retained	R/W TAW1/TW1A
W13	W13 Timer 1 count auto-stop circuit selection bit (Note 2)		0 Timer 1 count auto-sto		stop circuit not selected	•
***13			1	Timer 1 count auto-	-stop circuit selected	
\\\/12	W12 Timer 1 control bit		0 Stop (state retained)			
VV 12	Timer 1 control bit	•	1	Operating		
		W11	W10		Count source	
W11		0	0	Instruction clock (IN	NSTCK)	
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)		
W10		1	0	Timer 5 underflow signal (T5UDF)		
			1	CNTR0 input		

Timer control register W2		at reset : 00002		reset: 00002	at power down : state retained	R/W TAW2/TW2A
W23	CNTR0 output control bit	0		Timer 1 underflow signal divided by 2 output		
***25		1		Timer 2 underflow signal divided by 2 output		
W22	Timer 2 control bit	0		Stop (state retained)		
		1 Operating				
W21	- Timer 2 count source selection bits	W21	W20	Count source		
		0	0	System clock (STCK)		
		0	1	Prescaler output (ORCLK)		
		1	0	Timer 1 underflow signal (T1UDF)		
		1	1	PWM signal (PWMOUT)		

Timer control register W3		at reset : 00002			at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection bit (Note 3)	0		Timer 3 count auto-stop circuit not selected		
		1		Timer 3 count auto-stop circuit selected		
W32	Timer 3 control bit	0		Stop (state retained)		
VV32		1	1 Operating			
W31 W30	Timer 3 count source selection bits (Note 4)	W31	W30	Count source		
		0	0	PWM signal (PWMOUT)		
		0	1	Prescaler output (ORCLK)		
		1	0	Timer 2 underflow signal (T2UDF)		
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1").
 3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
 4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

Timer control register W4		at reset : 00002		at power down : 00002	R/W TAW4/TW4A
W43	CNTR1 output control bit	0	CNTR1 output inva	alid	•
VV43		1	CNTR1 output valid		
W42	PWM signal "H" interval expansion function control bit	0	PWM signal "H" interval expansion function invalid		
VV42		1	PWM signal "H" in	terval expansion function valid	
W41	Timer 4 control bit	0	Stop (state retained)		
VV41		1	Operating		
W40	Timer 4 count source selection bit	0	XIN input		
VV40		1	Prescaler output (0	ORCLK) divided by 2	

Timer control register W5		at reset : 00002		reset : 00002	at power down : state retained	R/W TAW5/TW5A
W53	Not used)	This bit has no function, but read/write is enabled.		
'''		1				
W52	Timer 5 control bit	0		Stop (state initialized)		
		•	1 Operating			
W51	Timer 5 count value selection bits	W51	W50		Count value	
		0	0	Underflow occurs every 8192 counts		
		0	1	Underflow occurs every 16384 counts		
		1	0	Underflow occurs every 32768 counts		
		1	1	Underflow occurs e	every 65536 counts	

Timer control register W6		at reset : 00002		at power down : state retained	R/W TAW6/TW6A		
W63	Timer LC control bit	0	Stop (state retained)				
		1	Operating				
W62	Timer LC count source selection bit	0	Bit 4 (T54) of timer 5				
VV02		1	Prescaler output (ORCLK)				
W61	CNTR1 output auto-control circuit		CNTR1 output auto-control circuit not selected				
VVO	selection bit	1	CNTR1 output auto-control circuit selected				
W60	D7/CNTR0 pin function selection bit	0	D7(I/O)/CNTR0 inp	out	-		
VV00	(Note 2)	1	CNTR0 input/outpu	ut/D7 (input)			

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.

(1) Timer control registers

· Timer control register PA

Register PA controls the count operation of prescaler. Set the contents of this register through register A with the TPAA instruction.

• Timer control register W1

Register W1 controls the selection of timer 1 count auto-stop circuit, and the count operation and count source of timer 1. Set the contents of this register through register A with the TW1A instruction. The TAW1 instruction can be used to transfer the contents of register W1 to register A.

Timer control register W2

Register W2 controls the selection of CNTR0 output, and the count operation and count source of timer 2. Set the contents of this register through register A with the TW2A instruction. The TAW2 instruction can be used to transfer the contents of register W2 to register A.

· Timer control register W3

Register W3 controls the selection of timer 3 count auto-stop circuit, and the count operation and count source of timer 3. Set the contents of this register through register A with the TW3A instruction. The TAW3 instruction can be used to transfer the contents of register W3 to register A.

• Timer control register W4

Register W4 controls the CNTR1 output, the expansion of "H" interval of PWM output, and the count operation and count source of timer 4. Set the contents of this register through register A with the TW4A instruction. The TAW4 instruction can be used to transfer the contents of register W4 to register A.

• Timer control register W5

Register W5 controls the count operation and count source of timer 5. Set the contents of this register through register A with the TW5A instruction. The TAW5 instruction can be used to transfer the contents of register W5 to register A.

• Timer control register W6

Register W6 controls the operation and count source of timer LC, the selection of CNTR1 output auto-control circuit and the D7/CNTR0 pin function. Set the contents of this register through register A with the TW6A instruction. The TAW6 instruction can be used to transfer the contents of register W6 to register A..

(2) Prescaler (interrupt function)

Prescaler is an 8-bit binary down counter with the prescaler reload register PRS. Data can be set simultaneously in prescaler and the reload register RPS with the TPSAB instruction. Data can be read from reload register RPS with the TABPS instruction.

Stop counting and then execute the TPSAB or TABPS instruction to read or set prescaler data.

Prescaler starts counting after the following process;

① set data in prescaler, and

2 set the bit 0 of register PA to "1."

When a value set in reload register RPS is n, prescaler divides the count source signal by n + 1 (n = 0 to 255).

Count source for prescaler is the instruction clock (INSTCK).

Once count is started, when prescaler underflows (the next count pulse is input after the contents of prescaler becomes "0"), new data is loaded from reload register RPS, and count continues (auto-reload function).

The output signal (ORCLK) of prescaler can be used for timer 1, 2, 3, 4 and LC count sources.

(3) Timer 1 (interrupt function)

Timer 1 is an 8-bit binary down counter with the timer 1 reload register (R1). Data can be set simultaneously in timer 1 and the reload register (R1) with the T1AB instruction. Data can be written to reload register (R1) with the TR1AB instruction. Data can be read from timer 1 with the TAB1 instruction.

Stop counting and then execute the T1AB or TAB1 instruction to read or set timer 1 data.

When executing the TR1AB instruction to set data to reload register R1 while timer 1 is operating, avoid a timing when timer 1 underflows.

Timer 1 starts counting after the following process;

① set data in timer 1

2 set count source by bits 0 and 1 of register W1, and

3 set the bit 2 of register W1 to "1."

When a value set in reload register R1 is n, timer 1 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 1 underflows (the next count pulse is input after the contents of timer 1 becomes "0"), the timer 1 interrupt request flag (T1F) is set to "1," new data is loaded from reload register R1, and count continues (auto-reload function).

INT0 pin input can be used as the start trigger for timer 1 count operation by setting the bit 0 of register I1 to "1."

Also, in this time, the auto-stop function by timer 1 underflow can be performed by setting the bit 3 of register W1 to "1."

Timer 1 underflow signal divided by 2 can be output from CNTR0 pin by clearing bit 3 of register W2 to "0" and setting bit 0 of register W6 to "1".

(4) Timer 2 (interrupt function)

Timer 2 is an 8-bit binary down counter with the timer 2 reload register (R2). Data can be set simultaneously in timer 2 and the reload register (R2) with the T2AB instruction. Data can be read from timer 2 with the TAB2 instruction. Stop counting and then execute the T2AB or TAB2 instruction to read or set timer 2 data.

Timer 2 starts counting after the following process;

- 1) set data in timer 2.
- $\ensuremath{\mathbb{Q}}$ select the count source with the bits 0 and 1 of register W2, and
- 3 set the bit 2 of register W2 to "1."

When a value set in reload register R2 is n, timer 2 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 2 underflows (the next count pulse is input after the contents of timer 2 becomes "0"), the timer 2 interrupt request flag (T2F) is set to "1," new data is loaded from reload register R2, and count continues (auto-reload function).

Timer 2 underflow signal divided by 2 can be output from CNTR0 pin by setting bit 3 of register W2 to "1" and setting bit 0 of register W6 to "1".

(5) Timer 3 (interrupt function)

Timer 3 is an 8-bit binary down counter with the timer 3 reload register (R3). Data can be set simultaneously in timer 3 and the reload register (R3) with the T3AB instruction. Data can be written to reload register (R3) with the TR3AB instruction. Data can be read from timer 3 with the TAB3 instruction.

Stop counting and then execute the T3AB or TAB3 instruction to read or set timer 3 data.

When executing the TR3AB instruction to set data to reload register R3 while timer 3 is operating, avoid a timing when timer 3 underflows.

Timer 3 starts counting after the following process;

- ① set data in timer 3
- 2 set count source by bits 0 and 1 of register W3, and
- 3 set the bit 2 of register W3 to "1."

When a value set in reload register R3 is n, timer 3 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 3 underflows (the next count pulse is input after the contents of timer 3 becomes "0"), the timer 3 interrupt request flag (T3F) is set to "1," new data is loaded from reload register R3, and count continues (auto-reload function).

INT1 pin input can be used as the start trigger for timer 3 count operation by setting the bit 0 of register I2 to "1."

Also, in this time, the auto-stop function by timer 3 underflow can be performed by setting the bit 3 of register W3 to "1."

(6) Timer 4 (interrupt function)

Timer 4 is an 8-bit binary down counter with two timer 4 reload registers (R4L, R4H). Data can be set simultaneously in timer 4 and the reload register R4L with the T4AB instruction. Data can be set in the reload register R4H with the T4HAB instruction. The contents of reload register R4L set with the T4AB instruction can be set to timer 4 again with the T4R4L instruction. Data can be read from timer 4 with the TAB4 instruction.

Stop counting and then execute the T4AB or TAB4 instruction to read or set timer 4 data.

When executing the T4HAB instruction to set data to reload register R4H while timer 4 is operating, avoid a timing when timer 4 underflows

Timer 4 starts counting after the following process;

- ① set data in timer 4
- 2 set count source by bit 0 of register W4, and
- 3 set the bit 1 of register W4 to "1."

When a value set in reload register R4L is n, timer 4 divides the count source signal by n + 1 (n = 0 to 255).

Once count is started, when timer 4 underflows (the next count pulse is input after the contents of timer 4 becomes "0"), the timer 4 interrupt request flag (T4F) is set to "1," new data is loaded from reload register R4L, and count continues (auto-reload function).

When bit 3 of register W4 is set to "1", timer 4 reloads data from reload register R4L and R4H alternately each underflow.

Timer 4 generates the PWM signal (PWMOUT) of the "L" interval set as reload register R4L, and the "H" interval set as reload register R4H. The PWM signal (PWMOUT) is output from CNTR1 pin.

When bit 2 of register W4 is set to "1" at this time, the interval (PWM signal "H" interval) set to reload register R4H for the counter of timer 4 is extended for a half period of count source.

In this case, when a value set in reload register R4H is n, timer 4 divides the count source signal by n + 1.5 (n = 1 to 255).

When this function is used, set "1" or more to reload register R4H. When bit 1 of register W6 is set to "1", the PWM signal output to CNTR1 pin is switched to valid/invalid each timer 3 underflow. However, when timer 3 is stopped (bit 2 of register W3 is cleared to "0"), this function is canceled.

Even when bit 1 of a register W4 is cleared to "0" in the "H" interval of PWM signal, timer 4 does not stop until it next timer 4 underflow. When clearing bit 1 of register W4 to "0" to stop timer 4, avoid a timing when timer 4 underflows.

(7) Timer 5 (interrupt function)

Timer 5 is a 16-bit binary down counter.

Timer 5 starts counting after the following process;

- ① set count value by bits 0 and 1 of register W5, and
- 2 set the bit 2 of register W5 to "1."

Count source for timer 5 is the sub-clock input (XCIN).

Once count is started, when timer 5 underflows (the set count value is counted), the timer 5 interrupt request flag (T5F) is set to "1." and count continues.

Bit 4 of timer 5 can be used as the timer LC count source for the LCD clock generating.

When bit 2 of register W5 is cleared to "0", timer 5 is initialized to "FFFF16" and count is stopped.

Timer 5 can be used as the counter for clock because it can be operated at clock operating mode (POF instruction execution). When timer 5 underflow occurs at clock operating mode, system returns from the power down state.

(8) Timer LC

Timer LC is a 4-bit binary down counter with the timer LC reload register (RLC). Data can be set simultaneously in timer LC and the reload register (RLC) with the TLCA instruction. Data cannot be read from timer LC. Stop counting and then execute the TLCA instruction to set timer LC data.

Timer LC starts counting after the following process;

- ① set data in timer LC,
- 2 select the count source with the bit 2 of register W6, and
- 3 set the bit 3 of register W6 to "1."

When a value set in reload register RLC is n, timer LC divides the count source signal by n + 1 (n = 0 to 15).

Once count is started, when timer LC underflows (the next count pulse is input after the contents of timer LC becomes "0"), new data is loaded from reload register RLC, and count continues (auto-reload function).

Timer LC underflow signal divided by 2 can be used for the LCD clock.

(9) Timer input/output pin (D7/CNTR0 pin, C/CNTR1 pin)

CNTR0 pin is used to input the timer 1 count source and output the timer 1 and timer 2 underflow signal divided by 2.

CNTR1 pin is used to input the timer 3 count source and output the PWM signal generated by timer 4. When the PWM signal is output from C/CNTR1 pin, set "0" to the output latch of port C.

The D7/CNTR0 pin function can be selected by bit 0 of register W6. The selection of CNTR1 output signal can be controlled by bit 3 of register W4.

When the CNTR0 input is selected for timer 1 count source, timer 1 counts the rising waveform of CNTR0 input.

When the CNTR1 input is selected for timer 3 count source, timer 3 counts the rising waveform of CNTR1 input. Also, when the CNTR1 input is selected, the output of port C is invalid (high-impedance state).

(10) Timer interrupt request flags (T1F, T2F, T3F, T4F, T5F)

Each timer interrupt request flag is set to "1" when each timer underflows. The state of these flags can be examined with the skip instructions (SNZT1, SNZT2, SNZT3, SNZT4, SNZT5).

Use the interrupt control register V1, V2 to select an interrupt or a skip instruction.

An interrupt request flag is cleared to "0" when an interrupt occurs or when the next instruction is skipped with a skip instruction.

(11) Count start synchronization circuit (timer 1, timer 3)

Timer 1 and timer 3 have the count start synchronous circuit which synchronizes the input of INT0 pin and INT1 pin, and can start the timer count operation.

Timer 1 count start synchronous circuit function is selected by setting the bit 0 of register I1 to "1" and the control by INT0 pin input can be performed.

Timer 3 count start synchronous circuit function is selected by setting the bit 0 of register I2 to "1" and the control by INT1 pin input can be performed.

When timer 1 or timer 3 count start synchronous circuit is used, the count start synchronous circuit is set, the count source is input to each timer by inputting valid waveform to INT0 pin or INT1 pin.

The valid waveform of INT0 pin or INT1 pin to set the count start synchronous circuit is the same as the external interrupt activated condition.

Once set, the count start synchronous circuit is cleared by clearing the bit I10 or I20 to "0" or reset.

However, when the count auto-stop circuit is selected, the count start synchronous circuit is cleared (auto-stop) at the timer 1 or timer 3 underflow.

(12) Count auto-stop circuit (timer 1, timer 3)

Timer 1 has the count auto-stop circuit which is used to stop timer 1 automatically by the timer 1 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W1 to "1". It is cleared by the timer 1 underflow and the count source to timer 1 is stopped.

This function is valid only when the timer 1 count start synchronous circuit is selected.

Timer 3 has the count auto-stop circuit which is used to stop timer 3 automatically by the timer 3 underflow when the count start synchronous circuit is used.

The count auto-stop cicuit is valid by setting the bit 3 of register W3 to "1". It is cleared by the timer 3 underflow and the count source to timer 3 is stopped.

This function is valid only when the timer 3 count start synchronous circuit is selected.

(13) Precautions

Note the following for the use of timers.

Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

· Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.

· Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

· Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data.

· Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload register R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

• Timer 4

Avoid a timing when timer 4 underflows to stop timer 4. When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

• Timer 5

Stop timer 5 counting to change its count source.

• Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

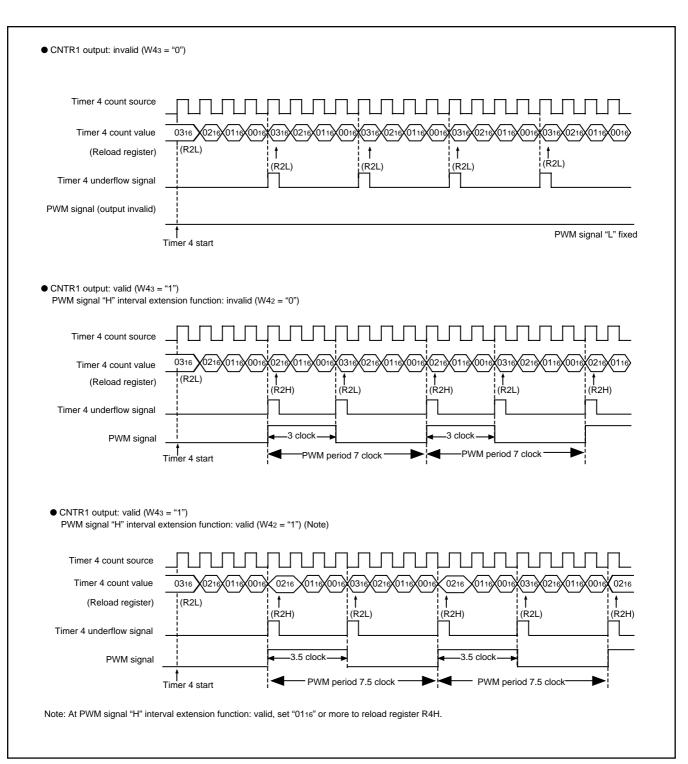


Fig. 27 Timer 4 operation (reload register R4L: "0316", R4H: "0216")

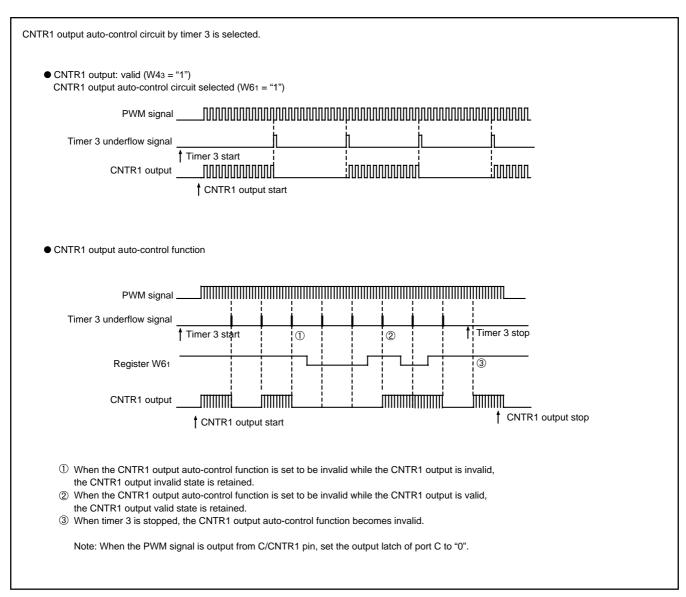


Fig. 28 CNTR1 output auto-control function by timer 3

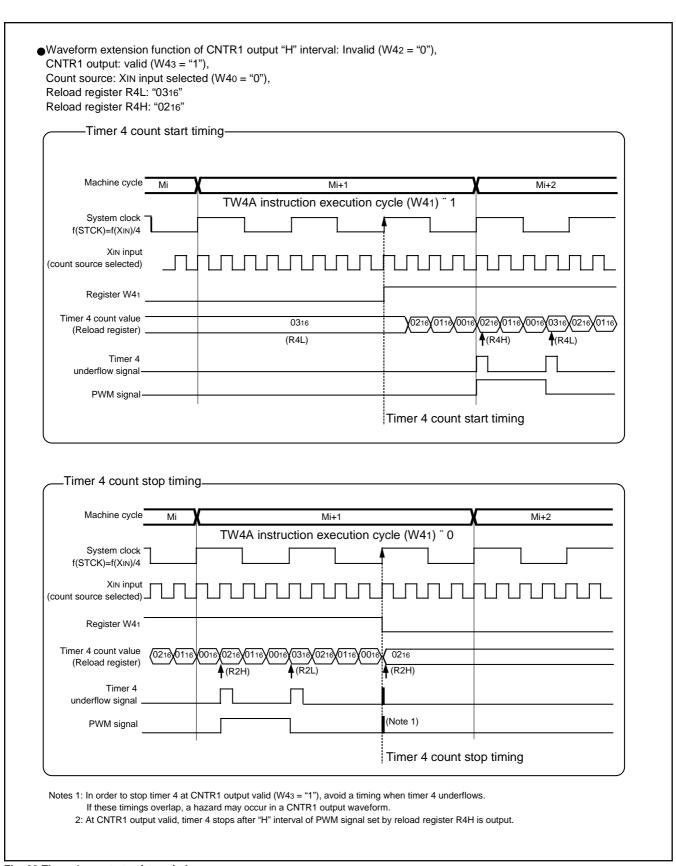


Fig. 29 Timer 4 count start/stop timing

WATCHDOG TIMER

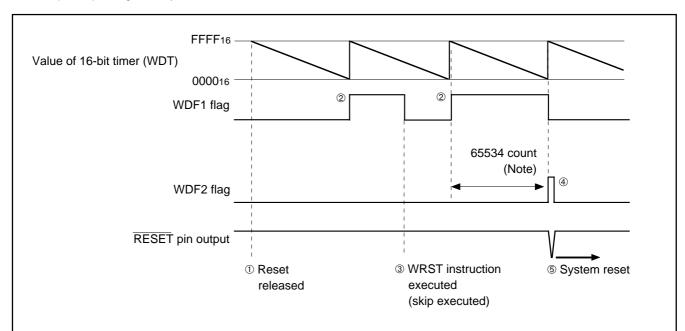
Watchdog timer provides a method to reset the system when a program run-away occurs. Watchdog timer consists of timer WDT(16-bit binary counter), watchdog timer enable flag (WEF), and watchdog timer flags (WDF1, WDF2).

The timer WDT downcounts the instruction clocks as the count source from "FFFF16" after system is released from reset.

After the count is started, when the timer WDT underflow occurs (after the count value of timer WDT reaches "000016," the next count pulse is input), the WDF1 flag is set to "1."

If the WRST instruction is never executed until the timer WDT underflow occurs (until timer WDT counts 65534), WDF2 flag is set to "1," and the RESET pin outputs "L" level to reset the microcomputer.

Execute the WRST instruction at each period of 65534 machine cycle or less by software when using watchdog timer to keep the microcomputer operating normally.


When the WEF flag is set to "1" after system is released from reset, the watchdog timer function is valid.

When the DWDT instruction and the WRST instruction are executed continuously, the WEF flag is cleared to "0" and the watchdog timer function is invalid.

The WEF flag is set to "1" at system reset or RAM back-up mode. The WRST instruction has the skip function. When the WRST instruction is executed while the WDF1 flag is "1", the WDF1 flag is cleared to "0" and the next instruction is skipped.

When the WRST instruction is executed while the WDF1 flag is "0", the next instruction is not skipped.

The skip function of the WRST instruction can be used even when the watchdog timer function is invalid.

- ① After system is released from reset (= after program is started), timer WDT starts count down.
- 2 When timer WDT underflow occurs, WDF1 flag is set to "1."
- ③ When the WRST instruction is executed, WDF1 flag is cleared to "0," the next instruction is skipped.
- When timer WDT underflow occurs while WDF1 flag is "1," WDF2 flag is set to "1" and the watchdog reset signal is output.
- ⑤ The output transistor of RESET pin is turned "ON" by the watchdog reset signal and system reset is executed

Note: The number of count is equal to the number of cycle because the count source of watchdog timer is the instruction clock.

Fig. 30 Watchdog timer function

dog timer function.

When the watchdog timer is used, clear the WDF1 flag at the period of 65534 machine cycles or less with the WRST instruction. When the watchdog timer is not used, execute the DWDT instruction and the WRST instruction continuously (refer to Figure 31). The watchdog timer is not stopped with only the DWDT instruction. The contents of WDF1 flag and timer WDT are initialized at the power down mode.

When using the watchdog timer and the power down mode, initialize the WDF1 flag with the WRST instruction just before the microcomputer enters the power down state (refer to Figure 32). The watchdog timer function is valid after system is returned from the power down. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down, and stop the watch-

```
WRST; WDF1 flag cleared

DI
DWDT; Watchdog timer function enabled/disabled
WRST; WEF and WDF1 flags cleared
```

Fig. 31 Program example to start/stop watchdog timer

```
WRST; WDF1 flag cleared
NOP
DI; Interrupt disabled
EPOF; POF instruction enabled
POF

↓
Oscillation stop
```

Fig. 32 Program example to enter the mode when using the watchdog timer

LCD FUNCTION

The 4554 Group has an LCD (Liquid Crystal Display) controller/driver. When the proper voltage is applied to LCD power supply input pins (VLC1–VLC3) and data are set in timer control register (W6), timer LC, LCD control registers (L1, L2), and LCD RAM, the LCD controller/driver automatically reads the display data and controls the LCD display by setting duty and bias.

4 common signal output pins and 32 segment signal output pins can be used to drive the LCD. By using these pins, up to 128 segments (when 1/4 duty and 1/3 bias are selected) can be controlled to display. The LCD power input pins (VLC1–VLC3) are also used as pins SEG0–SEG2. When SEG0–SEG2 are selected, the internal power (VDD) is used for the LCD power.

(1) Duty and bias

There are 3 combinations of duty and bias for displaying data on the LCD. Use bits 0 and 1 of LCD control register (L1) to select the proper display method for the LCD panel being used.

- 1/2 duty, 1/2 bias
- 1/3 duty, 1/3 bias
- 1/4 duty, 1/3 bias

Table 11 Duty and maximum number of displayed pixels

	-	
Duty	Maximum number of displayed pixels	Used COM pins
1/2	64 segments	COM ₀ , COM ₁ (Note)
1/3	96 segments	COM0-COM2 (Note)
1/4	128 segments	СОМ0-СОМ3

Note: Leave unused COM pins open.

(2) LCD clock control

The LCD clock is determined by the timer LC count source selection bit (W62), timer LC control bit (W63), and timer LC. Accordingly, the frequency (F) of the LCD clock is obtained by the following formula. Numbers (1 to 3) shown below the formula correspond to numbers in Figure 33, respectively.

 When using the prescaler output (ORCLK) as timer LC count source (W62="1")

$$F = ORCLK \times \frac{1}{LC+1} \times \frac{1}{2}$$

$$0$$

$$0$$

$$0$$

$$0$$

$$0$$

• When using the bit 4 of timer 5 as timer LC count source (W62="0")

$$F = \underbrace{\begin{array}{cccc} T54 & \times & \frac{1}{LC+1} & \times & \frac{1}{2} \\ \hline & & & & & \end{array}}_{\boxed{9}}$$

[LC: 0 to 15]

The frame frequency and frame period for each display method can be obtained by the following formula:

Frame frequency =
$$\frac{F}{n}$$
 (Hz)

Frame period =
$$\frac{n}{F}$$
 (s)

F: LCD clock frequency 1/n: Duty

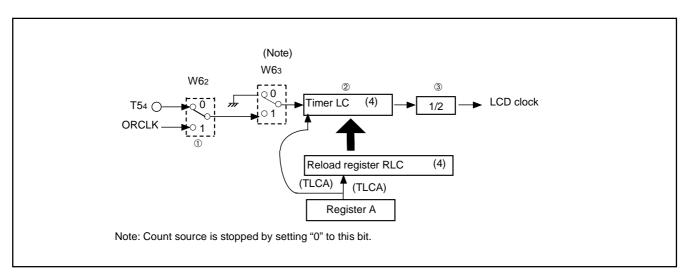


Fig. 33 LCD clock control circuit structure

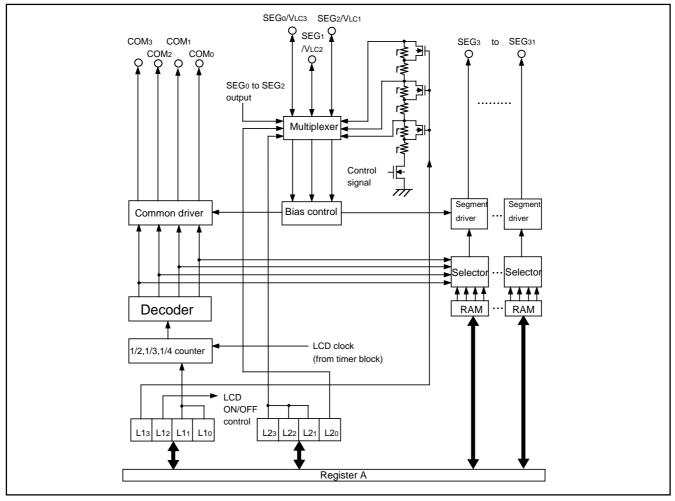


Fig. 34 LCD controller/driver

(3) LCD RAM

RAM contains areas corresponding to the liquid crystal display. When "1" is written to this LCD RAM, the display pixel corresponding to the bit is automatically displayed.

(4) LCD drive waveform

When "1" is written to a bit in the LCD RAM data, the voltage difference between common pin and segment pin which correspond to the bit automatically becomes IVLC3I and the display pixel at the cross section turns on.

When returning from reset, and in the RAM back-up mode, a display pixel turns off because every segment output pin and common output pin becomes VLc3 level.

X			12				13 14				14					
Y Bits	3	2	1	0	3	2	1	0	3	2	1	0	3	2	1	0
8	SEG ₀	SEG ₀	SEG ₀	SEG ₀	SEG8	SEG8	SEG8	SEG8	SEG16	SEG16	SEG16	SEG16	SEG24	SEG24	SEG24	SEG24
9	SEG1	SEG1	SEG1	SEG1	SEG9	SEG9	SEG9	SEG9	SEG17	SEG17	SEG17	SEG17	SEG25	SEG25	SEG25	SEG25
10	SEG2	SEG2	SEG2	SEG2	SEG ₁₀	SEG10	SEG ₁₀	SEG10	SEG18	SEG18	SEG18	SEG18	SEG26	SEG26	SEG26	SEG26
11	SEG3	SEG3	SEG3	SEG3	SEG11	SEG11	SEG11	SEG11	SEG19	SEG19	SEG19	SEG19	SEG27	SEG27	SEG27	SEG27
12	SEG4	SEG4	SEG4	SEG4	SEG12	SEG12	SEG12	SEG12	SEG20	SEG20	SEG20	SEG20	SEG28	SEG28	SEG28	SEG28
13	SEG5	SEG5	SEG ₅	SEG5	SEG13	SEG13	SEG13	SEG13	SEG21	SEG21	SEG21	SEG21	SEG29	SEG29	SEG29	SEG29
14	SEG6	SEG6	SEG6	SEG6	SEG14	SEG14	SEG14	SEG14	SEG22	SEG22	SEG22	SEG22	SEG30	SEG30	SEG30	SEG30
15	SEG7	SEG7	SEG7	SEG7	SEG15	SEG15	SEG15	SEG15	SEG23	SEG23	SEG23	SEG23	SEG31	SEG31	SEG31	SEG31
COM	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM ₁	COM ₀	СОМз	COM ₂	COM1	COM ₀

Fig. 35 LCD RAM map

Table 12 LCD control registers

Table 12 L	CD Control registers						
	LCD control register L1		at	reset : 00002	at power dow	n : state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power)	2r X 3, 2r X 2	•	•	
LIS	supply selection bit (Note 2)		1	r X 3, r X 2			
140	LCD control bit		0	Off			
L12			1	On			
			L10	Duty	'	Bias	i
L11		0	0		Not ava	ailable	
	LCD duty and bias selection bits	0	1	1/2		1/2	
L10		1	0	1/3		1/3	
			1	1/4		1/3	

	LCD control register L2	at	reset : 00002	at power down : state retained	W TL2A	
Los Wooder Consistential quitable bit (Nata 2)		0	SEG0			
L23	VLC3/SEG0 pin function switch bit (Note 3)	1	VLC3			
L22	VLC2/SEG1 pin function switch bit (Note 4)	0	SEG1			
LZ2		1	VLC2			
1.24	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	0	SEG ₂			
L21	VLC1/SEG2 pin function switch bit (Note 4)	1	VLC1			
L20	Internal dividing resistor for LCD power	0	Internal dividing res	sistor valid		
L20	supply control bit	1	Internal dividing res	sistor invalid		

	LCD control register L3		reset : 00002	at power down : state retained	W TL3A
L33	SEG24/P33-SEG27/P30 pin function	0	SEG24-SEG27	,	
LJJ	switch bit	1	P33-P30		
L32	SEG28/P23, SEG29/P22 pin function	0 SEG28, SEG29			
L32	switch bit	1	P23, P22		
1.24	SEG30/P21 pin function	0	SEG30		
L31	L31 switch bit		P21		
L30	SEG31/P20 pin function	0	SEG31		
L30	switch bit	1	P20		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

 [&]quot;r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.
 VLC3 is connected to VDD internally when SEG0 pin is selected.
 Use internal dividing resistor when SEG1 and SEG2 pins are selected.

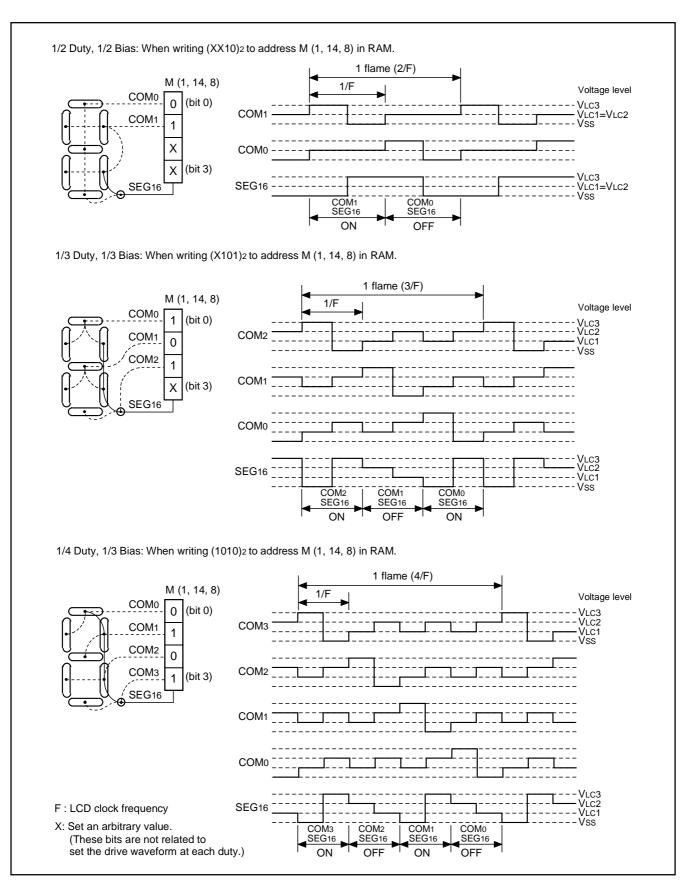


Fig. 36 LCD controller/driver structure

(5) LCD power supply circuit

· Internal dividing resistor

The 4554 Group has the internal dividing resistor for LCD power supply.

When bit 0 of register L2 is set to "0", the internal dividing resistor is valid. However, when the LCD is turned off by setting bit 2 of register L1 to "0", the internal dividing resistor is turned off.

The same six resistor (r) is prepared for the internal dividing resistor. According to the setting value of bit 3 of register L1 and using bias condition, the resistor is prepared as follows;

- L13 = "0", 1/3 bias used: 2r X 3 = 6r
- L13 = "0", 1/2 bias used: 2r X 2 = 4r
- L13 = "1", 1/3 bias used: r X 3 = 3r
- L13 = "1", 1/2 bias used: r X 2 = 2r

• VLC3/SEG0 pin

The selection of VLc3/SEG0 pin function is controlled with the bit 3 of register L2.

When the VLC3 pin function is selected, apply voltage of VLC3 < VDD to the pin externally.

When the SEG0 pin function is selected, $\mbox{VLC3}$ is connected to \mbox{VDD} internally.

• VLC2/SEG1, VLC1/SEG2 pin

The selection of VLc2/SEG1 pin function is controlled with the bit 2 of register L2.

The selection of VLC1/SEG2 pin function is controlled with the bit 1 of register L2.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is not used, apply voltage of 0<VLC1<VLC2<VLC3 to these pins. Short the VLC2 pin and VLC1 pin at 1/2 bias.

When the VLC2 pin and VLC1 pin functions are selected and the internal dividing resistor is used, the dividing voltage value generated internally is output from the VLC1 pin and VLC2 pin. The VLC2 pin and VLC1 pin has the same electric potential at 1/2 bias.

When SEG1 and SEG2 pin function is selected, use the internal dividing resistor. In this time, VLC2 and VLC1 are connected to the generated dividing voltage.

RESET FUNCTION

System reset is performed by applying "L" level to RESET pin for 1 machine cycle or more when the following condition is satisfied; the value of supply voltage is the minimum value or more of the recommended operating conditions.

Then when "H" level is applied to $\overline{\text{RESET}}$ pin, software starts from address 0 in page 0.

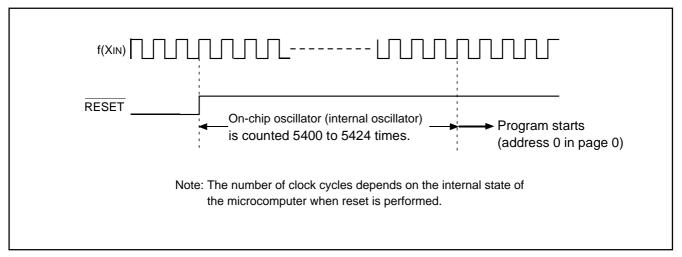


Fig. 37 Reset release timing

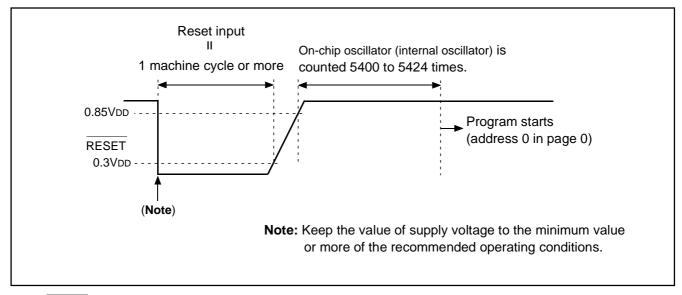


Fig. 38 RESET pin input waveform and reset operation

(1) Power-on reset

Reset can be automatically performed at power on (power-on reset) by the built-in power-on reset circuit. When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V must be set to 100 μs or less. If the rising time ex-

ceeds 100 μ s, connect a capacitor between the RESET pin and Vss at the shortest distance, and input "L" level to RESET pin until the value of supply voltage reaches the minimum operating voltage.

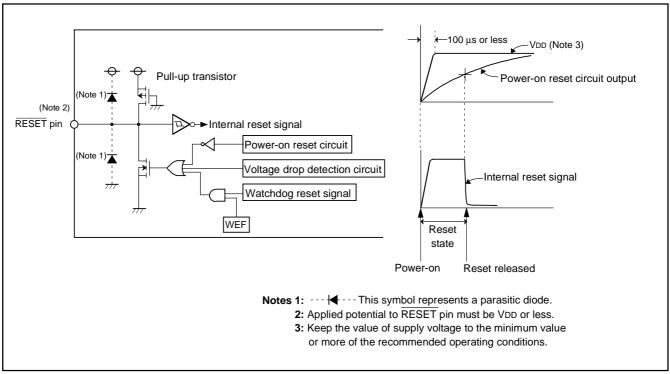


Fig. 39 Structure of reset pin and its peripherals,, and power-on reset operation

Table 13 Port state at reset

Name	Function	State
D0-D6	D0-D6	High-impedance (Notes 1, 2)
D7/CNTR0	D7	High-impedance (Notes 1, 2)
D8/INT0, D9/INT1	D8, D9	High-impedance (Note 1)
P00-P03	P00-P03	High-impedance (Notes 1, 2, 3)
P10-P13	P10-P13	High-impedance (Notes 1, 2, 3)
SEG31/P20-SEG28/P23	SEG31-SEG28	VLC3 (VDD) level
SEG27/P30-SEG24/P33	SEG27-SEG24	VLC3 (VDD) level
SEG ₀ /V _L C ₃ -SEG ₂ /V _L C ₁	SEG0-SEG2	VLC3 (VDD) level
SEG3-SEG23	SEG3-SEG23	VLC3 (VDD) level
COM0-COM3	СОМо-СОМз	VLC3 (VDD) level
C/CNTR1	С	"L" (Vss) level

Notes 1: Output latch is set to "1."

- 2: Output structure is N-channel open-drain.
- 3: Pull-up transistor is turned OFF.

(2) Internal state at reset

Figure 40 shows internal state at reset (they are the same after system is released from reset). The contents of timers, registers, flags and RAM except shown in Figure 40 are undefined, so set the initial value to them.

Program counter (PC)	0 0 0 0 0 0 0 0 0 0 0 0
Address 0 in page 0 is set to program counter.	
Interrupt enable flag (INTE)	0 (Interrupt disabled)
Power down flag (P)	0
External 0 interrupt request flag (EXF0)	0
External 1 interrupt request flag (EXF1)	0
Interrupt control register V1	0 0 0 0 (Interrupt disabled)
Interrupt control register V2	0 0 0 0 (Interrupt disabled)
Interrupt control register I1	0 0 0 0
Interrupt control register I2	0 0 0 0
Timer 1 interrupt request flag (T1F)	0
Timer 2 interrupt request flag (T2F)	
Timer 3 interrupt request flag (T3F)	0
Timer 4 interrupt request flag (T4F)	
Timer 5 interrupt request flag (T5F)	0
Watchdog timer flags (WDF1, WDF2)	<u> </u>
Watchdog timer enable flag (WEF)	
Timer control register PA	
Timer control register W1	
Timer control register W2	
Timer control register W3	
• Timer control register W4	` ' '
• Timer control register W5	
Timer control register W6	
Clock control register MR	
LCD control register L1	
LCD control register L2	
LCD control register L3	
• Key-on wakeup control register K0	
• Key-on wakeup control register K1	
Key-on wakeup control register K2	
Pull-up control register PU0	
Pull-up control register PU1	
Port output structure control register FR0	
Port output structure control register FR1	
Port output structure control register FR1	
• Carry flag (CY)	
, ,	
• Register A	
Register B	
Register D	
Register E X	
Register X	
Register Y	
Register Z	
• Stack pointer (SP)	
Operation source clockOn-cl	
Ceramic resonator circuit	Operating
	0.
RC oscillation circuit	·

VOLTAGE DROP DETECTION CIRCUIT

The built-in voltage drop detection circuit is designed to detect a drop in voltage and to reset the microcomputer if the supply voltage drops below a set value.

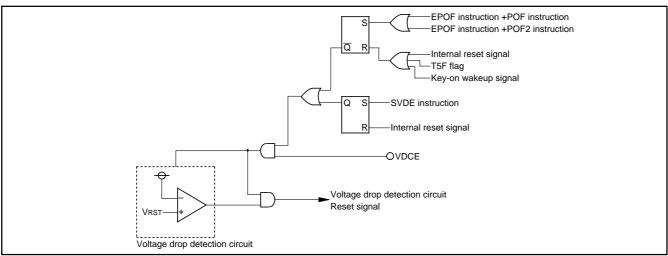


Fig. 41 Voltage drop detection reset circuit

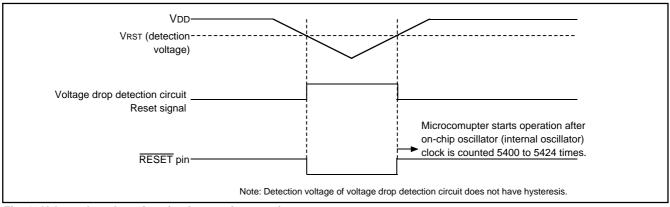


Fig. 42 Voltage drop detection circuit operation waveform

Table 14 Voltage drop detection circuit operation state

VDCE pin	At CPU operating	At power down (SVDE instruction is not executed)	At power down (SVDE instruction is executed)
"L"	Invalid	Invalid	Invalid
"H"	Valid	Invalid	Valid

(2) Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 43);

supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

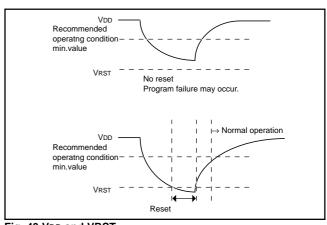


Fig. 43 VDD and VRST

POWER DOWN FUNCTION

The 4554 Group has 2-type power down functions.

System enters into each power down state by executing the following instructions.

Clock operating mode	EPOF and POF instructions
RAM back-up mode	EPOF and POF2 instructions

When the EPOF instruction is not executed before the POF or POF2 instruction is executed, these instructions are equivalent to the NOP instruction.

(1) Clock operating mode

The following functions and states are retained.

- RAM
- Reset circuit
- XCIN-XCOUT oscillation
- · LCD display
- Timer 5

(2) RAM back-up mode

The following functions and states are retained.

- RAM
- Reset circuit

(3) Warm start condition

The system returns from the power down state when;

- External wakeup signal is input
- Timer 5 underflow occurs

in the power down mode.

In either case, the CPU starts executing the software from address 0 in page 0. In this case, the P flag is "1."

(4) Cold start condition

The CPU starts executing the software from address 0 in page 0 when:

- reset pulse is input to RESET pin,
- reset by watchdog timer is performed, or
- reset by the voltage drop detection circuit is performed. In this case, the P flag is "0."

(5) Identification of the start condition

Warm start or cold start can be identified by examining the state of the power down flag (P) with the SNZP instruction. The warm start condition from the clock operating mode can be identified by examining the state of T5F flag.

Table 15 Functions and states retained at power down

	-	
		wn mode
Function	Clock	RAM
Drogram acustor (DC) registers A. B.	operating	back-up
Program counter (PC), registers A, B,	X	X
carry flag (CY), stack pointer (SP) (Note 2)		
Contents of RAM	0	0
Interrupt control registers V1, V2	X	X
Interrupt control registers I1, I2	0	0
Selected oscillation circuit	0	0
Clock control register MR	0	0
Timer 1 to timer 4 functions	(Note 3)	(Note 3)
Timer 5 function	0	0
Timer LC function	0	(Note 3)
Watchdog timer function	X (Note 4)	X (Note 4)
Timer control registers PA, W4	X	X
Timer control registers W1 to W3, W5, W6	0	0
LCD display function	0	(Note 5)
LCD control registers L1 to L3	0	0
Voltage drop detection circuit	(Note 6)	(Note 6)
Port level	(Note 7)	(Note 7)
Pull-up control registers PU0, PU1	0	0
Key-on wakeup control registers K0 to K2	0	0
Port output format control registers	0	0
FR0 to FR2		
External interrupt request flags	X	X
(EXF0, EXF1)		
Timer interrupt request flags (T1F to T4F)	(Note 3)	(Note 3)
Timer interrupt request flag (T5F)	0	0
Interrupt enable flag (INTE)	X	X
Watchdog timer flags (WDF1, WDF2)	X (Note 4)	X (Note 4)
Watchdog timer enable flag (WEF)	X (Note 4)	X (Note 4)

Notes 1:"O" represents that the function can be retained, and "X" represents that the function is initialized.

Registers and flags other than the above are undefined at RAM back-up, and set an initial value after returning.

- 2: The stack pointer (SP) points the level of the stack register and is initialized to "7" at RAM back-up.
- 3: The state of the timer is undefined.
- 4: Initialize the watchdog timer with the WRST instruction, and then go into the power down state.
- 5: LCD is turned off.
- 6: When the SVDE instruction is executed while the VDCE pin is in the "H" state, this function is valid at power down.
- 7: In the power down mode, C/CNTR1 pin outputs "L" level. However, when the CNTR input is selected (W11, W10="11"), C/CNTR1 pin is in an input enabled state (output=high-impedance). Other ports retain their respective output levels.

(6) Return signal

An external wakeup signal or timer 5 interrupt request flag (T5F) is used to return from the clock operating mode.

An external wakeup signal is used to return from the RAM back-up mode because the oscillation is stopped.

Table 16 shows the return condition for each return source.

(7) Control registers

- · Key-on wakeup control register K0
- Register K0 controls the port P0 key-on wakeup function. Set the contents of this register through register A with the TK0A instruction. In addition, the TAK0 instruction can be used to transfer the contents of register K0 to register A.
- Key-on wakeup control register K1
 Register K1 controls the port P1 key-on wakeup function. Set the
 contents of this register through register A with the TK1A instruction. In addition, the TAK1 instruction can be used to transfer the
 contents of register K0 to register A.
- Key-on wakeup control register K2
 Register K2 controls the INT0 and INT1 pin key-on wakeup function. Set the contents of this register through register A with the TK2A instruction. In addition, the TAK2 instruction can be used to transfer the contents of register K2 to register A.

- Pull-up control register PU0
- Register PU0 controls the ON/OFF of the port P0 pull-up transistor. Set the contents of this register through register A with the TPU0A instruction. In addition, the TAPU0 instruction can be used to transfer the contents of register PU0 to register A.
- Pull-up control register PU1
 - Register PU1 controls the ON/OFF of the port P1 pull-up transistor. Set the contents of this register through register A with the TPU1A instruction. In addition, the TAPU1 instruction can be used to transfer the contents of register PU1 to register A.
- External interrupt control register I1
- Register I1 controls the valid waveform of the external 0 interrupt, the input control of INT0 pin and the return input level. Set the contents of this register through register A with the TI1A instruction. In addition, the TAI1 instruction can be used to transfer the contents of register I1 to register A.
- External interrupt control register I2
- Register I2 controls the valid waveform of the external 1 interrupt, the input control of INT1 pin and the return input level. Set the contents of this register through register A with the TI2A instruction. In addition, the TAI2 instruction can be used to transfer the contents of register I2 to register A.

Table 16 Return source and return condition

	Return source	Return condition	Remarks
signal	Ports P00–P03 Ports P10–P13	Return by an external "L" level input.	The key-on wakeup function can be selected by one port unit. Set the port using the key-on wakeup function to "H" level before going into the power down state.
External wakeup	INTO pin INT1 pin	"L" level input, or rising edge	Select the return level ("L" level or "H" level) with register I1 (I2) and return condition (return by level or edge) with register K2 according to the external state before going into the power down state.
	ner 5 interrupt uest flag (T5F)	Return by timer 5 underflow or by setting T5F to "1".	Clear T5F with the SNZT5 instruction before system enters into the power down state.
		It can be used in the clock operating mode.	When system enters into the power down state while T5F is "1", system returns from the state immediately because it is recognized as return condition.

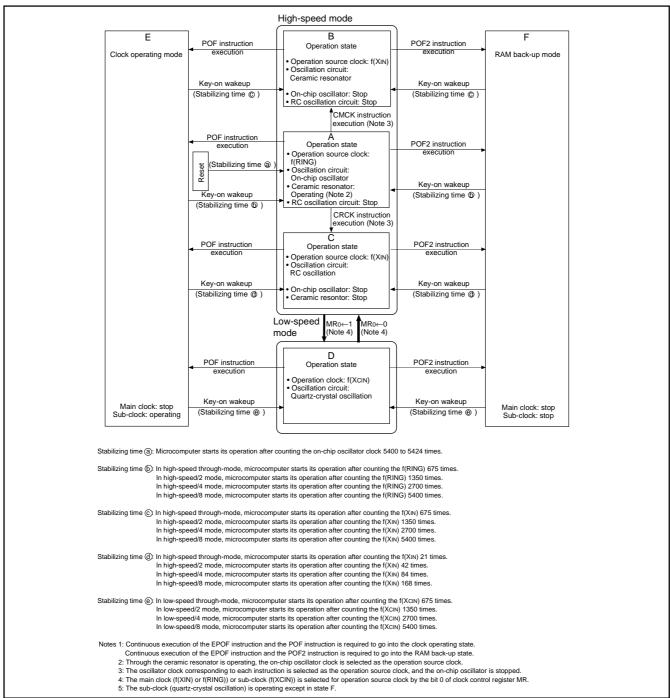


Fig. 44 State transition

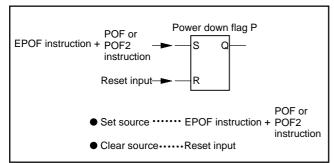


Fig. 45 Set source and clear source of the P flag

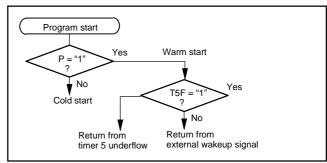


Fig. 46 Start condition identified example using the SNZP instruction

Table 17 Key-on wakeup control register, pull-up control register and interrupt control register

	tey on wateup control register, pair up						
	Key-on wakeup control register K0	at	reset: 00002	at power down : state retained	R/W TAK0/ TK0A		
K0°	Port P03 key-on wakeup	0 Key-on wakeup not u		used			
K03	K03 control bit		Key-on wakeup used				
1/0-	Port P02 key-on wakeup	0	Key-on wakeup not used				
K02	control bit	1	Key-on wakeup use	ed			
1/0.	Port P01 key-on wakeup	0	Key-on wakeup not	used			
K01	control bit	1	Key-on wakeup used				
1/0-	Port P00 key-on wakeup	0	Key-on wakeup not used				
K0 0	control bit	1	Key-on wakeup use	ed			

	Key-on wakeup control register K1		reset : 00002	at power down : state retained	R/W TAK1/ TK1A
K13	Port P13 key-on wakeup	0	Key-on wakeup use	ed	
K13	control bit	1	Key-on wakeup not	used	
K12	Port P12 key-on wakeup	0 Key-on wakeup not used			
K12	control bit	1	Key-on wakeup use	ed	
K11	Port P11 key-on wakeup	0	Key-on wakeup not	used	
"	control bit	1	Key-on wakeup used		
K10	Port P1 ₀ key-on wakeup	0 Key-on wakeup not used			
	control bit	1	Key-on wakeup use	ed	

	Key-on wakeup control register K2		reset : 00002	at power down : state retained	R/W TAK2/ TK2A
K23	INT1 pin	0	Return by level		
N23	return condition selection bit	1	Return by edge		
K22	INT1 pin	0 Key-on wakeup not used			
N22	key-on wakeup control bit	1	Key-on wakeup use	ed	
K21	INT0 pin	0	Return by level		
N21	return condition selection bit	1	Return by edge		
K20	INT0 pin	0 Key-on wakeup not used			
N20	key-on wakeup control bit	1	Key-on wakeup use	ed	

Note: "R" represents read enabled, and "W" represents write enabled.

Pull-up control register PU0		at reset : 00002		at power down : state retained	R/W TAPU0/ TPU0A
PU03	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
P003	control bit	1	Pull-up transistor O	N	
DI IO-	Port P02 pull-up transistor	0 Pull-up transistor OFF			
PU02	control bit	1	Pull-up transistor O	N	
DUIG	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1	Pull-up transistor ON		
DUIDO	Port P00 pull-up transistor	0 Pull-up transistor OFF			
PU00	control bit	1	Pull-up transistor O	N	

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DUI4-	Port P12 pull-up transistor	0 Pull-up transistor OFF			
PU12	control bit	1	Pull-up transistor O	N	
DI.I.	Port P11 pull-up transistor	0	Pull-up transistor O	FF	
PU11	control bit	1	1 Pull-up transistor ON		
DUIA	Port P10 pull-up transistor	0 Pull-up transistor OFF			
PU10	control bit	1	Pull-up transistor O	N	

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
110	INTO pin input control bit (Note 2)	0	INT0 pin input disa	abled	
113		1	INT0 pin input ena	bled	
l12	Interrupt valid waveform for INT0 pin/	0	Falling waveform/" instruction)	L" level ("L" level is recognized with	the SNZI0
112	return level selection bit (Note 2)	1	Rising waveform/"I instruction)	H" level ("H" level is recognized with	the SNZI0
l1 ₁	INTO pin adag detection circuit control bit	0	One-sided edge de	etected	
111	INT0 pin edge detection circuit control bit	1	Both edges detected		
I1 0	INT0 pin Timer 1 count start synchronous	Timer 1 count start synchronous circuit not selected			
110	circuit selection bit	1	Timer 1 count start	t synchronous circuit selected	

	Interrupt control register I2		reset : 00002	at power down : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disa	bled	
123	123 INT I pin input control bit (Note 2)	1	INT1 pin input ena	bled	
122	Interrupt valid waveform for INT1 pin/	0	Falling waveform/"L" level ("L" level is recognized with the SNZI1 instruction)		
122	return level selection bit (Note 2)	1	Rising waveform/"I instruction)	H" level ("H" level is recognized with	the SNZI1
I2 ₁	INT1 pin edge detection circuit control bit	0	One-sided edge de	etected	
121	in i i pin eage detection circuit control bit	1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous	0 Timer 3 count start synchronous circuit not selected			
120	circuit selection bit	1	Timer 3 count start	synchronous circuit selected	

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.

CLOCK CONTROL

The clock control circuit consists of the following circuits.

- On-chip oscillator (internal oscillator)
- · Ceramic resonator
- · RC oscillation circuit
- · Quartz-crystal oscillation circuit
- Multi-plexer (clock selection circuit)
- · Frequency divider
- Internal clock generating circuit

The system clock and the instruction clock are generated as the source clock for operation by these circuits.

Figure 47 shows the structure of the clock control circuit.

The 4554 Group operates by the on-chip oscillator clock (f(RING)) which is the internal oscillator after system is released from reset. Also, the ceramic resonator or the RC oscillation can be used for the main clock (f(XIN)) of the 4554 Group. The CMCK instruction or CRCK instruction is executed to select the ceramic resonator or RC oscillator, respectively.

The quartz-crystal oscillator can be used for sub-clock (f(XCIN)).

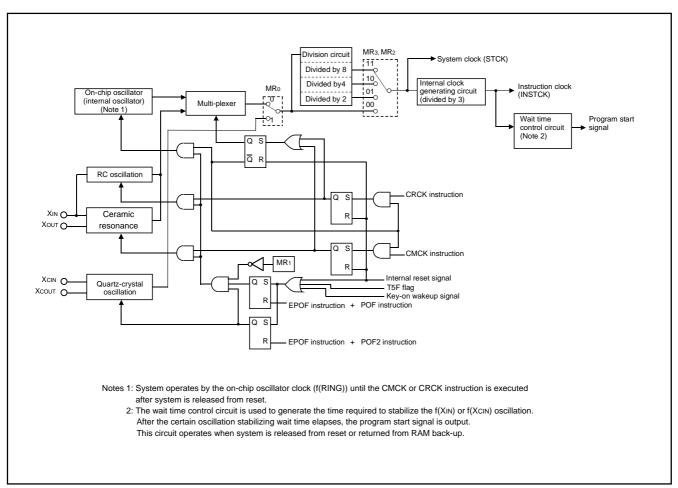


Fig. 47 Clock control circuit structure

(1) Main clock generating circuit (f(XIN))

The ceramic resonator or RC oscillation can be used for the main clock of this MCU.

After system is released from reset, the MCU starts operation by the clock output from the on-chip oscillator which is the internal oscillator.

When the ceramic resonator is used, execute the CMCK instruction. When the RC oscillation is used, execute the CRCK instruction. The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instructions is valid. Other oscillation circuit and the on-chip oscillator stop.

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended). Also, when the CMCK or the CRCK instruction is not executed in program, this MCU operates by the on-chip oscillator.

(2) On-chip oscillator operation

When the MCU operates by the on-chip oscillator as the main clock (f(XIN)) without using the ceramic resonator or the RC oscillator, connect XIN pin to VSS and leave XOUT pin open (Figure 49).

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

(3) Ceramic resonator

When the ceramic resonator is used as the main clock (f(XIN)), connect the ceramic resonator and the external circuit to pins XIN and XOUT at the shortest distance. Then, execute the CMCK instruction. A feedback resistor is built in between pins XIN and XOUT (Figure 50).

(4) RC oscillation

When the RC oscillation is used as the main clock (f(XIN)), connect the XIN pin to the external circuit of resistor R and the capacitor C at the shortest distance and leave XOUT pin open. Then, execute the CRCK instruction (Figure 51).

The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

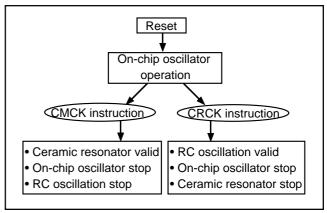


Fig. 48 Switch to ceramic resonance/RC oscillation

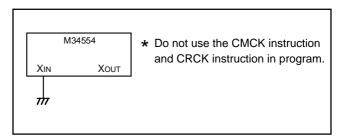


Fig. 49 Handling of XIN and XOUT when operating on-chip oscillator

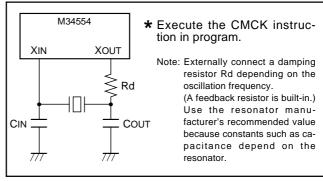


Fig. 50 Ceramic resonator external circuit

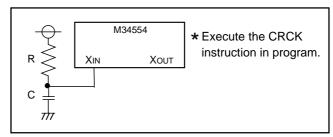


Fig. 51 External RC oscillation circuit

(5) External clock

When the external clock signal is used as the main clock (f(XIN)), connect the XIN pin to the clock source and leave XOUT pin open. Then, execute the CMCK instruction (Figure 52).

Be careful that the maximum value of the oscillation frequency when using the external clock differs from the value when using the ceramic resonator (refer to the recommended operating condition). Also, note that the power down mode (POF and POF2 instructions) cannot be used when using the external clock.

(6) Sub-clock generating circuit f(XCIN)

Sub-clock signal f(XCIN) is obtained by externally connecting a quartz-crystal oscillator. Connect this external circuit and a quartz-crystal oscillator to pins XCIN and XCOUT at the shortest distance. A feedback resistor is built in between pins XCIN and XCOUT (Figure 53).

(7) Clock control register MR

Register MR controls system clock. Set the contents of this register through register A with the TMRA instruction. In addition, the TAMR instruction can be used to transfer the contents of register MR to register A.

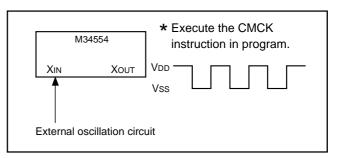


Fig. 52 External clock input circuit

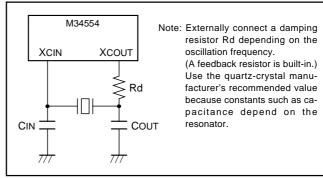


Fig. 53 External quartz-crystal circuit

Table 18 Clock control register MR

Clock control register MR		at reset : 11002		reset : 11002	at power down : state retained	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode (free	quency not divided)	
	Operation mode selection bits	0	1	Frequency divided	by 2 mode	
MR ₂		1	0	Frequency divided by 4 mode		
		1	1	Frequency divided	by 8 mode	
MR1	Main clock oscillation circuit control bit	()	Main clock oscillation	on enabled	
IVIIXI	Main clock oscillation circuit control bit	1	1	Main clock oscillation	on stop	
MR ₀	System clask salastion bit	()	Main clock (f(XIN) o	r f(RING))	
IVIRO	System clock selection bit	1	1	Sub-clock (f(XCIN))		

Note: "R" represents read enabled, and "W" represents write enabled.

ROM ORDERING METHOD

- 1.Mask ROM Order Confirmation Form•
- 2.Mark Specification Form•
- 3.Data to be written to ROM, in EPROM form (three identical copies) or one floppy disk.
- •For the mask ROM confirmation and the mark specifications, refer to the "Renesas Technology Corp." Homepage (http://www.renesas.com/en/rom).

LIST OF PRECAUTIONS

Noise and latch-up prevention

Connect a capacitor on the following condition to prevent noise and latch-up:

- connect a bypass capacitor (approx. 0.1 μ F) between pins VDD and Vss at the shortest distance,
- · equalize its wiring in width and length, and
- use relatively thick wire.

In the One Time PROM version, CNVss pin is also used as VPP pin. Accordingly, when using this pin, connect this pin to Vss through a resistor about 5 k Ω (connect this resistor to CNVss/ VPP pin as close as possible).

② Register initial values 1

The initial value of the following registers are undefined after system is released from reset. After system is released from reset, set initial values.

- Register Z (2 bits)
- Register D (3 bits)
- Register E (8 bits)

③ Register initial values 2

The initial value of the following registers are undefined at RAM backup. After system is returned from RAM back-up, set initial values.

- Register Z (2 bits)
- Register X (4 bits)
- Register Y (4 bits)
- Register D (3 bits)
- Register E (8 bits)

Stack registers (SKs)

Stack registers (SKs) are eight identical registers, so that subroutines can be nested up to 8 levels. However, one of stack registers is used respectively when using an interrupt service routine and when executing a table reference instruction. Accordingly, be careful not to over the stack when performing these operations together.

⑤ Prescaler

Stop counting and then execute the TABPS instruction to read from prescaler data.

Stop counting and then execute the TPSAB instruction to set prescaler data.

® Timer count source

Stop timer 1, 2, 3, 4 and LC counting to change its count source.

Reading the count value

Stop timer 1, 2, 3 or 4 counting and then execute the data read instruction (TAB1, TAB2, TAB3, TAB4) to read its data.

®Writing to the timer

Stop timer 1, 2, 3, 4 or LC counting and then execute the data write instruction (T1AB, T2AB, T3AB, T4AB, TLCA) to write its data

Writing to reload register R1, R3, R4H

When writing data to reload register R1, reload register R3 or reload register R4H while timer 1, timer 3 or timer 4 is operating, avoid a timing when timer 1, timer 3 or timer 4 underflows.

®Timer 4

Avoid a timing when timer 4 underflows to stop timer 4.

When "H" interval extension function of the PWM signal is set to be "valid", set "1" or more to reload register R4H.

11 Timer 5

Stop timer 5 counting to change its count source.

Timer input/output pin

Set the port C output latch to "0" to output the PWM signal from C/CNTR pin.

®Watchdog timer

- The watchdog timer function is valid after system is released from reset. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously, and clear the WEF flag to "0" to stop the watchdog timer function.
- The watchdog timer function is valid after system is returned from the power down state. When not using the watchdog timer function, execute the DWDT instruction and the WRST instruction continuously every system is returned from the power down state, and stop the watchdog timer function.
- When the watchdog timer function and power down function are used at the same time, execute the WRST instruction before system enters into the power down state and initialize the flag WDF1

(1) Multifunction

- Be careful that the output of ports D8 and D9 can be used even when INT0 and INT1 pins are selected.
- Be careful that the input/output of port D7 can be used even when input of CNTR0 pin are selected.
- Be careful that the input of port D7 can be used even when output of CNTR0 pin are selected.
- Be careful that the "H" output of port C can be used even when output of CNTR1 pin are selected.

® Program counter

Make sure that the PCH does not specify after the last page of the built-in ROM.

16 D8/INT0 pin

• Note [1] on bit 3 of register I1

When the input of the INTO pin is controlled with the bit 3 of register I1 in software, be careful about the following notes.

Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 3 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 54⁽¹⁾) and then, change the bit 3 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 54@).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 54³).

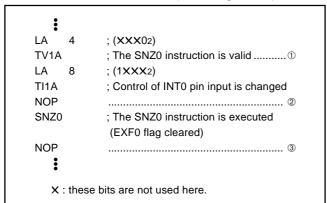


Fig. 54 External 0 interrupt program example-1

- Note [2] on bit 3 of register I1
 - When the bit 3 of register I1 is cleared to "0", the RAM back-up mode is selected and the input of INT0 pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT0 pin is not used (register K20 = "0"), clear bits 2 and 3 of register I1 before system enters to the RAM back-up mode. (refer to Figure 55①).

Fig. 55 External 0 interrupt program example-2

- Note on bit 2 of register I1
- When the interrupt valid waveform of the D8/INT0 pin is changed with the bit 2 of register I1 in software, be careful about the following notes.
- Depending on the input state of the Da/INT0 pin, the external 0 interrupt request flag (EXF0) may be set when the bit 2 of register I1 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 0 of register V1 to "0" (refer to Figure 56⁽¹⁾) and then, change the bit 2 of register I1.

In addition, execute the SNZ0 instruction to clear the EXF0 flag to "0" after executing at least one instruction (refer to Figure 56@).

Also, set the NOP instruction for the case when a skip is performed with the SNZ0 instruction (refer to Figure 56³).

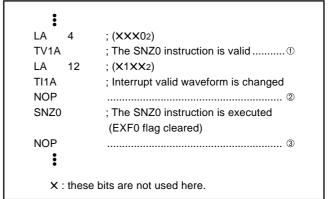


Fig. 56 External 0 interrupt program example-3

1 D9/INT1 pin

• Note [1] on bit 3 of register I2

When the input of the INT1 pin is controlled with the bit 3 of register I2 in software, be careful about the following notes.

Depending on the input state of the De/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 3 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 57⁽¹⁾) and then, change the bit 3 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 572).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 57³).

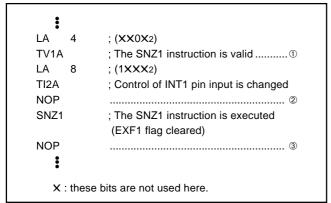


Fig. 57 External 1 interrupt program example-1

- Note [2] on bit 3 of register I2
 - When the bit 3 of register I2 is cleared to "0", the RAM back-up mode is selected and the input of INT1 pin is disabled, be careful about the following notes.
- When the key-on wakeup function of INT1 pin is not used (register K22 = "0"), clear bits 2 and 3 of register I2 before system enters to the RAM back-up mode. (refer to Figure 58①).

```
LA 0 ; (00XX2)
TI2A ; Input of INT1 disabled .......①
DI
EPOF
POF2 ; RAM back-up

X: these bits are not used here.
```

Fig. 58 External 1 interrupt program example-2

- Note on bit 2 of register I2
- When the interrupt valid waveform of the D9/INT1 pin is changed with the bit 2 of register I2 in software, be careful about the following notes.
- Depending on the input state of the D9/INT1 pin, the external 1 interrupt request flag (EXF1) may be set when the bit 2 of register I2 is changed. In order to avoid the occurrence of an unexpected interrupt, clear the bit 1 of register V1 to "0" (refer to Figure 59^①) and then, change the bit 2 of register I2.

In addition, execute the SNZ1 instruction to clear the EXF1 flag to "0" after executing at least one instruction (refer to Figure 59②).

Also, set the NOP instruction for the case when a skip is performed with the SNZ1 instruction (refer to Figure 593).



Fig. 59 External 1 interrupt program example-3

® POF and POF2 instructions

When the POF or POF2 instruction is executed continuously after the EPOF instruction, system enters the power down state. Note that system cannot enter the power down state when ex-

ecuting only the POF or POF2 instruction.

Be sure to disable interrupts by executing the DI instruction before executing the EPOF instruction and the POF or POF2 instruction continuously.

Power-on reset

When the built-in power-on reset circuit is used, the time for the supply voltage to rise from 0 V to 2.0 V must be set to 100 μs or less. If the rising time exceeds 100 μs , connect a capacitor between the $\overline{\text{RESET}}$ pin and Vss at the shortest distance, and input "L" level to $\overline{\text{RESET}}$ pin until the value of supply voltage reaches the minimum operating voltage.

Note on voltage drop detection circuit

The voltage drop detection circuit detection voltage of this product is set up lower than the minimum value of the supply voltage of the recommended operating conditions.

When the supply voltage of a microcomputer falls below to the minimum value of recommended operating conditions and regoes up (ex. battery exchange of an application product), depending on the capacity value of the bypass capacitor added to the power supply pin, the following case may cause program failure (Figure 60);

supply voltage does not fall below to VRST, and its voltage re-goes up with no reset.

In such a case, please design a system which supply voltage is once reduced below to VRST and re-goes up after that.

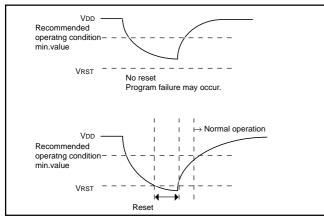


Fig. 60 VDD and VRST

@ Clock control

Execute the CMCK or the CRCK instruction in the initial setting routine of program (executing it in address 0 in page 0 is recommended).

The oscillation circuit by the CMCK or CRCK instruction can be selected only at once. The oscillation circuit corresponding to the first executed one of these two instruction is valid. Other oscillation circuits and the on-chip oscillator stop.

On-chip oscillator

The clock frequency of the on-chip oscillator depends on the supply voltage and the operation temperature range.

Be careful that variable frequencies when designing application products.

Also, the oscillation stabilize wait time after system is released from reset is generated by the on-chip oscillator clock. When considering the oscillation stabilize wait time after system is released from reset, be careful that the variable frequency of the on-chip oscillator clock.

External clock

When the external signal clock is used as the source oscillation (f(XIN)), note that the power down mode (POF and POF2 instructions) cannot be used.

Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, builtin ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

Note on Power Source Voltage

When the power source voltage value of a microcomputer is less than the value which is indicated as the recommended operating conditions, the microcomputer does not operate normally and may perform unstable operation.

In a system where the power source voltage drops slowly when the power source voltage drops or the power supply is turned off, reset a microcomputer when the supply voltage is less than the recommended operating conditions and design a system not to cause errors to the system by this unstable operation.

CONTROL REGISTERS

	Interrupt control register V1		reset : 00002	at power down : 00002	R/W TAV1/TV1A
V13	V13 Timer 2 interrupt enable bit	0	Interrupt disabled	(SNZT2 instruction is valid)	
V 13	Timer 2 interrupt enable bit	1	Interrupt enabled ((SNZT2 instruction is invalid)	
V12	Timer 1 interrupt enable bit	0	Interrupt disabled	(SNZT1 instruction is valid)	
V 12	Time Timenupi enable bit	1	Interrupt enabled ((SNZT1 instruction is invalid)	
V11	External 1 interrupt enable bit	0	Interrupt disabled	(SNZ1 instruction is valid)	
V 11	External i interrupt enable bit	1	Interrupt enabled ((SNZ1 instruction is invalid)	
\/10	External 0 interrupt anable bit	0	Interrupt disabled	(SNZ0 instruction is valid)	
V10	External 0 interrupt enable bit	1	Interrupt enabled ((SNZ0 instruction is invalid)	

	Interrupt control register V2		reset : 00002	at power down : 00002	R/W TAV2/TV2A	
\/Oo	Timor 4 interrupt enable bit	0	Interrupt disabled	(SNZT4 instruction is valid)		
V23	Timer 4 interrupt enable bit	1	Interrupt enabled (Interrupt enabled (SNZT4 instruction is invalid)		
\/Oo	Not used	0	This bit has no function, but read/write is enabled.			
V22	Not used	1	This bit has no function, but read/write is enabled.			
\/O+	Timor 5 interrupt anable bit	0	Interrupt disabled	(SNZT5 instruction is valid)		
V21	Timer 5 interrupt enable bit	1	Interrupt enabled ((SNZT5 instruction is invalid)		
1/00	Timer 3 interrupt enable bit	0	Interrupt disabled	(SNZT3 instruction is valid)		
V20	Timer 3 interrupt enable bit	1	Interrupt enabled ((SNZT3 instruction is invalid)		

	Interrupt control register I1		reset : 00002	at power down : state retained	R/W TAI1/TI1A
l13	IAC INTO his input control hit (Note 2)		INT0 pin input disa	abled	
113	I13 INT0 pin input control bit (Note 2)	1	INT0 pin input ena	bled	
l12	Interrupt valid waveform for INT0 pin/	0	Falling waveform/"L" level ("L" level is recognized with the SNZIO instruction)		the SNZI0
112	return level selection bit (Note 2)	1	Rising waveform/"H" level ("H" level is recognized with the SNZI0 instruction)		
I1 ₁	INT0 pin edge detection circuit control bit	0	One-sided edge detected		
111	in 10 pin eage detection circuit control bit	1	Both edges detected		
I1 0	INT0 pin Timer 1 count start synchronous	0 Timer 1 count start		t synchronous circuit not selected	
110	circuit selection bit	1	Timer 1 count start synchronous circuit selected		

	Interrupt control register I2		reset : 00002	at power down : state retained	R/W TAI2/TI2A
123	INT1 pin input control bit (Note 2)	0	INT1 pin input disa	abled	
123	in i pin input control bit (Note 2)	1	INT1 pin input ena	bled	
	Interrupt valid waveform for INT1 pin/	0	Falling waveform/"	L" level ("L" level is recognized with	the SNZI1
122			instruction)		
122	return level selection bit (Note 2)	1	Rising waveform/"H" level ("H" level is recognized with the SNZI1		
			instruction)		
l2 ₁	INT1 pin edge detection circuit control bit	0	One-sided edge de	etected	
121	INT I pin eage detection circuit control bit	1	Both edges detected		
120	INT1 pin Timer 3 count start synchronous	0 Timer 3 count start synchronous circuit not selected			
120	circuit selection bit	1	Timer 3 count start synchronous circuit selected		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

^{2:} When the contents of I12, I13 I22 and I23 are changed, the external interrupt request flag (EXF0, EXF1) may be set.

Clock control register MR		at reset : 11002		reset : 11002	at portor domini otato rotamoa	R/W TAMR/ TMRA
		MRз	MR2		Operation mode	
MR3		0	0	Through mode		
	Operation mode selection bits	0	1	Frequency divided b	by 2 mode	
MR ₂		1	0	Frequency divided b	by 4 mode	
		1	1	Frequency divided b	by 8 mode	
MR1	Main clock oscillation circuit control bit	()	Main clock oscillation	on enabled	
IVIK	Main clock oscillation circuit control bit	1		Main clock oscillation	on stop	
MRo	System clask salastian hit	()	Main clock (f(XIN) o	r f(RING))	
IVIIXU	System clock selection bit	1		Sub-clock (f(XCIN))		

Timer control register PA		at reset : 02		at power down : 02	W TPAA
PA ₀	Prescaler control bit	0	Stop (state initialize	ed)	
FA0	1 rescaler control bit	1	Operating		

	Timer control register W1		at reset : 00002		at power down : state retained	R/W TAW1/TW1A
W13	Timer 1 count auto-stop circuit selection	0		Timer 1 count auto	-stop circuit not selected	
****	bit (Note 2)	•	1	Timer 1 count auto	-stop circuit selected	
W12	Times decembed hit	0		Stop (state retained)		
VV 12	Timer 1 control bit			Operating		
		W11	W10	Count source		
W11		0	0	Instruction clock (II	NSTCK)	
	Timer 1 count source selection bits	0	1	Prescaler output (ORCLK)		
W10		1	0	Timer 5 underflow	signal (T5UDF)	
		1	1	CNTR0 input		

	Timer control register W2	at r		reset: 00002	at power down : state retained	R/W TAW2/TW2A
W23	CNTR0 output control bit	0		Timer 1 underflow signal divided by 2 output		
1123	Civil to output control bit		1	Timer 2 underflows	signal divided by 2 output	
W22	W22 Timer 2 control bit)	Stop (state retained)		
VVZZ	Timer 2 control bit		1	Operating		
1440		W21	W20		Count source	
W21		0	0	System clock (STC	K)	
	Timer 2 count source selection bits	0	1	Prescaler output (ORCLK)		
W20	W20	1	0	Timer 1 underflow signal (T1UDF)		-
		1	1	PWM signal (PWMOUT)		

	Timer control register W3		at reset : 00002		at power down : state retained	R/W TAW3/TW3A
W33	Timer 3 count auto-stop circuit selection	0		Timer 3 count auto	-stop circuit not selected	
*****	bit (Note 3)	•	1	Timer 3 count auto-stop circuit selected		
W32	W20 T 0 1111)	Stop (state retained)		
VV32	Timer 3 control bit	^	1	Operating		
		W31	W30		Count source	
W31	Times 2 count counts called in hite	0	0	PWM signal (PWM	OUT)	
	Timer 3 count source selection bits	0	1	Prescaler output (0	Prescaler output (ORCLK)	
W30	W30 (Note 4)		0	Timer 2 underflow signal (T2UDF)		
		1	1	CNTR1 input		

Notes 1: "R" represents read enabled, and "W" represents write enabled.

- 2: This function is valid only when the timer 1 count start synchronous circuit is selected (I10="1"). 3: This function is valid only when the timer 3 count start synchronous circuit is selected (I20="1").
- 4: Port C output is invalid when CNTR1 input is selected for the timer 3 count source.

	Timer control register W4	at	reset : 00002	at power down : 00002	R/W TAW4/TW4A	
W43	W/40 CNTD4 output control hit		CNTR1 output inva	alid		
VV43	W43 CNTR1 output control bit	1	1 CNTR1 output valid			
W42	PWM signal	0	PWM signal "H" interval expansion function invalid			
VV42	"H" interval expansion function control bit	1	PWM signal "H" interval expansion function valid			
W41	Timer 4 control bit	0	Stop (state retaine	d)		
VV41	Timer 4 control bit	1	Operating			
W40	Timer 4 count source selection bit	0	XIN input			
VV40	Timer 4 count source selection bit	1	Prescaler output (0	ORCLK) divided by 2		

	Timer control register W5		at reset : 00002		at power down : state retained	R/W TAW5/TW5A
W53	Not used	0		This bit has no fund	ction, but read/write is enabled.	
W52	Timer 5 control bit	0		Stop (state initialized)		
VV32	Times a definition bit			Operating		
		W51	W50		Count value	
W51		0	0	Underflow occurs e	every 8192 counts	
	Timer 5 count value selection bits	0	1	Underflow occurs e	every 16384 counts	
W50	Timer o count value selection bits	1	0	Underflow occurs e	every 32768 counts	
		1	1	Underflow occurs e	every 65536 counts	

	Timer control register W6		reset : 00002	at power down : state retained	R/W TAW6/TW6A	
W63	W63 Timer LC control bit		Stop (state retaine	d)	•	
*****	Wos Timer LC control bit	1	Operating			
\M62	W62 Timer LC count source selection bit	0	Bit 4 (T54) of timer 5			
VV02	Timer LC count source selection bit	1	Prescaler output (ORCLK)			
W61	CNTR1 output auto-control circuit	0	CNTR1 output auto	o-control circuit not selected		
VVO1	selection bit	1	CNTR1 output auto-control circuit selected			
W60	D7/CNTR0 pin function selection bit	0 D7(I/O)/CNTR0 inp		put		
VV00	(Note 2)	1	CNTR input/output	/D7 (input)		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: CNTR0 input is valid only when CNTR0 input is selected for the timer 1 count source.

	LCD control register L1		at reset : 00002		at power dow	vn : state retained	R/W TAL1/TL1A
L13	Internal dividing resistor for LCD power	0		2r X 3, 2r X 2			
LIS	supply selection bit (Note 2)	1	I	r X 3, r X 2			
L12	140)	Off			
L 12	LCD control bit	1	l	On			
		L11	L10	Duty		Bias	i
L11		0	0		Not av	ailable	
		0	1	1/2		1/2	
L10	LCD duty and bias selection bits	1	0	1/3		1/3	
0		1	1	1/4		1/3	

	LCD control register L2	at	reset : 00002	at power down : state retained	W TL2A
L23	1.20 V/ 20/SEC a nin function quitab hit /Note 2)		SEG0		
LZ3	L23 VLC3/SEG0 pin function switch bit (Note 3)	1	VLC3		
1.20	L22 VLC2/SEG1 pin function switch bit (Note 4)	0	SEG1		
LZ2	VLC2/SEG1 pili function switch bit (Note 4)	1	VLC2		
L21	VLC1/SEG2 pin function switch bit (Note 4)	0	SEG2		
LZ1	VLC1/SEG2 pin function switch bit (Note 4)	1	VLC1		
L20	Internal dividing resistor for LCD power	0 Internal dividing resistor		sistor valid	
L20	supply control bit	1	Internal dividing res	sistor invalid	

	LCD control register L3	at	reset : 00002	at power down : state retained	W TL3A
L33	SEG24/P33-SEG27/P30 pin function	0 SEG24–SEG27			
LSS	switch bit	1	P33-P30		
L32	SEG28/P23, SEG29/P22 pin function	0	SEG28, SEG29		
L32	switch bit	1	P23, P22		
L31	SEG30/P21 pin function	0	SEG30		
L31	switch bit	1	P21		
L30	SEG31/P20 pin function	0	SEG31		
L30	switch bit	1	P20		

Notes 1: "R" represents read enabled, and "W" represents write enabled.
2: "r (resistor) multiplied by 3" is used at 1/3 bias, and "r multiplied by 2" is used at 1/2 bias.

^{3:} VLc3 is connected to VDD internally when SEG0 pin is selected.
4: Use internal dividing resistor when SEG1 and SEG2 pins are selected.

	Pull-up control register PU0		reset : 00002	at power down : state retained	R/W TAPU0/ TPU0A
DLIOs	Port P03 pull-up transistor	0	Pull-up transistor O	FF	
PU03	control bit	1	Pull-up transistor O	N	
DLIOs	Port P02 pull-up transistor	0 Pull-up transistor C		FF	
PU02	control bit	1	Pull-up transistor O	N	
DI IO	Port P01 pull-up transistor	0	Pull-up transistor O	FF	
PU01	control bit	1	Pull-up transistor O	N	
DLIOs	Port P0o pull-up transistor	0 Pull-up transistor C		FF	
PU00	control bit	1	Pull-up transistor O	N	

Pull-up control register PU1		at reset : 00002		at power down : state retained	R/W TAPU1/ TPU1A
DUIA	Port P13 pull-up transistor	0	Pull-up transistor O	FF	
PU13	control bit	1	Pull-up transistor O	N	
DU4-	Port P12 pull-up transistor	0 Pull-up transistor Of		FF	
PU12	control bit	1	Pull-up transistor O	N	
DI.I.	Port P11 pull-up transistor	0	Pull-up transistor O	FF	
PU11	control bit	1	Pull-up transistor O	N	
DUIA	Port P10 pull-up transistor	0 Pull-up transistor Of		FF	
PU10	control bit	1	Pull-up transistor O	N	

Port output structure control register FR0		at reset : 00002		at power down : state retained	W TFR0A
ED0°	Ports P12, P13 output structure selection	0	N-channel open-drain output		
FR03	bit	1	CMOS output		
FR02	Ports P10, P11 output structure selection	0	N-channel open-drain output		
	bit	1	CMOS output		
FR01	Ports P02, P03 output structure selection	0	N-channel open-drain output		
	bit	1	CMOS output		
FR00	Ports P00, P01 output structure selection	0	N-channel open-drain output		
	bit	1	CMOS output		

Port output structure control register FR1		at reset : 00002		at power down : state retained	W TFR1A
FR13 Port D3 output structure selection, bit	0	N-channel open-drain output			
FK13	Port D3 output structure selection bit	1	CMOS output		
ED4a	Port D2 output structure selection bit	0	N-channel open-drain output		
FR12		1	CMOS output		
ED44	Port D1 output structure selection bit	0	N-channel open-drain output		
FR11		1	CMOS output		
FR10	Port Do output structure selection bit	0	N-channel open-drain output		
		1	CMOS output		

Port output structure control register FR2		at reset : 00002		at power down : state retained	W TFR2A	
EDG D (ONET)	Port D-/CNTD0 cutout atmenture collection his	0	N-channel open-drain output			
FR23	Port D7/CNTR0 output structure selection bit	1	CMOS output	CMOS output		
ED0s	Port D6 output structure selection bit	0	N-channel open-drain output			
FR22		1	CMOS output			
EDO:	Port D5 output structure selection bit	0	N-channel open-drain output			
FR21		1	CMOS output			
ED0s	Port D4 output structure selection bit	0	N-channel open-drain output			
FR20		1	CMOS output			

Note: "R" represents read enabled, and "W" represents write enabled.

Key-on wakeup control register K0		at reset : 00002		at power down : state retained	R/W TAK0/ TK0A
K03	Port P03 key-on wakeup		Key-on wakeup not used		
NU3	control bit	1	Key-on wakeup used		
1/00	Port P02 key-on wakeup	0	Key-on wakeup not used		
K02	control bit	1	Key-on wakeup used		
1/04	Port P01 key-on wakeup		Key-on wakeup not used		
K01	control bit	1	Key-on wakeup used		
I/Oo	Port P00 key-on wakeup	0	Key-on wakeup not used		
K0 0	control bit	1	Key-on wakeup use	ed	

Key-on wakeup control register K1		at reset : 00002		at power down : state retained	R/W TAK1/ TK1A
K13	Port P13 key-on wakeup control bit	0	Key-on wakeup not used		
K13		1	Key-on wakeup used		
K12	Port P12 key-on wakeup control bit	0	Key-on wakeup not used		
K12		1	Key-on wakeup used		
174.	Port P11 key-on wakeup control bit	0	Key-on wakeup not used		
K11		1	Key-on wakeup used		
K10	Port P10 key-on wakeup control bit	0	Key-on wakeup not used		
		1	Key-on wakeup used		

Key-on wakeup control register K2		at reset : 00002		at power down : state retained	R/W TAK2/ TK2A
K23	INT1 pin return condition selection bit	0	Returned by level		
N23		1	Returned by edge	Returned by edge	
K22	INT1 pin key-on wakeup control bit	0	Key-on wakeup invalid		
NZ2		1	Key-on wakeup valid		
I/O4	INT0 pin return condition selection bit	0	Returned by level		
K21		1	Returned by edge		
K20	INT0 pin key-on wakeup control bit	0	Key-on wakeup invalid		
		1	Key-on wakeup valid		

Note: "R" represents read enabled, and "W" represents write enabled.

INSTRUCTIONS

The 4554 Group has the 136 instructions. Each instruction is described as follows;

- (1) Index list of instruction function
- (2) Machine instructions (index by alphabet)
- (3) Machine instructions (index by function)
- (4) Instruction code table

SYMBOL

The symbols shown below are used in the following list of instruction function and the machine instructions.

Symbol	Contents	Symbol	Contents
Α	Register A (4 bits)	PS	Prescaler
В	Register B (4 bits)	T1	Timer 1
DR	Register DR (3 bits)	T2	Timer 2
E	Register E (8 bits)	Т3	Timer 3
V1	Interrupt control register V1 (4 bits)	T4	Timer 4
V2	Interrupt control register V2 (4 bits)	T5	Timer 5
I 1	Interrupt control register I1 (4 bits)	TLC	Timer LC
12	Interrupt control register I2 (4 bits)	T1F	Timer 1 interrupt request flag
MR	Clock control register MR (4 bits)	T2F	Timer 2 interrupt request flag
PA	Timer control register PA (1 bit)	T3F	Timer 3 interrupt request flag
W1	Timer control register W1 (4 bits)	T4F	Timer 4 interrupt request flag
W2	Timer control register W2 (4 bits)	T5F	Timer 5 interrupt request flag
W3	Timer control register W3 (4 bits)	WDF1	Watchdog timer flag
W4	Timer control register W4 (4 bits)	WEF	Watchdog timer enable flag
W5	Timer control register W5 (4 bits)	INTE	Interrupt enable flag
W6	Timer control register W6 (4 bits)	EXF0	External 0 interrupt request flag
L1	LCD control register L1 (4 bits)	EXF1	External 1 interrupt request flag
L2	LCD control register L2 (4 bits)	P	Power down flag
L3	LCD control register L3 (4 bits)		Tonor domining
PU0	Pull-up control register PU0 (4 bits)	D	Port D (10 bits)
PU1	Pull-up control register PU1 (4 bits)	P0	Port P0 (4 bits)
FR0	Port output format control register FR0 (4 bits)	P1	Port P1 (4 bits)
FR1	Port output format control register FR1 (4 bits)	P2	Port P2 (4 bits)
FR2	Port output format control register FR2 (4 bits)	P3	Port P3 (4 bits)
FR3	Port output format control register FR3 (4 bits)	c	Port C (1 bit)
K0	Key-on wakeup control register K0 (4 bits)	ľ	
K1	Key-on wakeup control register K1 (4 bits)	x	Hexadecimal variable
K2	Key-on wakeup control register K2 (4 bits)	y	Hexadecimal variable
X	Register X (4 bits)	z	Hexadecimal variable
Ŷ	Register Y (4 bits)	p	Hexadecimal variable
Z	Register Z (2 bits)	n	Hexadecimal constant
DP	Data pointer (10 bits)	;"	Hexadecimal constant
D1	(It consists of registers X, Y, and Z)	li	Hexadecimal constant
PC	Program counter (14 bits)	A3A2A1A0	Binary notation of hexadecimal variable A
РСн	High-order 7 bits of program counter	7.07.127.117.10	(same for others)
PCL	Low-order 7 bits of program counter		(came for careful)
SK	Stack register (14 bits X 8)	←	Direction of data movement
SP	Stack pointer (3 bits)	\longleftrightarrow	Data exchange between a register and memory
CY	Carry flag	?	Decision of state shown before "?"
RPS	Prescaler reload register (8 bits)	()	Contents of registers and memories
R1	Timer 1 reload register (8 bits)		Negate, Flag unchanged after executing instruction
R2	Timer 2 reload register (8 bits)	M(DP)	RAM address pointed by the data pointer
R3	Timer 3 reload register (8 bits)	a a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R4L	Timer 4 reload register (8 bits)	p, a	Label indicating address a6 a5 a4 a3 a2 a1 a0
R4H	Timer 4 reload register (8 bits)	[, ,	in page p5 p4 p3 p2 p1 p0
RLC	Timer LC reload register (4 bits)	l c	Hex. C + Hex. number x
INLO	Timer 20 reload register (4 bits)	C + x	Tiox. 6 Triox. Hamber x
		^	
lata i Cama inatri	uctions of the 4554 Group has the skin function to unexecute	the part described	I to the state of the AFFA Course is at investigation the court in the

Note: Some instructions of the 4554 Group has the skip function to unexecute the next described instruction. The 4554 Group just invalidates the next instruction when a skip is performed. The contents of program counter is not increased by 2. Accordingly, the number of cycles does not change even if skip is not performed. However, the cycle count becomes "1" if the TABP p, RT, or RTS instruction is skipped.

INDEX LIST OF INSTRUCTION FUNCTION

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	TAB	(A) ← (B)	95, 112		XAMI j	$(A) \leftarrow \rightarrow (M(DP))$	111, 112
				fer		$(X) \leftarrow (X)EXOR(j)$	
	TBA	(B) ← (A)	103, 112	ans		j = 0 to 15	
				er tr		(Y) ← (Y) + 1	
	TAY	$(A) \leftarrow (Y)$	102, 112	gist			
				RAM to register transfer	TMA j	(M(DP)) ← (A)	106, 112
	TYA	$(Y) \leftarrow (A)$	110, 112	≥ E		$(X) \leftarrow (X)EXOR(j)$	
	TEAD	(F7 F4) ((B)	102 112	₹		j = 0 to 15	
<u>_</u>	TEAB	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$	103, 112		1. 4	(4)	04.444
Register to register transfer		(L3-L0) (A)			LA n	(A) ← n n = 0 to 15	84, 114
traı	TABE	(B) ← (E7–E4)	96, 112			11 = 0 10 15	
ster	INDL	$(A) \leftarrow (E3-E0)$			TABP p	(SP) ← (SP) + 1	96, 114
egis						$(SK(SP)) \leftarrow (PC)$	00, 114
to _	TDA	(DR2−DR0) ← (A2−A0)	103, 112			(PCH) ← p	
ster						(PCL) ← (DR2–DR0, A3–A0)	
egis	TAD	(A2–A0) ← (DR2–DR0)	97, 112			(B) ← (ROM(PC))7–4	
~		(A3) ← 0				(A) ← (ROM(PC))3-0	
						$(PC) \leftarrow (SK(SP))$	
	TAZ	$(A1, A0) \leftarrow (Z1, Z0)$	102, 112			(SP) ← (SP) − 1	
		(A3, A2) ← 0					
			400 440		AM	$(A) \leftarrow (A) + (M(DP))$	78, 114
	TAX	$(A) \leftarrow (X)$	102, 112				
	TACD	(Aa Aa) . (CDa CDa)	100, 112		AMC	$(A) \leftarrow (A) + (M(DP)) + (CY)$	78, 114
	TASP	$(A2-A0) \leftarrow (SP2-SP0)$ $(A3) \leftarrow 0$	100, 112			(CY) ← Carry	
		(A3) ← 0		<u>ا</u> ا	۸ ۵	(A) ((A)) =	70 111
	LXY x, y	$(X) \leftarrow x x = 0 \text{ to } 15$	84, 112	Arithmetic operation	A n	$(A) \leftarrow (A) + n$ $n = 0 \text{ to } 15$	78, 114
		$(Y) \leftarrow y \ y = 0 \text{ to } 15$		obe		11 = 0 10 13	
ses				if:	AND	$(A) \leftarrow (A) \text{ AND } (M(DP))$	78, 114
ress	LZ z	$(Z) \leftarrow z z = 0 \text{ to } 3$	84, 112) H		((2.7)	. 5,
RAM addresses				Arit	OR	$(A) \leftarrow (A) OR (M(DP))$	85, 114
ğ	INY	(Y) ← (Y) + 1	83, 112				,
₹					sc	(CY) ← 1	89, 114
	DEY	$(Y) \leftarrow (Y) - 1$	81, 112				
			99, 112		RC	(CY) ← 0	87, 114
	TAM j	(A) ← (M(DP))	99, 112				
		$(X) \leftarrow (X)EXOR(j)$			SZC	(CY) = 0 ?	93, 114
fer		j = 0 to 15				_	
ansl	V A B 4 :	(A) (M/DD))	111, 112		СМА	$(A) \leftarrow (\overline{A})$	80, 114
er tra	XAM j	$(A) \leftarrow \rightarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$,		DAD	[OV] [A-A-A-A-]	00 444
yiste		j = 0 to 15			RAR	$\longrightarrow \boxed{CY} \longrightarrow \boxed{A3A2A1A0} \longrightarrow$	86, 114
RAM to register transfer							
M to	XAMD j	$(A) \leftarrow \rightarrow (M(DP))$	111, 112				
RA		$(X) \leftarrow (X) \in X \cap X$					
		j = 0 to 15					
		$(Y) \leftarrow (Y) - 1$					

Note: p is 0 to 63 for M34554M8, p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED.

INDEX LIST OF INSTRUCTION FUNCTION (continued)

Group- ing	Mnemonic	Function	Page	Group- ing	Mnemonic	Function	Page
	SB j	(Mj(DP)) ← 1	88, 114		DI	(INTE) ← 0	81, 118
L.		j = 0 to 3			EI	(INTE) ← 1	82, 118
əratic	RB j	(Mj(DP)) ← 0	86, 114				
Bit operation		j = 0 to 3			SNZ0	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) \leftarrow 0	90, 118
ā	SZB j	(Mj(DP)) = 0 ?	93, 114			V10 = 1: SNZ0 = NOP	
		j = 0 to 3			CNIZ4)/4. 0. (EVE4) 4.0	00.440
ū	SEAM	(A) = (M(DP)) ?	90, 114		SNZ1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) \leftarrow 0	90, 118
Comparison operation			,			V11 = 1: SNZ1 = NOP	
omp	SEA n	(A) = n ? n = 0 to 15	89, 114		SNZI0	I12 = 1 : (INT0) = "H" ?	90, 118
5		11 = 0 to 15			SINZIO		90, 110
	Ва	(PCL) ← a6–a0	79, 116	Interrupt operation			
ation	BL p, a	 (PCH) ← p	79, 116	opera	SNZI1		91, 118
oper	J = p, w	(PCL) ← a6–a0	7 3, 113	.nbt o			
Branch operation	DI A n	(PCu) (p	79, 116	Interi	TAV1	(A) ← (V1)	100, 118
Bra	BLA p	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	79, 110		TV1A	(V1) ← (A)	108, 118
	ВМ а	(SP) ← (SP) + 1 (SK(SP)) ← (PC)	79, 116		TAV2	(A) ← (V2)	100, 118
		(PCH) ← 2			TV2A	(V2) ← (A)	109, 118
_		(PCL) ← a6–a0			TAI1	(A) (14)	07 110
Subroutine operation	BML p, a	 (SP) ← (SP) + 1	80, 116		IAII	$(A) \leftarrow (I1)$	97, 118
obei		$(SK(SP)) \leftarrow (PC)$			TI1A	(I1) ← (A)	104, 118
utine		(PCH) ← p (PCL) ← a6–a0			TAI2	(A) ← (I2)	97, 118
ubro		(1 02) \ 40 40			.,2	(1.7)	07, 110
Ō	BMLA p	(SP) ← (SP) + 1	80, 116		TI2A	(I2) ← (A)	104, 118
		$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p$			TPAA	(PA0) ← (A0)	107, 118
		(PCL) ← (DR2–DR0, A3–A0)					
	RTI	$(PC) \leftarrow (SK(SP))$	88, 116		TAW1	(A) ← (W1)	100, 118
		(SP) ← (SP) – 1			TW1A	(W1) ← (A)	109, 118
	RT	$(PC) \leftarrow (SK(SP))$	87, 116	tion	TAW2	(A) ← (W2)	101, 118
		$(SP) \leftarrow (SR) - 1$	07, 110	pera	17.002	(**)	101, 110
Return operation	DTC	(DC) ((SK(SD))	00 440	Timer operation	TW2A	(W2) ← (A)	109, 118
oper	RTS	(PC) ← (SK(SP)) (SP) ← (SP) − 1	88, 116	Ë	TAW3	(A) ← (W3)	101, 118
turn		, , ,					
Re					TW3A	(W3) ← (A)	109, 118
	0 to 63 for M:						

Note: p is 0 to 63 for M34554M8,

p is 0 to 95 for M34554MC and

p is 0 to 127 for M34554ED.

Group- ing	Mnemonic	F INSTRUCTION FU	Page	Group- ing	Mnemonic	Function	Page
	TAW4	(A) ← (W4)	101, 118		T4HAB	(R4H7–R4H4) ← (B) (R4H3–R4H0) ← (A)	94, 120
	TW4A	(W4) ← (A)	110, 118		TR1AB	(R17–R14) ← (B)	108, 120
	TAW5	(A) ← (W5)	101, 120		IKIAB	$(R13-R10) \leftarrow (A)$	100, 120
	TW5A	(W5) ← (A)	110, 120		TR3AB	$(R37-R34) \leftarrow (B)$ $(R33-R30) \leftarrow (A)$	108, 120
	TAW6	(A) ← (W6)	102, 120		T4R4L	(T47–T44) ← (R4L7–R4L4)	95, 120
	TW6A	(W6) ← (A)	110, 120		141142	$(T43-T40) \leftarrow (R4L3-R4L0)$	00, 120
	TABPS	(B) ← (TPS7–TPS4)	97, 120	ation	TLCA	(LC) ← (A)	106, 120
		$(A) \leftarrow (TPS3-TPS0)$		per	CNIZTA	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	04 400
	TPSAB	(RPS7–RPS4) ← (B)	107, 120	Timer operation	SNZT1	V12 = 0: (T1F) = 1 ? After skipping, (T1F) \leftarrow 0	91, 122
		$(TPS7-TPS4) \leftarrow (B)$		=			
		$(RPS_3-RPS_0) \leftarrow (A)$			SNZT2	V13 = 0: (T2F) = 1 ?	91, 122
		(TPS3–TPS0) ← (A)				After skipping, (T2F) ← 0	
	TAB1	(B) ← (T17–T14)	95, 120		SNZT3	V20 = 0: (T3F) = 1 ?	92, 122
		(A) ← (T13–T10)				After skipping, (T3F) ← 0	
ion	T1AB	(R17–R14) ← (B)	93, 120		SNZT4	V23 = 0: (T4F) = 1 ?	92, 122
ərati		(T17–T14) ← (B)				After skipping, $(T4F) \leftarrow 0$	
do .		(R13–R10) ← (A)					
Timer operation		(T13–T10) ← (A)			SNZT5	V21 = 0: (T5F) = 1 ? After skipping, (T5F) ← 0	92, 122
	TAB2	(B) ← (T27–T24)	95, 120			, mer empping, (rei) x e	
		(A) ← (T23–T20)			IAP0	(A) ← (P0)	82, 122
	T2AB	(R27–R24) ← (B)	94, 120		OP0A	(P0) ← (A)	85, 122
		(T27−T24) ← (B)					
		(R23–R20) ← (A)			IAP1	(A) ← (P1)	83, 122
		(T23–T20) ← (A)			OP1A	(P1) ← (A)	85, 122
	TAB3	(B) ← (T37–T34)	96, 120				,
		(A) ← (T33–T30)		Input/Output operation	IAP2	(A) ← (P2)	83, 122
	ТЗАВ	(R37–R34) ← (B)	94, 120	oper	IAP3	(A) ← (P3)	83, 122
		(T37−T34) ← (B)		tput			
		(R33–R30) ← (A)		l og			
		(T33−T30) ← (A)		Input			
	TAB4	(B) ← (T47–T44)	96, 120				
		(A) ← (T43–T40)					
	T4AB	 (R4L7–R4L4) ← (B)	94, 120				
		(T47−T44) ← (B)					
		(R4L3−R4L0) ← (A)					
		(T43–T40) ← (A)					

INDEX LIST OF INSTRUCTION FUNCTION (continued)

INDEX LIST OF INSTRUCTION FUNCTION (con							
Group- ing	Mnemonic	Function	Page				
	CLD	(D) ← 1	80, 122				
	RD	$(D(Y)) \leftarrow 0$ (Y) = 0 to 9	87, 122				
	SD	$(D(Y)) \leftarrow 1$ $(Y) = 0 \text{ to } 9$	89, 122				
	SZD	(D(Y)) = 0? (Y) = 0 to 7	93, 122				
	RCP	(C) ← 0	87, 122				
	SCP	(C) ← 1	89, 122				
	TAPU0	(A) ← (PU0)	99, 122				
ation	TPU0A	(PU0) ← (A)	107, 122				
Input/Output operation	TAPU1	(A) ← (PU1)	99, 122				
ıt/Outp	TPU1A	(PU1) ← (A)	108, 122				
ndul	TAK0	(A) ← (K0)	98, 124				
	TK0A	(K0) ← (A)	105, 124				
	TAK1	(A) ← (K1)	98, 124				
	TK1A	(K1) ← (A)	105, 124				
	TAK2	(A) ← (K2)	98, 124				
	TK2A	(K2) ← (A)	105, 124				
	TFR0A	(FR0) ← (A)	103, 124				
	TFR1A	(FR1) ← (A)	104, 124				
	TFR2A	(FR2) ← (A)	104, 124				
	CMCK	Ceramic resonator selected	81, 124				
Ĕ	CRCK	RC oscillator selected	81, 124				
peratic	TAMR	(A) ← (MR)	99, 124				
Clock operation	TMRA	(MR) ← (A)	107, 124				

ued)			
Group- ing	Mnemonic	Function	Page
	TAL1	(A) ← (L1)	116, 124
LCD operation	TL1A	(L1) ← (A)	124, 124
do Q;	TL2A	(L2) ← (A)	124, 124
]	TL3A	(L3) ← (A)	113, 124
	NOP	(PC) ← (PC) + 1	128, 124
	POF	Transition to clock operating mode	108, 124
	POF2	Transition to RAM back-up mode	107, 124
	EPOF	POF, POF2 instructions valid	115, 124
uo	SNZP	(P) = 1 ?	123, 124
Other operation	DWDT	Stop of watchdog timer function enabled	112, 146
Otho	WRST	(WDF1) = 1 ? After skipping, (WDF1) ← 0	116, 146
	RBK*	When TABP p instruction is executed, $P_6 \leftarrow 0$	114, 146
	SBK*	When TABP p instruction is executed, $P6 \leftarrow 1$	92, 146
	SVDE	At power down mode, voltage drop detection circuit valid	106, 146

Note: *(RBK, SBK) cannot be used in the M34554M8.

MACHINE INSTRUCTIONS (INDEX BY ALPHABET)

1 / \ dd \ n	and accumulator				
Instruction	and accumulator) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	riag C1	Skip condition
	0 0 0 1 1 0 n n n n ₂ 0 6 n ₁₆	1	1	_	Overflow = 0
Operation:	(A) ← (A) + n	Grouping:	Arithmetic	operation	
	n = 0 to 15			_	the immediate field to
					a result in register A.
			-		g CY remains unchanged.
			Skips the r	next instru	ction when there is no
			overflow as	s the result	t of operation.
					struction when there is
			overflow as	s the result	t of operation.
AM (Add a	ccumulator and Memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 1 0 ₂ 0 0 A ₁₆	words	cycles		
		1	1	_	_
Operation:	$(A) \leftarrow (A) + (M(DP))$	Grouping:	Arithmetic	operation	
		Description	: Adds the	contents o	f M(DP) to register A.
					egister A. The contents
			of carry fla	g CY rema	ins unchanged.
AMC (Add	and County				
Instruction	accumulator, Memory and Carry) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	Flag C1	Skip condition
Couc	0 0 0 0 0 0 1 0 1 1 ₂ 0 0 B ₁₆	1	1	0/1	_
Operation:	$(A) \leftarrow (A) + (M(DP)) + (CY)$	Grouping:	Arithmetic		
	$(CY) \leftarrow Carry$	Description			f M(DP) and carry flag
			ter A and c		res the result in regis-
			tei A and C	arry nay C	1.
AND (logic	al AND between accumulator and memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 0 0 0 0 0 1 8	words	cycles		
		1	1	_	_
Operation:	$(A) \leftarrow (A) \text{ AND } (M(DP))$	Grouping:	Arithmetic	operation	
- I	Vivia Vivia Vivia Vivia Vivia	Description		•	ation between the con-
			tents of r	egister A	and the contents of
			M(DP), and	d stores th	e result in register A.

B a (Brancl	h to address a)				
Instruction code	D9 D0 0 1 1 a6 a5 a4 a3 a2 a1 a0 2 1 8 a 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 1 1 do do d4 d5 d2 d1 d0 2 1 +a d 16	1	1	-	_
Operation:	(PCL) ← a6 to a0	Grouping: Description: Note:	a in the ide	nin a page ntical page branch a	ddress within the page
BL p, a (Br	anch Long to address a in page p)				
Instruction code	D9 D0 0 0 1 1 1 p4 p3 p2 p1 p0 2 0 E p p 16	Number of words	Number of cycles	Flag CY	Skip condition
	1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 +p +a a 16	2	2	_	_
	10	Grouping:	Branch ope		. Due a change de la delacación
Operation:	(PCH) ← p (PCL) ← a6 to a0	Description:	a in page p		: Branches to address
	(FCL) ← ab t0 a0	Note:	p is 0 to 63	for M345 54MC, an	54M8, and p is 0 to 95 id p is 0 to 127 for
	anch Long to address (D) + (A) in page p)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1 0 16 1 p6 p5 p4 0 0 p3 p2 p1 p0 2 +p p p 16	2	2	_	_
	1 p6 p5 p4 0 0 p3 p2 p1 p0 2 +p p p 16	Grouping:	Branch ope	eration	
Operation:	$(PCH) \leftarrow p$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$	Description:	(DR2 DR1 registers D p is 0 to 63	DRo A3 As and A in p for M345 54MC, an	: Branches to address 2 A1 A0)2 specified by page p. 54M8, and p is 0 to 95 ad p is 0 to 127 for
BM a (Brai	nch and Mark to address a in page 2)				
Instruction code	D9 D0 0 1 0 a6 a5 a4 a3 a2 a1 a0 1 a a	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(SP) ← (SP) + 1	Grouping:	Subroutine	call opera	ation
	$(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow 2$ $(PCL) \leftarrow a6-a0$	Description Note:	subroutine Subroutine other page instruction Be careful	at addres e extendir e can also when it st not to ove	in page 2: Calls the s a in page 2. Ing from page 2 to an be called with the BN arts on page 2. In the stack because the proutine nesting is 8.

MACHINI	E INSTRUCTIONS (INDEX BY ALPHABET)	(contini	uea)		
BML p, a (Branch and Mark Long to address a in page p)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 1 1 0 p4 p3 p2 p1 p0 2 0 C p 16	words	cycles		
		2	2	_	_
	1 p6 p5 a6 a5 a4 a3 a2 a1 a0 2 2 p +p +a a 16	Grouping:	Subroutine	call opera	tion
Operation:	(SP) ← (SP) + 1	Description			Calls the subroutine at
	$(SK(SP)) \leftarrow (PC)$		address a		
	(PCH) ← p	Note:			54M8, and p is 0 to 95
	(PCL) ← a6–a0		M34554ED		d p is 0 to 127 for
					the stack because the
			maximum I	evel of sub	routine nesting is 8.
BMLA p (E	Branch and Mark Long to address (D) + (A) in page p	o)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 1 0 0 0 0 2 0 3 0 16	words	cycles		
		2	2	_	_
	1 p6 p5 p4 0 0 p3 p2 p1 p0 2 +p p p 16	Grouping:	Subroutine	call opera	tion
Operation:	(SP) ← (SP) + 1	Description			Calls the subroutine at
·	$(SK(SP)) \leftarrow (PC)$		address (D	R2 DR1 DI	Ro A3 A2 A1 A0)2 speci-
	$(PCH) \leftarrow p$				d A in page p.
	$(PCL) \leftarrow (DR2-DR0, A3-A0)$	Note:			4M8, and p is 0 to 95 for to 127 for M34554ED.
				•	the stack because the
			maximum I	evel of sub	routine nesting is 8.
CLD (CLea	ar port D)	1			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 0 0 1 1	words	cycles		
		1	1	_	_
Operation:	(D) ← 1	Grouping:	Input/Outp	ut operatio	n
		Description	: Sets (1) to	port D.	
CMA (Colv	Iplement of Accumulator)	•			
Instruction		Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 0 0 2 0 1 C	words	cycles		
		1	1	_	_
Operation:	$(A) \leftarrow \overline{(A)}$	Grouping:	Arithmetic	operation	
-				•	mplement for register
			A's conten	ts in registe	er A.

CMCK (Clo	ock select: ceraMic oscillation ClocK)				
Instruction code	D9 D0 1 0 0 1 1 0 1 0 2 9 A	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	Ceramic oscillation circuit selected	Grouping:	Other oper	ation	
					oscillation circuit and
			stops the o	n-chip osc	illator.
CRCK (Clo	ck select: Rc oscillation ClocK)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	_
Operation:	RC oscillation circuit selected	Grouping:	Other oper	ation	
		Description	: Selects the the on-chip		ation circuit and stops
DEY (DEcr	ement register Y) D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 1 1 1 2	words 1	cycles 1	_	(Y) = 15
Operation:	(Y) ← (Y) − 1	Grouping:	RAM addre	esses	
-					contents of register Y
					action, when the con-
					15, the next instruction
					contents of register Y truction is executed.
DI (Disable	• •				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 0 2		1	_	_
Operation:	(INTE) ← 0	Grouping:	Interrupt c	ontrol oper	ation
		Description	٠,		t enable flag INTE, and
		Note:		disabled	by executing the DI in ing 1 machine cycle.

DWDT /Did	sable WatchDog Timer)	•			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 0 0 1 1 1 0 0 2 9 0	words	cycles		Omp containen
	16	1	1	_	_
Operation:	Stop of watchdog timer function enabled	Grouping:	Other oper	ation	
Operano	otop or materials and tanonon or account				timer function by the
				_	after executing the
			DWDT inst	truction.	
EI (Enable	Interrupt)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 0 1 0 1 2 0 0 5	words	cycles		
		1	1	_	
Operation:	(INTE) ← 1	Grouping:	Interrupt co		
		Description			enable flag INTE, and
		Note:	•	enabled I	by executing the EI ining 1 machine cycle.
EPOF (Ena	able POF instruction)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 1 0 1 1 ₂ 0 5 B ₁₆	words	cycles	_	
0	POS intensified POSS intensified and in				
Operation:	POF instruction, POF2 instruction valid	Grouping:	Other oper		te after POF or POF2
		Description			xecuting the EPOF in-
	t Accumulator from port P0)				
Instruction	D9 Do	Number of words	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 0 2 2 6 0 16	words 1	cycles 1	_	-
				<u> </u>	
Operation:	(A) ← (P0)	Grouping: Description	Input/Outp : Transfers t		n port P0 to register A.

IAP1 (Inpu	t Accumulator from port P1)				
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 0 0 0 0 1 2 2 6 1 16	words	cycles		
		1	1	_	_
Operation:	(A) ← (P1)	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers t	he input of	port P1 to register A.
IAP2 (Inpu	t Accumulator from port P2)	ı			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(A) ← (P2)	Grouping:	Input/Outp	ut operatio	n
		Description	: Transfers t	he input of	port P2 to register A.
IAP3 (Inpu Instruction code	t Accumulator from port P3) D9 D0 1 0 0 1 1 0 0 0 1 1 2 2 6 3 16	Number of words	Number of cycles	Flag CY	Skip condition
		'	'		
Operation:	$(A) \leftarrow (P3)$	Grouping:	Input/Outp		port P3 to register A.
INV (INJero	mont register V	·			
Instruction	ment register Y) D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	19	
	16	1	1	_	(Y) = 0
Operation:	$(Y) \leftarrow (Y) + 1$	Grouping: Description	sult of ac register Y skipped. W	he content Idition, what is 0, the Ihen the co	s of register Y. As a re- nen the contents of e next instruction is entents of register Y is tion is executed.

LA n (Load	In in Accumulator)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 1 1 1 1 n n n n 2 0 7 n 16	1	1	_	Continuous description		
Operation:	(A) ← n	Grouping:	Arithmetic	operation			
	n = 0 to 15	Description	register A. When the coded and struction	LA instruction of the contraction of the contractio	the immediate field to stions are continuousled, only the first LA in uted and other La		
			skipped.	ns code	d continuously ar		
LXY x, y (L	oad register X and Y with x and y)	1					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
	1 1 x3 x2 x1 x0 y3 y2 y1 y0 2 3 x y 16	1	1	_	Continuous description		
Operation:	$(X) \leftarrow x \ x = 0 \text{ to } 15$	Grouping:	RAM addr	esses			
	$(Y) \leftarrow y \ y = 0 \text{ to } 15$	Description	register X, field to reg tions are c only the fi	and the vagister Y. Vontinuouslirst LXY instru	the immediate field talue y in the immediate When the LXY instruction is executed and continuations coded continuations.		
LZ z (Load	register Z with z)	•					
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
	0 0 0 1 0 0 1 0 0 1 0 21 20 2 0 4 +z 16	1	1	_	-		
Operation:	$(Z) \leftarrow z z = 0 \text{ to } 3$	Grouping: RAM addresses					
		Description	: Loads the register Z.	value z in	the immediate field to		
NOP (No C	Peration)						
Instruction code	D9 D0 D0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Number of words	Number of cycles	Flag CY	Skip condition		
	16	1	1	_	_		
Operation:	(PC) ← (PC) + 1	Grouping: Description	•	ion; Adds	1 to program counte		

ODOA (O	transfer DO from Appropriators				
	tput port P0 from Accumulator)	Ni wala a a a f	Ni walan a	FI 01/	Olda as addition
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 0 0 0 0 0 0 0 16	1	1	_	_
Operation:	(P0) ← (A)	Grouping:	Input/Outp	ut operatio	 n
					s of register A to port
			P0.		
OP1A (Out	tput port P1 from Accumulator)				_
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 1 0 0 0 1 1 2 2 2 1 1 16	1	1	-	_
Operation:	(P1) ← (A)	Grouping:	Input/Outp	ut operatio	n
		Description	: Outputs th P1.	e content	s of register A to port
OR (logical Instruction code	D9 D0 0 0 0 1 1 0 0 1 2 0 1 9 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(A) \leftarrow (A) OR (M(DP))$	Grouping:	Arithmetic		
		Description	tents of r	egister A	tion between the con- and the contents of e result in register A.
POF (Powe	er OFf1)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 0 0 1 0 2	1	1	_	_
Operation:	Transition to clock operating mode	Grouping:	Other oper	ation	
Sporumon.		Description Note:	executing to ing the EPOF	ystem in cl the POF in OF instruct instruction this instruc	is not executed before tion, this instruction is

POF2 (Pov	ver OFf2)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 0 1 0 0 0 2	words	cycles		
	16	1	1	_	-
Operation:	Transition to RAM back-up mode	Grouping:	Other oper	ration	
		Description			RAM back-up state by
		Note:	executing ecuting the If the EPOR executing	the POF2 EPOF instruction this instruct	instruction after ex-
RAR (Rota	te Accumulator Right)				
Instruction code	D9 D0 0 0 0 1 1 1 0 1 0 1 D to	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	0/1	_
Operation:	→[CY]→[A3A2A1A0]¬	Grouping:	Arithmetic	operation	
•			: Rotates 1 l	bit of the co	ontents of register A in- of carry flag CY to the
RB j (Rese	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	-	-
Operation:	$(Mj(DP)) \leftarrow 0$	Grouping:	Bit operation	on .	
	j = 0 to 3	Description	, ,		ts of bit j (bit specified e immediate field) of
RBK (Res	et Bank flag)	I.			
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
0000	0 0 0 1 0 0 0 0 0 0 0 2 0 4 0 16	1	1	-	-
Operation:	When TABP p instruction is executed, P6 \leftarrow 0		when the	ring data TABP p ins	area to pages 0 to 63 truction is executed. ed in M34554M8.

RC (Reset	Carry flag)				_
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles		
	0 0 0 0 0 1 1 0 2 0 0 16	1	1	0	_
Operation:	(CY) ← 0	Grouping:	Arithmetic	operation	
•			: Clears (0)		g CY.
RCP (Rese	et Port C)				
Instruction code	D9 D0 1 0 0 0 1 1 0 0 0 2 8 C 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(C) ← 0	Grouping:	Input/Outp	ut operatio	n
		Description	: Clears (0)	to port C.	
RD (Reset Instruction code	port D specified by register Y) D9 D0 0 0 0 0 0 1 0 1 0 0 0 0 1 4 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	$(D(Y)) \leftarrow 0$	Grouping:	Input/Outp	ut operatio	n
Operation.	However,				ort D specified by reg-
PT (PoTur	(Y) = 0 to 9 n from subroutine)		ister Y.		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	l lag 01	OKIP CONDITION
	16	1	2	_	_
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description	Return ope : Returns fi called the	rom subro	putine to the routine

	rn from Interrupt)						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition		
code	0 0 0 1 0 0 0 1 1 0 0 1 1 0 2	1	1	_	_		
Operation:	$(PC) \leftarrow (SK(SP))$	Grouping:	Return ope				
	(SP) ← (SP) – 1	Description	main routing Returns earry flag, the continu	ne. ach value o skip status ious descri register A	upt service routine to of data pointer (X, Y, Z s, NOP mode status be iption of the LA/LXY in and register B to the errupt.		
RTS (ReTu	urn from subroutine and Skip)						
Instruction	D9 D0 0 0 1 0 0 0 1 0 1 0 0 4 5	Number of words	Number of cycles	Flag CY	Skip condition		
	0 0 0 1 0 0 1 0 1 2	1	2	_	Skip at uncondition		
Operation:	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$	Grouping: Description		rom subro	outine to the routing, and skips the next in on.		
SB j (Set E	Bit)						
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles	Flag CY	Skip condition		
		1	1	_	_		
Operation:	$(Mj(DP)) \leftarrow 1$	Grouping: Bit operation					
	j = 0 to 3	Description	, ,		of bit j (bit specified b nediate field) of M(DP)		
SBK (Set I	Bank flag)	1					
Instruction code	D9 D0 0 0 1 0 0 0 0 1 0 0 4 1 40	Number of words	Number of cycles	Flag CY	Skip condition		
5545	0 0 0 1 0 0 0 0 0 0 0 1 2	1	1	_	-		
Operation:	When TABP p instruction is executed, P6 ← 1	Grouping:	Other oper	ration			
		Description Note: This in	rea to pages 64 to 12' truction is executed. d in M34554M8. area is pages 64 to 95				

SC (Set Ca	• •						_					I		1		
Instruction code	D9 0 0	0	0 0	0	1	1	D ₀	1		0	7	Number of words	Number of cycles	Flag CY	Skip condition	
code			0 0	0	ı	<u> </u>	1	2	0	0	16	1	1	1	-	
Operation:	(CY) ← 1											Grouping:	Arithmetic	operation		
												Description	: Sets (1) to	carry flag	CY.	
SCP (Set F	Port C)															
Instruction code	D9 1 0 1	0	0 0	1	1	0	D0]	2	8	D 46	Number of words	Number of cycles	Flag CY	Skip condition	
								12			16	1	1	_	_	
Operation:	(C) ← 1											Grouping:	Input/Outp	ut operation	on	
												Description	: Sets (1) to	port C.		
SD (Set po	D9 0 0		regis	ster `	Y)	0	D ₀]2	0	1	5 16	Number of words	Number of cycles	Flag CY	Skip condition	
												·				
Operation:	$(D(Y)) \leftarrow 1$ (Y) = 0 to 9											Grouping: Input/Output operation Description: Sets (1) to a bit of port D specified by reg				
SEA n (Sk				:41	h :		ما:م					·	ter Y.			
Instruction	D9	CCUIII	uiatoi	WILI	11 111	11116	D ₀		Jaic	111)		Number of	Number of	Flag CY	Skip condition	
code	0 0 0	0	1 0	0	1	0	1	2	0	2	5 16	words	cycles	-		
	0 0 0	1	1 1	n	n	n]	0	7		2	2	_	(A) = n	
Operation:	(A) = n? n = 0 to 15		<u>' '</u>			''	n	2			11 16	Grouping: Comparison operation Description: Skips the next instruction when the tents of register A is equal to the value the immediate field. Executes the next instruction when the tents of register A is not equal to the value in the immediate field.				

SEAM (Ski	p Equal, Accumulator with Memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 1 0 0 1 1 0 0 1 1 0 2 0 2 6 16	words	cycles		(A) (M(DD))
		1	1	_	(A) = (M(DP))
Operation:	(A) = (M(DP)) ?	Grouping:	Compariso	n operatio	n
		Description	tents of reg M(DP). Executes t	gister A is e he next ins egister A	equal to the contents of struction when the contents of struction when the content is not equal to the
SNZ0 (Skir	o if Non Zero condition of external 0 interrupt reques	t flag)			
Instruction code	D9 D0 0 0 0 1 1 1 0 0 0 0 0 3 8 46	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 1 1 1 0 0 0 2 0 3 6 16	1	1	-	V10 = 0: (EXF0) = 1
Operation:	V10 = 0: (EXF0) = 1 ?	Grouping:	Interrupt o	peration	
	After skipping, $(EXF0) \leftarrow 0$ V10 = 1: SNZ0 = NOP (V10 : bit 0 of the interrupt control register V1)	Description: When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXI is "1." After skipping, clears (0) to the EXI flag. When the EXF0 flag is "0," execut the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction.			
SNZ1 (Skir	o if Non Zero condition of external 1 interrupt reques	t flag)			
Instruction	D9 D0 D0 0 0 1 1 1 0 0 1 0 3 9	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	V11 = 0: (EXF1) = 1
Operation:	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) \leftarrow 0 V11 = 1: SNZ1 = NOP (V11 : bit 1 of the interrupt control register V1)	Grouping: Interrupt operation Description: When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF is "1." After skipping, clears (0) to the EXF flag. When the EXF1 flag is "0," execute the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction.			
SNZIO (Ski	p if Non Zero condition of external 0 Interrupt input բ	oin)			
Instruction code	D9 D0 0 0 1 1 1 0 1 0 2 0 3 A 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	I12 = 0 : (INT0) = "L" I12 = 1 : (INT0) = "H"
Operation:	I12 = 0 : (INT0) = "L" ? I12 = 1 : (INT0) = "H" ? (I12 : bit 2 of the interrupt control register I1)	Grouping: Description	when the I the next in pin is "H." When I12 when the I	= 0 : Skip evel of IN struction = 1 : Skip evel of IN	os the next instruction TO pin is "L." Execute when the level of INTo the sthe next instruction TO pin is "H." Execute when the level of INTo

Instruction code Operation: SNZP (Skip Instruction code	if Non Zero condition of external 1 Interrupt input properties and the properties of the interrupt control register I2) if Non Zero condition of Power down flag) Description of Power down flag properties of the interrupt control register I2) if Non Zero condition of Power down flag properties of the interrupt control register I2)	Number of words 1 Grouping: Description Number of words	when the leads the next in pin is "H." When I22 when the leads	= 0 : Skip evel of IN struction v = 1 : Skip evel of IN	Skip condition 122 = 0 : (INT1) = "L" 122 = 1 : (INT1) = "H" 123 = 1 : (INT1) = "H" 124 = 1 : (INT1) = "H" 125 = 1 : (INT1) = "H" 126 = 1 : (INT1) = "L" 127 = 1 : (INT1) = "L" 128 = 1 : (INT1) = "L" 129 = 1 : (INT1) = "L" 129 = 1 : (INT1) = "L" 129 = 1 : (INT1) = "L" 120 = 1 : (INT1) = "L" 120 = 1 : (INT1) = "L" 121 = 1 : (INT1) = "L" 122 = 1 : (INT1) = "L" 123 = 1 : (INT1) = "L" 123 = 1 : (INT1) = "L" 124 = 1 : (INT1) = "L" 125 = 1 : (INT1) = "L" 126 = 1 : (INT1) = "L" 127 = 1 : (INT1) = "L" 128 = 1 : (INT1) = "L" 129 = 1 : (INT1) = "L" 120 = 1 : (INT1) = "L" 121 = 1 : (INT1) = "L" 122 = 1 : (INT1) = "L" 123 = 1 : (INT1) = "L" 124 = 1 : (INT1) = "L" 125 = 1 : (INT1) = "L" 126 = 1 : (INT1) = "L" 127 = 1 : (INT1) = "L" 128 = 1 : (INT1) = "L" 129 = 1 : (INT1) = "L" 120 = 1 : (INT1) = "L" 120 = 1 : (INT1) = "L" 120 = 1 : (INT1) = "L" 121 = 1 : (INT1) = "L" 121 = 1 : (INT1) = "L" 122 = 1 : (INT1) = "L" 123 = 1 : (INT1) = "L" 124 = 1 : (INT1) = "L" 125 = 1 : (INT1) = "L" 126 = 1 : (INT1) = "L" 127 = 1 : (INT1) = "L" 128 = 1 : (INT1) = "L" 129 = 1 : (INT1) = "L" 120 = 1 : (INT1) = "L"	
SNZP (Skip Instruction code	I22 = 0 : (INT1) = "L" ? I22 = 1 : (INT1) = "H" ? (I22 : bit 2 of the interrupt control register I2) if Non Zero condition of Power down flag) D9 D0 D0 D0 D0 D0 D0 D0 D0 D0	1 Grouping: Description Number of words	Interrupt op When I22 when the I the next in pin is "H." When I22 when the I the next in pin is "L."	= 0 : Skip evel of IN struction v = 1 : Skip evel of IN struction v	os the next instruction T1 pin is "L." Executes when the level of INT1 os the next instruction T1 pin is "H." Executes when the level of INT1 to the next instruction T1 pin is "H." Executes when the level of INT1	
SNZP (Skip Instruction code	I22 = 0 : (INT1) = "L" ? I22 = 1 : (INT1) = "H" ? (I22 : bit 2 of the interrupt control register I2) if Non Zero condition of Power down flag) D9 D0 D0 D0 D0 D0 D0 D0 D0 D0	Grouping: Description Number of words	Interrupt op When I22 when the I the next in pin is "H." When I22 when the I the next in pin is "L."	= 0 : Skip evel of IN struction v = 1 : Skip evel of IN struction v	os the next instruction T1 pin is "L." Executes when the level of INT1 os the next instruction T1 pin is "H." Executes when the level of INT1	
SNZP (Skip Instruction code	if Non Zero condition of Power down flag) D9 D0 D0 D0 D0 D0 D0 D0 D0 D0	Number of words	when I22 when the I the next in pin is "H." When I22 when the I the next in pin is "L."	= 0 : Skip evel of IN struction v = 1 : Skip evel of IN struction v	T1 pin is "L." Executes when the level of INT1 os the next instruction T1 pin is "H." Executes when the level of INT1	
Instruction code	if Non Zero condition of Power down flag) D9 D0 D0 D0 D0 D0 D0 D0 D0 D0	Number of words	when the lithe next in pin is "H." When I22 when the lithe next in pin is "L."	evel of IN struction v = 1 : Skip evel of IN struction v	T1 pin is "L." Executes when the level of INT1 os the next instruction T1 pin is "H." Executes when the level of INT1	
Instruction code	D9 D0	words	Number of	Flag CY	01: 1::	
Instruction code	D9 D0	words		Flag CY	01: 1:::	
Operation:	16		Cycles	l and a	Skip condition	
Operation:		1	1	_	(P) = 1	
орогино	(P) = 1 ?	Grouping: Description	Other oper		ction when the P flag is	
			changed.	, 0	P flag remains un-	
SNZT1 (Skip	p if Non Zero condition of Timer 1 interrupt request	flag)				
Instruction code	D9 D0 1 0 0 0 0 0 0 0 2 8 0	Number of words	Number of cycles	Flag CY	Skip condition	
	16	1	1	_	V12 = 0: (T1F) = 1	
Operation:	V12 = 0: (T1F) = 1 ?	Grouping:	Timer opera	ation		
	After skipping, (T1F) \leftarrow 0	Description: When V12 = 0 : Skips the next instruction				
	V12 = 1: SNZT1 = NOP				pt request flag T1F is	
	(V12 = bit 2 of interrupt control register V1)				clears (0) to the T1F	
			next instruc		ag is "0," executes the	
					instruction is equiva-	
			lent to the I		•	
SN7T2 (Skir	p if Non Zero condition of Timer 2 interrupt request	flan)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition	
code	1 0 1 0 0 0 0 0 1 2 8 1	words	cycles	l sag s s	Jp 55.14.14511	
		1	1	_	V13 = 0: (T2F) = 1	
Operation:	V13 = 0: (T2F) = 1 ?	Grouping:	Timer opera	ation		
	After skipping, (T2F) \leftarrow 0	Description			s the next instruction	
	V13 = 1: SNZT2 = NOP				pt request flag T2F is	
	(V13 = bit 3 of interrupt control register V1)				clears (0) to the T2F	
			next instruc		ag is "0," executes the	
					instruction is equiva-	
			lent to the I			

	in if Non Zoro condition of Timer 2 interrupt request		ueu)				
	kip if Non Zero condition of Timer 3 interrupt request	1 .	Number of	Flor CV	Oldin ann disian		
Instruction code	D9 D0 1 0 0 0 0 1 0 2 2 8 2 16	Number of words	cycles	Flag CY	Skip condition		
	10	1	1	_	V20 = 0: (T3F) = 1		
Operation:	V20 = 0: (T3F) = 1 ?	Grouping:	Timer oper	ration			
	After skipping, (T3F) \leftarrow 0	Description	: When V20	= 0 : Skij	os the next instruction		
	V20 = 1: SNZT3 = NOP		when time	r 3 interru	pt request flag T3F is		
	(V20 = bit 0 of interrupt control register V2)		"1." After	skipping,	clears (0) to the T3F		
			flag. When	the T3F f	lag is "0," executes the		
			next instru	ction.			
			When V20	= 1 : This	instruction is equiva-		
			lent to the	NOP instru	uction.		
SNZT4 (SI	kip if Non Zero condition of Timer 4 inerrupt request	flag)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 1 0 0 0 0 1 1 1 2 2 8 3	words	cycles				
		1	1	_	V23 = 0: (T4F) = 1		
Operation:	V23 = 0: (T4F) = 1 ?	Grouping:	Timer ope	ration			
	After skipping, $(T4F) \leftarrow 0$	Description	1: When V23	3 = 0 : Ski	ps the next instruction		
	V23 = 1: SNZT4 = NOP		when time	er 4 interru	upt request flag T4F is		
	(V23 = bit 3 of interrupt control register V2)				clears (0) to the T4F		
					lag is "0," executes the		
			next instru	iction.			
			When V23	3 = 1 : This	s instruction is equiva-		
			lent to the	NOP instr	uction.		
SNZT5 (SI	kip if Non Zero condition of Timer 5 inerrupt request	flag)					
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 1 0 0 0 0 1 0 0 2 2 8 4 16	words	cycles		\(\(\alpha\) \(\begin{array}{cccccccccccccccccccccccccccccccccccc		
		1	1	_	V21 = 0: (T5F) = 1		
Operation:	V21 = 0: (T5F) = 1 ?	Grouping: Timer operation					
	After skipping, $(T5F) \leftarrow 0$	Description			os the next instruction		
	V21 = 1: SNZT5 = NOP				ipt request flag T5F is		
	(V21 = bit 1 of interrupt control register V2)				clears (0) to the T5F		
			ū		lag is "0," executes the		
			next instru		instruction is equive		
			lent to the		s instruction is equiva- uction.		
SVDF (Se	t Voltage Detector Enable flag)						
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition		
code	1 0 1 0 0 1 0 0 1 1 2 9 3	words	cycles		•		
		1	1	_	_		
Operation:	At power down mode, voltage drop detection circuit valid	Grouping:	Other ope	ration			
•		Description			e drop detection circuit		
			at power of	down (cloc	k operating mode and		
			RAM back	-up mode)	when VDCE pin is "H".		

SZB j (Skip	3 11 <u>2010</u> , <u>B</u>	ι)										ı	I	
Instruction code	D9 0 0	0 1	0	0 0	<u>, ;</u>	D j	0	0	2 j		Number of words	Number of cycles	Flag CY	Skip condition
] 0]	0 0	, ,	1	2		2)	16	1	1	-	(Mj(DP)) = 0 j = 0 to 3
Operation:	(Mj(DP)) =	0 ?									Grouping:	Bit operation	on	
	j = 0 to 3										Description	: Skips the	next instr	uction when the con
												the immed	iate field) on the next ins	cified by the value j in of M(DP) is "0." struction when the con) is "1."
SZC (Skip	if Zero, Ca	rry flag)											
Instruction code	D9 0 0	0 1	0	1 1	1	D 1	\neg	0	2 1	= 16	Number of words	Number of cycles	Flag CY	Skip condition
										10	1	1	_	(CY) = 0
Operation:	(CY) = 0 ?										Grouping:	Arithmetic	operation	
											Description	tents of ca After skip changed.	rry flag CY ping, the he next ins	CY flag remains un struction when the con
SZD (Skip		t D spe	ecified	d by	regi							I	I	
Instruction code	D9 0 0	0 1	0	0 1	ı	D 0 0	\neg	0	2 4	1 16	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0	0 1	0	1 0) 1	1	2	0	2	3 16	2	2	_	(D(Y)) = 0 (Y) = 0 to 7
Operation:	(D(Y)) = 0.3	,									Grouping:	Input/Outp		
	(Y) = 0 to 7										Description	D specified next instru	d by registe	ction when a bit of po er Y is "0." Executes th n the bit is "1."
T1AB (Trai	nsfer data	o time	1 an	ıd reç	giste	er R	1 fro	om A	Accu	mula				
Instruction code	D9 1 0 0	0 1	1	0 0) o	D 0 0	_	2	3 ()	Number of words	Number of cycles	Flag CY	Skip condition
		1-1-	1 1				_ 2			16	1	1	_	_
Operation:	(T17–T14) « (R17–R14) (T13–T10) « (R13–R10)	← (B) ← (A)									Grouping: Description	high-order load regist	the conter 4 bits of ter R1. Trate to the low	nts of register B to the timer 1 and timer 1 re ansfers the contents or order 4 bits of timer 2 gister R1.

WACHINI	E INSTRUCTIONS (INDEX BY ALPHABET)	(contini	uea)		
T2AB (Tra	nsfer data to timer 2 and register R2 from Accumula	tor and reg	ister B)		
Instruction code	D9 D0 1 0 0 0 1 1 0 0 0 1 0 2 3 1 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Operation:	(T27–T24) ← (B)	Grouping:	Timer oper	ation	
•	$(R27-R24) \leftarrow (B)$	Description	: Transfers	the conten	ts of register B to the
	$(T23-T20) \leftarrow (A)$		high-order	4 bits of t	imer 2 and timer 2 re-
	$(R23-R20) \leftarrow (A)$		load regist	er R2. Tra	nsfers the contents of
			register A	to the low-	order 4 bits of timer 2
			and timer 2	reload re	gister R2.
T3AB (Tra	nsfer data to timer 3 and register R3 from Accumula	tor and reg	ister B)		
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 1 0 2 2 3 2 16	words	cycles		
	1 0 0 0 1 1 0 0 1 0 2 2 3 2 16	1	1	_	_
	(70, 70) (0)	Grouping	Timer oper	otion	
Operation:	$(T37-T34) \leftarrow (B)$	Grouping:	<u> </u>		nts of register B to the
	$(R37-R34) \leftarrow (B)$	Description			imer 3 and timer 3 re-
	$(T33-T30) \leftarrow (A)$ $(R33-R30) \leftarrow (A)$		•		nsfers the contents of
	$(R33-R30) \leftarrow (A)$		_		order 4 bits of timer 3
			and timer		
			and amor (o reload re	giotor rto.
TAAD /Tro	refer data to time at 4 and register D41 from Assumed	0101000000	oists : D\		
	nsfer data to timer 4 and register R4L from Accumul		ī	Flar CV	Oldin annulition
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 1 0 0 1 1 2 2 3 3 16	1	1	_	
		'	'		_
Operation:	$(T47-T44) \leftarrow (B)$	Grouping:	Timer oper	ation	
	$(R4L7-R4L4) \leftarrow (B)$	Description	: Transfers	the conter	its of register B to the
	$(T43-\mathsf{T40}) \leftarrow (A)$		-		imer 4 and timer 4 re-
	$(R4L3-R4L0) \leftarrow (A)$		•		ansfers the contents of
			J		order 4 bits of timer 4
			and timer 4	4 reload re	gister R4L.
	ansfer data to register R4H from Accumulator and re	egister B)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 1 0 1 1 1 2 2 3 7 16	words	cycles		
		1	1	_	_
Operation:	(R4H7–R4H4) ← (B)	Grouping:	Timer oper	ation	I
- poration.	$(R4H3-R4H0) \leftarrow (A)$	Description			nts of register B to the
					imer 4 and timer 4 re-
			_		ansfers the contents of
			_		order 4 bits of timer 4
			-		gister R4H.
					-

	enefor data to timer 4 from register P4L)	Contin			
I 4K4L (118	ansfer data to timer 4 from register R4L) D0 D0	Number of	Number of	Flag CY	Skip condition
code		words	cycles	riay CT	Skip condition
coue	1 0 1 0 0 1 0 1 1 1 1 1 2 2 9 7 16	1	1	_	-
Operation:	(T47–T44) ← (R4L7–R4L4)	Grouping:	Timer oper	ation	
Operation.	$(T43-T40) \leftarrow (R4L3-R4L0)$				nts of reload register
	(143-140) (- (N4L3-N4L0)		R4L to time		
TAB (Trans	sfer data to Accumulator from register B)				
Instruction	D9 D0 0 0 0 1 1 1 1 0 0 1 E 40	Number of words	Number of cycles	Flag CY	Skip condition
	0 0 0 0 0 1 1 1 1 0 2 0 1 6	1	1	-	-
Operation:	$(A) \leftarrow (B)$	Grouping:	Register to	register tr	ansfer
					ts of register B to reg-
TAB1 (Trail	nsfer data to Accumulator and register B from timer D9 D0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 16	1) Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(B) ← (T17–T14)	Grouping:	Timer oper	ation	
орогино	$(A) \leftarrow (T13-T10)$				der 4 bits (T17-T14) of
	(1) (113 110)	Description	timer 1 to i		CI + DIG (117 114) OI
				-	ler 4 bits (T13-T10) of
			timer 1 to I		ioi 4 bits (115 116) or
TAB2 (Trai	nsfer data to Accumulator and register B from timer	2)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 0 0 1 2 7 1	words	cycles		·
	16	1	1	_	_
Operation:	$(B) \leftarrow (T27 - T24)$	Grouping:	Timer oper	ation	
	$(A) \leftarrow (T23 – T20)$	Description		-	der 4 bits (T27-T24) of
			timer 2 to r	-	
			Transfers timer 2 to r		ler 4 bits (T23–T20) of
		1			

17 12 0 (1 1 0 1	nsfer data to Accumulatoi	r and regist	er B fı	om tir	mer (3)			
Instruction	D9	D ₀				Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0	0 1 0	2	7 2	16	words	cycles		
			12		16	1	1	_	_
Operation:	(B) ← (T37–T34)					Grouping:	Timer oper	ation	
, po. u	$(A) \leftarrow (T33-T30)$								der 4 bits (T37-T34) c
	(7.) (1.00 1.00)					2000 i pilon	timer 3 to r		doi 1 bito (107 104) c
								he low-ord	der 4 bits (T33-T30) o
TAB4 (Trai	nsfer data to Accumulator	and regist	er B fı	om tir	ner 4	<u> </u> 4)			
Instruction	D9	D ₀				Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0	0 1 1	2	7 3		words	cycles	J	
		1 - 1	J2 L		16	1	1	_	_
Operation:	(B) ← (T47–T44)					Grouping:	Timer oper	ation	
	$(A) \leftarrow (T43 – T40)$					Description	: Transfers t	he high-or	der 4 bits (T47-T44) o
							timer 4 to r	egister B.	
							Transfers	he low-ord	der 4 bits (T43-T40) o
							timer 4 to r	egister A.	
TARE (Tro	nofor data to Acquimulate	r and regist	or R f	rom re	aict	er F)			
	usiei dala lo Accumulato								
Instruction	nsfer data to Accumulato	D ₀	ei Di		gisi	Number of	Number of	Flag CY	Skip condition
	D9	D ₀	1			' ' 	Number of cycles	Flag CY	Skip condition
Instruction		<u>-</u>		2 A		Number of		Flag CY	Skip condition
Instruction code	D9	D ₀	1			Number of words	cycles 1	-	-
Instruction code	D9 0 0 0 1 0 1	D ₀	1			Number of words 1 Grouping:	cycles 1 Register to	- register tr	- ransfer
Instruction code		D ₀	1			Number of words 1 Grouping:	cycles 1 Register to Transfers	register to	ransfer order 4 bits (E7–E4) o
Instruction code		D ₀	1			Number of words 1 Grouping:	cycles 1 Register to: Transfers register E	register tr the high-o	ransfer order 4 bits (E7–E4) o B, and low-order 4 bits
Instruction code		D ₀	1			Number of words 1 Grouping:	cycles 1 Register to Transfers	register tr the high-o	cansfer order 4 bits (E7–E4) o B, and low-order 4 bits
Instruction code		D ₀	1			Number of words 1 Grouping:	cycles 1 Register to: Transfers register E	register tr the high-o	ransfer order 4 bits (E7–E4) o B, and low-order 4 bits
Instruction code		D ₀	1			Number of words 1 Grouping:	cycles 1 Register to: Transfers register E	register tr the high-o	ransfer order 4 bits (E7–E4) o B, and low-order 4 bits
Instruction code		D ₀	1			Number of words 1 Grouping:	cycles 1 Register to: Transfers register E	register tr the high-o	cansfer order 4 bits (E7–E4) o B, and low-order 4 bits
Instruction code Operation:		D0 0 1 0	0	2 A	16	Number of words 1 Grouping: Description	cycles 1 Register to: Transfers register E to of register	register tr the high-o o register E to regist	cansfer order 4 bits (E7–E4) o B, and low-order 4 bits
Instruction code Operation:	D9	Do D	0	2 A	16	Number of words 1 Grouping: Description	cycles 1 Register to: Transfers register E to of register	register tr the high-o o register E to regist	ransfer order 4 bits (E7–E4) o B, and low-order 4 bits er A.
Instruction code Operation: TABP p (T	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	tor and reg	o ister E	2 A	Pro	Number of words 1 Grouping: Description	cycles 1 Register to: Transfers register E of register of register	register tr the high-o o register E to regist	cansfer order 4 bits (E7–E4) o B, and low-order 4 bits
Instruction code Operation: TABP p (T	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	tor and reg	0	2 A	Pro	Number of words 1 Grouping: Description gram memory Number of	cycles 1 Register to: Transfers register E of register of register ory in page	register tr the high-o o register E to regist	- ransfer order 4 bits (E7–E4) o B, and low-order 4 bits er A.
Instruction code Operation: TABP p (TInstruction code		tor and reg	o ister E	2 A	Pro	Number of words 1 Grouping: Description gram memory Number of words	cycles 1 Register to: Transfers register E for register ory in page Number of cycles	p) Flag CY	ransfer order 4 bits (E7–E4) o B, and low-order 4 bits er A.
Instruction code Operation: TABP p (TInstruction code		tor and reg D0 1 0 1 0	ister E	2 A	Pro	Number of words 1 Grouping: Description Number of words 1 Grouping: 4 to register	register to register of register of register of register of register at the register of register of register at the register of register at the register of register of register of register of register at the register of re	p) Flag CY operation o 0 to regist	ransfer order 4 bits (E7–E4) o B, and low-order 4 bits er A. Skip condition - ster A. These bits 7 to
Instruction code Operation: TABP p (TInstruction code		tor and reg D0 1 0 1 0	ister E	3 from 8 +p p	Prog	Number of words 1 Grouping: Description Number of words 1 Grouping: 4 to register ern in address	register to register of register of register of register of register at the register of register of register at the register of register at the register of register of register of register of register at the register of re	p) Flag CY operation o 0 to regist	ransfer order 4 bits (E7–E4) c B, and low-order 4 bits er A. Skip condition - ster A. These bits 7 to
Instruction code Operation: TABP p (TInstruction code		tor and reg D0 1 0 1 0	ister E	3 from 8 +p F	Prog	Rumber of words 1 Grouping: Description Number of words 1 Grouping: 4 to register ern in address age p.	register to register of register of register of register of register and register are some of the register are some of th	p) Flag CY operation o 0 to regist	ransfer order 4 bits (E7–E4) c B, and low-order 4 bit er A. Skip condition - ster A. These bits 7 to
Instruction code Operation: TABP p (TInstruction code		tor and reg D0 1 0 1 0	ister E	3 from 8 +p F sfers bittle ROM A and bages w	Prog	Number of words 1 Grouping: Description Number of words 1 Grouping: 4 to register ern in address	cycles 1 Register to: Transfers register E for register Ory in page Number of cycles 3 Arithmetic B and bits 3 to (DR2 DR1 Ded as follows;	p) Flag CY operation o 0 to regist	ransfer order 4 bits (E7–E4) c B, and low-order 4 bit er A. Skip condition - ster A. These bits 7 to
Instruction code Operation: TABP p (TInstruction code		tor and reg D0 1 0 1 0	ister E	2 A S from Series bit the ROM A and A and A and the SBI the RBI the RBI the RBI	Programme 16	Rumber of words 1 Grouping: Description Number of words 1 Grouping: 4 to register ern in address age p. can be referreduction: 64 to ruction: 0 to 66 to ructio	register to register of register of register of register of register and part of cycles are of cycles and part of cycles and part of cycles are of cycles and part of cycles and part of cycles and part of cycles are of cycles and part of cycles and part of cycles are of cycles and cycles are of cycles are of cycles and cycles are of cycles are of cycles and cycles are of cy	p) Flag CY operation o 0 to regist Ro A3 A2 A	Skip condition Ster A. These bits 7 to 14 Ao)2 specified by reserved.
Instruction code Operation:		tor and reg Do Do Do Do Do Do Do Do Do D	ister E	2 A S from S eres bit the ROM A and bages with A and bages with BBI the RBI system	Programme 16 s 7 to 1 patter D in patter D in patter C instructions is rel	Rumber of words 1 Grouping: Description Number of words 1 Grouping: 4 to register ern in address page p. can be referred ruction: 64 to ruction: 0 to 6 eased from research to the contraction of the	cycles 1 Register to Transfers register E of register Ory in page Number of cycles 3 Arithmetic B and bits 3 t s (DR2 DR1 D ed as follows; 127 123 eset or returned	p) Flag CY operation o 0 to regist Ro A3 A2 A	Skip condition Skip condition Skip condition Ster A. These bits 7 to 14 A0)2 specified by resulting the ster by
Instruction code Operation: TABP p (TInstruction code		D0	ister E	2 A gray from gray fers bit le ROM A and lages we the SBI the RBI system r M3455	Programme 16 S 7 to 10 patter 5 do 1 patter	Number of words 1 Grouping: Description Number of words 1 Grouping: 4 to register ern in address page p. can be referred ruction: 0 to 6 eased from reand p is 0 to 9	cycles 1 Register to Transfers register E for register Ory in page Number of cycles 3 Arithmetic B and bits 3 to (DR2 DR1 D) ed as follows; 127 123 125 125 125 126 127 127 128 129 129 120 120 120 120 120 120 120 120 120 120	p) Flag CY operation o 0 to regist Ro A3 A2 A	Skip condition Ster A. These bits 7 to 14 Ao)2 specified by reg

TABPS (Tr	ansfer data to Accumulator and register B from Pre-	Scaler)			
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 1 1 0 1 0 1 2 7 5	words	cycles		
	16	1	1	-	_
Operation:	(B) ← (TPS7–TPS4)	Grouping:	Timer oper	ration	
	$(A) \leftarrow (TPS_3 -TPS_0)$	Description			order 4 bits (TPS7-
				he low-ord	r to register B, and er 4 bits (TPS3-TPS0) er A.
TAD (Trans	sfer data to Accumulator from register D)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 1 2 0 5 1	words 1	cycles 1	_	
On a notion		'			
Operation:	$(A2-A0) \leftarrow (DR2-DR0)$	Grouping:	Register to		
	$(A3) \leftarrow 0$	Description			ts of register D to the A ₀) of register A.
		Note:		•	on is executed, "0" is
		110101			s) of register A.
				`	, 0
TAI1 (Trans	sfer data to Accumulator from register I1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 1 1 2 2 5 3	words	cycles		
	16	1	1	_	_
Operation:	(A) ← (I1)	Grouping:	Interrupt or	peration	
		Description			ts of interrupt control
			register I1	to register	A.
TAI2 (Trans	sfer data to Accumulator from register I2)				
Instruction		Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 0 0 2 2 5 4	words	cycles		
	10	1	1	_	_
Operation:	(A) ← (I2)	Grouping:	Interrupt or	peration	
		Description	: Transfers	the conten	ts of interrupt control
			register I2	to register	Α.

TAK0 (Trai	nsfer data to Accumulator from register K0)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 0 1 1 0 2 2 5 6	words	cycles		
	10	1	1	_	_
Operation:	(A) ← (K0)	Grouping:	Input/Outp	ut operatio	n
	() () ()				nts of key-on wakeup
			control reg	jister K0 to	register A.
TAK1 (Trai	nsfer data to Accumulator from register K1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 0 1 2 2 5 9 16	words 1	cycles 1		
Operation:	$(A) \leftarrow (K1)$	Grouping:	Input/Outp		
		Description	: Transfers control reg		nts of key-on wakeur
TAK2 (Trail	nsfer data to Accumulator from register K2)	Number of	Number of	Flag CY	Skip condition
code	1 0 0 1 0 1 1 0 1 0 ₂ 2 5 A ₁₆	words	cycles		
	400				
Operation:	$(A) \leftarrow (K2)$	Grouping:	Input/Outp		
		Description	control reg		nts of key-on wakeup register A.
	sfer data to Accumulator from register L1)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
Code	1 0 0 1 0 0 1 0 0 1 0 1 0 ₂ 2 4 A ₁₆	1	1	-	-
Operation:	(A) ← (L1)	Grouping:	LCD contro	ol operation	 1
					control register L1 to

TAM j (Tra	nsfer data to Accumulator from Memory)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 1 1 0 0 j j j j ₂ 2 C j ₁₆	words 1	cycles 1	_	_
Operation:	$(A) \leftarrow (M(DP))$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Grouping: RAM to register transfer Description: After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the re			
TAMR (Tra	Insfer data to Accumulator from register MR) D9 D0 1 0 0 1 0 1 0 0 1 0 2 2 5 2 16	Number of words	Sult in region Number of cycles		Skip condition
Operation:	(A) ← (MR)	Grouping: Description	Clock oper : Transfers to	the conten	ts of clock control reg
TAPU0 (Trainstruction code	ansfer data to Accumulator from register PU0) D9 D0 1 0 0 1 0 1 0 1 1 1 1 2 2 5 7 46	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	(A) ← (PU0)	Grouping: Description	Input/Outp : Transfers register PL	the conte	nts of pull-up control
TAPU1 (Tra	ansfer data to Accumulator from register PU1)				
Instruction code	D9 D0 1 0 1 1 1 1 0 2 2 5 E 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	-
Operation:	(A) ← (PU1)	Grouping: Description	Input/Outp : Transfers register PL	the conte	nts of pull-up contro

inoi (IIal	nsfer data to Accumulator from Stack Pointer)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 0 0 0 2 0 5 0	words	cycles		
	16	1	1	_	_
Operation:	$(A2-A0) \leftarrow (SP2-SP0)$	Grouping:	Register to	register tr	ansfer
-	$(A3) \leftarrow 0$				s of stack pointer (SP)
					s (A2-A0) of register A.
		Note:	After this	instructio	n is executed, "0" is) of register A.
TAV1 (Tran	nsfer data to Accumulator from register V1)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 0 0 0 5 4	words	cycles		·
	0 0 0 1 0 1 0 1 0 2 0 3 4 16	1	1	_	_
Operation:	(A) ← (V1)	Grouping:	Interrupt o	peration	
•					its of interrupt control
			register V1	Ü	
	nsfer data to Accumulator from register V2)	1	1	1	
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 1 0 1 0 1 0 1 0 1 2	1	1	-	_
				noration	
Operation:	$(A) \leftarrow (V2)$	Grouping:	Interrupt o	peralion	
Operation:	(A) ← (V2)		: Transfers	the conter	its of interrupt control
				the conter	
	(A) ← (V2)nsfer data to Accumulator from register W1)		: Transfers	the conter	
TAW1 (Tra	nsfer data to Accumulator from register W1)	Description Number of	: Transfers register V2	the conter	
TAW1 (Tra	nsfer data to Accumulator from register W1)	Description	: Transfers register V2	the conter	· A.
TAW1 (Tra	nsfer data to Accumulator from register W1) D9 D0 1 0 0 1 0 0 1 0 1 1 2 2 4 B 16	Number of words	Number of cycles	the conter	· A.
TAW1 (Tra Instruction code	nsfer data to Accumulator from register W1) D9 D0 1 0 0 1 0 0 1 0 1 0 1 1 2 4 B	Number of words 1 Grouping:	Number of cycles 1 Timer oper	Flag CY - cation	Skip condition — ts of timer control reg-

Instruction code Operation:	D9 D0 1 0 0 1 0 0 1 1 0 0 2 2 4 C 16	Number of words	Number of cycles	Flag CY	Skip condition
	\[\begin{array}{c c c c c c c c c c c c c c c c c c c	words			
Operation:		1	1	_	_
	(4) (14(0)	0	T '		
operation.	$(A) \leftarrow (W2)$	Grouping:	Timer oper		
		Description		register A.	s of timer control re
TAW3 (Tra	nsfer data to Accumulator from register W3)				
Instruction code	D9 D0 1 0 0 1 1 0 1 2 4 D 40	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	-
Operation:	(A) ← (W3)	Grouping:	Timer oper	ration	
					s of timer control re
			ister W3 to	register A.	
TAW4 (Tra Instruction code	nsfer data to Accumulator from register W4) D9 D0 1 0 0 1 0 0 1 1 0 0 2 2 4 E 16	Number of words	Number of cycles	Flag CY	Skip condition
Operation:	(A) ← (W4)	Grouping:	Timer oper	ration	
ореганоп.	$(r) \leftarrow (vv + i)$				s of timer control re
		·		register A.	
•	nsfer data to Accumulator from register W5)	1		I =	
Instruction code	D9 D0 1 0 0 1 1 1 1 1 2 2 4 F 16	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	-
	(A) ← (W5)	Grouping:	Timer ope	ration	
Operation:		Description	: Transfers	the conten	ts of timer control re
Operation:			ister W5 to	register A	

	insfer data to Accumulator from register W6)	Τ	1		
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 1 0 1 0 0 0 0 0 2 2 5 0 16	1	1	_	_
Operation:	(A) ← (W6)	Grouping:	Timer ope	ration	
- por uno	(1)				ts of timer control re
			ister W6 to	register A	
TAX (Tran	sfer data to Accumulator from register X)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	
Operation:	$(A) \leftarrow (X)$	Grouping:	Register to		
		Description	: Transfers ister A.	the conten	ts of register X to reφ
TAY (Trans	sfer data to Accumulator from register Y) Do Do	Number of	Number of	Flag CY	Skip condition
code	0 0 0 0 0 1 1 1 1 1 ₂ 0 1 F ₁₆	words	cycles 1	-	
Operation:	$(A) \leftarrow (Y)$	Grouping:	Register to		
operation.		Description	ı. Halisitisi		s of register it to regis
		Description	ter A.		s of register if to regis
TAZ (Trans	sfer data to Accumulator from register Z) D9 D0	Description Number of			
TAZ (Trans	esfer data to Accumulator from register Z) D9 D0		ter A.	Flag CY	Skip condition
TAZ (Trans	sfer data to Accumulator from register Z)	Number of	ter A.		
TAZ (Trans Instruction code	esfer data to Accumulator from register Z) D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
TAZ (Trans	Sefer data to Accumulator from register Z) D9 D0 0 0 0 1 0 1 0 0 1 1 2 0 5 3 16	Number of words 1 Grouping:	Number of cycles 1 Register to: Transfers	Flag CY - register tr	Skip condition

TBA (Trans	sfer data to register B from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	0 0 0 0 0 0 1 1 1 1 0 ₂ 0 0 E ₁₆	1	1	_	-
Operation:	(B) ← (A)	Grouping:	Register to	register tr	ansfer
•		Description			s of register A to regis-
TDA (Trans	sfer data to register D from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	-	_
Instruction code	$(DR2-DR0) \leftarrow (A2-A0)$ $nsfer data to register E from Accumulator and register D9 $	Number of words	Number of cycles	the content of register of reg	nts of the low-order 3 er A to register D. Skip condition
Operation:	(E7–E4) ← (B) (E3–E0) ← (A)	Grouping: Description	high-order	the conter 4 bits (E7- ts of regist	its of register B to the -E4) of register E, and er A to the low-order
TFR0A (Tr	ansfer data to register FR0 from Accumulator) D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 0 0 2 2 2 8 16	words	cycles		–
Operation:	(FR0) ← (A)	Grouping: Description	Input/Outp	the conter	n hts of register A to the control register FR0.

TFR1A (Tr	ansfer data to register FR1 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 1 0 1 0 1 2 2 2 9 16	words	cycles		
		1	1	_	_
Operation:	$(FR1) \leftarrow (A)$	Grouping:	Input/Outp	ut operation	n
					ts of register A to the
			port output	t structure c	control register FR1.
TFR2A (Tr	ansfer data to register FR2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(FR2) ← (A)	Grouping:	Innut/Outn	ut operatior	า
o por accom	(1112) (11)	Description			ts of register A to the
	sfer data to register I1 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 1 0 1 1 1 1 2 2 1 7 16	1	1	_	_
Operation:	$(I1) \leftarrow (A)$	Grouping:	Interrupt o	peration	
		Description			s of register A to inter-
			rupt contro	ol register I1	
	sfer data to register I2 from Accumulator)				
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 0 0 0 2 2 1 8 16	1	1	_	_
	(I2) ← (A)	Grouping:	Interrupt o	peration	
Operation:		Description	: Transfers t	the contents	s of register A to inter-

INUA (11a	nsfer data to register K0 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 1 1 0 1 1 ₂ 2 1 B ₁₆	words	cycles		
		1	1	_	_
Operation:	(K0) ← (A)	Grouping:	Input/Outp	ut operatio	n
•					ts of register A to key-
			on wakeup	o control re	gister K0.
TK1A (Tra	nsfer data to register K1 from Accumulator)				
Instruction code	D9 D0 1 0 0 0 0 1 4 46	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	$(K1) \leftarrow (A)$	Grouping:	Input/Outp		
		Description	r: Transfers on wakeup		ts of register A to key-
TK2A (Tra	nsfer data to register K2 from Accumulator) D9 D0 1 0 0 0 0 1 0 1 0 1 2 2 1 5 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	-	_
Operation:	$(K2) \leftarrow (A)$	Grouping:	Input/Outp		
		Description	on wakeup		ts of register A to key- gister K2.
	nsfer data to register L1 from Accumulator)				
Instruction code	D9 D0 1 0 1 0 2 0 A	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(L1) ← (A)	Grouping: Description	LCD opera : Transfers control reg	the conten	ts of register A to LCD

TL2A (Tran	nsfer data to register L2 from Accumulator)				
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition
code	1 0 0 0 0 0 1 0 1 1 ₂ 2 0 B ₁₆	words 1	cycles 1		
		'	'	_	
Operation:	$(L2) \leftarrow (A)$	Grouping:	LCD opera		
		Description	control reg		ts of register A to LCD
TL3A (Trar	nsfer data to register L3 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	-
Operation:	(L3) ← (A)	Grouping:	LCD opera	ation	
		Description	: Transfers to control reg		ts of register A to LCD
	nsfer data to timer LC and register RLC from Accum		T		
Instruction code	D9 D0 1 0 0 0 0 1 1 0 1 2 2 0 D 16	Number of words	Number of cycles	Flag CY	Skip condition
			'	_	
Operation:	$(LC) \leftarrow (A)$	Grouping: Description	Timer oper		s of register A to timer
	(RLC) ← (A)	Description	LC and reli		•
	nsfer data to Memory from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
coue	1 0 1 0 1 1 j j j ₂ 2 B ₁	1	1	-	_
Operation:	$(M(DP)) \leftarrow (A)$	Grouping:	RAM to reg	gister trans	fer
	$(X) \leftarrow (X)EXOR(j)$ j = 0 to 15	Description	to M(DP), a formed be	an exclusiv tween regi ediate field	contents of register A e OR operation is perster X and the value j , and stores the result

Code 1 0 0 0 1 1 0 2 2 1 6 1 1 1 - - Operation: TPAA (Transfer data to register PA from Accumulator) Instruction code Do Do Number of words Number of voycles Plag CY Skip conditions Operation: (PAo) ← (Ao) Grouping: Timer operation Do grouping: Timer operation: Description: Transfers the contents of lowermost register A to timer control register PA TPSAB (Transfer data to Pre-Scaler from Accumulator and register B) Instruction code Do Do Number of words Number of words </th <th></th> <th>E INSTRUCTIONS (INDEX BY ALPHABET)</th> <th>(continu</th> <th>ueu)</th> <th></th> <th></th>		E INSTRUCTIONS (INDEX BY ALPHABET)	(continu	ueu)		
TPAA (Transfer data to register PA from Accumulator) Instruction code		insfer data to register MR from Accumulator)				
TPAA (Transfer data to register PA from Accumulator) Instruction code					Flag CY	Skip condition
	code	1 0 0 0 1 0 1 1 0 2 2 1 6 16		-	_	_
	Operations	(MP) ((A)	Grauping	Other ener	otion	
TPSAB (Transfer data to register PA from Accumulator) Instruction	Operation.	$(NIK) \leftarrow (A)$				ts of register A to clock
TPSAB (Transfer data to Pre-Scaler from Accumulator and register B) Number of vocies Flag CY Skip condition: (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) (PA0) ← (A0) ← (A0) (PA0) ← (A0)	TPAA (Tra	nefer data to register PA from Accumulator)				
Operation: (PA₀) ← (A₀) Grouping: Timer operation Description: Transfer data to Pre-Scaler from Accumulator and register B) Instruction code D₀ D₀ Number of words Number of words Number of poycles Flag CY Skip condition: Operation: (RPS7-RPS4) ← (B) (TPS7-TPS4) ← (B) (RPS3-RPS4) ← (B) (RPS3-RPS6) ← (A) Grouping: Timer operation Description: Transfers the contents of register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-order 4 bits of prescaler and prescaler reload register B high-o	Instruction	D9 D0			Flag CY	Skip condition
	code	1 0 1 0 1 0 1 0 1 0 1 0 1 0 ₂ 2 A A ₁₆		-	_	_
	Operation:	$(PAn) \leftarrow (An)$	Grouping:	Timer one	ation	
	Ореганоп.	(176) \ (16)				ts of lowermost bit (A ₀)
$(TPS7-TPS4) \leftarrow (B) \\ (RPS3-RPS0) \leftarrow (A) \\ (TPS3-TPS0) \leftarrow (A) \\ (TPS$	Instruction	D9 D0 1 1 0 1 0 1 2 3 5	Number of words	cycles	Flag CY	Skip condition
$(TPS7-TPS4) \leftarrow (B) \\ (RPS3-RPS0) \leftarrow (A) \\ (TPS3-TPS0) \leftarrow (A) \\ (TPS$	Operation:	(RPS7_RPS4) ← (B)	Grouping:	Timer one	ation	
	operation:	$(TPS7-TPS4) \leftarrow (B)$ $(RPS3-RPS0) \leftarrow (A)$		ransfers high-order reload reg tents of re prescaler	the conter 4 bits of p ster RPS, gister A to	rescaler and prescaler and transfers the con- the low-order 4 bits of
	TPU0A (Tr	ansfer data to register PU0 from Accumulator)				
Operation: $(PU0) \leftarrow (A)$					Flag CY	Skip condition
Description: Transfers the contents of register A			1	1	_	-
	Operation:	$(PU0) \leftarrow (A)$	Grouping:	Input/Outp	ut operatio	n
			Description			- · · · · · · · · · · · · · · · · · · ·

TPU1A (Tr	ransfer c	data t	o regi	ster	PU1	from	Accı	ımul	ato	or)						
Instruction	D9						D ₀				7	Number of words	Number of cycles	Flag CY	Skip condition	
code	1 0	0	0 1	0	1 1	1	0	2	2	2 E	16	1	1	_	_	
Operation:	(PU1) ←	– (A)										Grouping:	Input/Outp	out operation	on	
- por unioni	(, .	·· • · / · · / · /										Grouping: Input/Output operation Description: Transfers the contents of register A to pu				
													up control		-	
TR1AB (Tr	ransfer o	data 1	to regi	ister	R1 fr	om A	Accur	nula	tor	and	rec	ister B)				
Instruction	D9 1 0		0 1	1	1 1		D ₀	2	3		7	Number of words	Number of cycles	Flag CY	Skip condition	
	1 0	101	0 1	'	' '	!	<u> </u>	2	3) <u> </u>	」 16	1	1	-	_	
Operation:	(R17–R14) ← (B)											Grouping:	Timer ope	ration		
		(R13–R10) ← (A)									Description: Transfers the contents of register B to the high-order 4 bits (R17–R14) of reload register R1, and the contents of register A to the low-order 4 bits (R13–R10) of reload register R1.					
TR3AB (Tr		data 1	to regi	ister	R3 fr	om A		nula	tor	and	reç		Number	Flar CV	Chin and distan	
Instruction code	D9 1 0	0	0 1	1	1 0	1	D ₀	2	3	ВВ]16	Number of words	Number of cycles	Flag CY	Skip condition	
												1	1	_	_	
Operation:	(R37–R											Grouping: Timer operation				
	(R33–R30) ← (A)									Description: Transfers the contents of register B to thigh-order 4 bits (R37–R34) of reload register R3, and the contents of register A to the low-order 4 bits (R33–R30) of reload register R3.						
TV1A (Tra	nsfer da	ta to	regist	er V	'1 fror	n Ac	cumu	ılato	r)							
Instruction	D9 0	0	0 1	1	1 1	1	D ₀	0	3	B F	7	Number of words	Number of cycles	Flag CY	Skip condition	
		1 1	<u> </u>	<u> </u>				2			_ 16	1	1	_	_	
Operation:	(V1) ←	(V1) ← (A)										Grouping:	Interrupt o	peration		
								Description: Transfers the contents of register A to inte rupt control register V1.								

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TV2A (Trai	nsfer data to register V2 from Accumulator)								
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition				
code	0 0 0 0 1 1 1 1 1 0 ₂ 0 3 E ₁₆	1	1	_					
		'	l l						
Operation:	(V2) ← (A)	Grouping:	Interrupt o						
		Description	rupt contro		s of register A to inter /2.				
TW1A (Tra	nsfer data to register W1 from Accumulator)								
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition				
		1	1	_	_				
Operation:	(W1) ← (A)	Grouping:	Timer oper	ration					
		Description	: Transfers t control reg		s of register A to time				
TW2A (Tra	nsfer data to register W2 from Accumulator)								
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition				
code	1 0 0 0 0 0 1 1 1 1 ₂ 2 0 F ₁₆	words	cycles	-					
0	(14(0) (A)								
Operation:	(W2) ← (A)	Grouping: Description	Timer oper		s of register A to time				
		·	control reg		ŭ				
TW3A (Tra	nsfer data to register W3 from Accumulator)								
Instruction code	D9 D0 1 0 0 0 0 1 0 0 0 0 1 0 1 0 0 0 0 0	Number of words	Number of cycles	Flag CY	Skip condition				
	1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 16	1	1	-	-				
Operation:	(W3) ← (A)	Grouping:	Timer oper	ration					
		Description: Transfers the contents of register A to timer control register W3.							

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

TW4A (Tra	insfer data to register W4 from Accumulator)				
Instruction code	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition
	1 0 0 0 0 1 0 0 1 1 2 2 1 1 1 16	1	1	-	-
Operation:	(W4) ← (A)	Grouping:	Timer ope	ration	
		Description	n: Transfers control reg		s of register A to time
TW5A (Tra	nsfer data to register W5 from Accumulator)				
Instruction code	D9 D0 1 0 0 1 0 2 1 2	Number of words	Number of cycles	Flag CY	Skip condition
	16	1	1	_	_
Operation:	(W5) ← (A)	Grouping: Description	Timer oper	the content	s of register A to time
TW6A (Tra	nsfer data to register W6 from Accumulator)				
Instruction code	D9 D0 1 0 0 1 1 2 2 1 3 16	Number of words	Number of cycles	Flag CY	Skip condition
		1	1	_	
Operation:	(W6) ← (A)	Grouping: Description	Timer oper		s of register A to time
		2000 1 2000	control reg		o or regional retormine
	sfer data to register Y from Accumulator)				
Instruction code	D9 D0 0 0 0 0 1 1 0 0 0 0 C	Number of words	Number of cycles	Flag CY	Skip condition
couc	0 0 0 0 0 0 1 1 1 0 0 2 0 0 0 16	1	1	-	-
Operation:	$(Y) \leftarrow (A)$	Grouping: Description		register transition register regis	ansfer s of register A to regis

MACHINE INSTRUCTIONS (INDEX BY ALPHABET) (continued)

WRST (Wa	atchdog timer ReSeT)										
Instruction	D9 D0	Number of	Number of	Flag CY	Skip condition						
code	1 0 1 0 1 0 0 0 0 0 ₂ 2 A 0 ₁₆	words	cycles		0.10=1)						
		1	1	_	(WDF1) = 1						
Operation:	(WDF1) = 1 ?	Grouping:	Other oper	ation							
	After skipping, (WDF1) \leftarrow 0	Description: Skips the next instruction when watchdog									
			timer flag \	WDF1 is "1	." After skipping, clears						
		(0) to the WDF1 flag. When the WDF1 flag									
					next instruction. Also,						
				-	imer function when ex- nstruction immediately						
			after the D		•						
	change Accumulator and Memory data)	Ni. mala an af	Niverban of	Flar OV	Chin andition						
Instruction	D9 D0	Number of words	Number of cycles	Flag CY	Skip condition						
code	1 0 1 1 0 1 j j j ₂ 2 D ₁₆	1	1	_	_						
		1	'	_							
Operation:	$(A) \longleftrightarrow (M(DP))$	Grouping:	RAM to reg	gister trans	sfer						
	$(X) \leftarrow (X)EXOR(j)$	Description	: After exch	nanging th	ne contents of M(DP)						
	j = 0 to 15				egister A, an exclusive						
					ormed between regis-						
		ter X and the value j in the immediate field, and stores the result in register X.									
			and stores	the result	in register A.						
VAMD : /o	Vahanga Assumulator and Mamary data and Dagra	mont regist	or V and al	·in\							
	Xchange Accumulator and Memory data and Decre				Skip condition						
Instruction	D9 D0	ment regist Number of words	er Y and sk	ip) Flag CY	Skip condition						
	-	Number of	Number of		Skip condition (Y) = 15						
Instruction	D9 D0 1 0 1 1 1 1 j j j j 2 2 F j 16	Number of words	Number of cycles	Flag CY	(Y) = 15						
Instruction	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words	Number of cycles 1 RAM to rec	Flag CY - gister trans	(Y) = 15						
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	Number of cycles 1 RAM to receive the company of the cycles of the cyc	Flag CY - gister translanging the	(Y) = 15 Ifer e contents of M(DP) egister A, an exclusive						
Instruction code	D9 D0 1 0 1 1 1 1 j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) $_j = 0 \text{ to } 15$	Number of words 1 Grouping:	Number of cycles 1 RAM to recurrence and the cycles are cycles. After exchange with the cool on operate and cycles.	Flag CY pister transpanging the ntents of rion is perf	(Y) = 15 Ifer le contents of M(DP) legister A, an exclusive lormed between regis-						
Instruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping:	RAM to rec : After exch with the co OR operat ter X and t and stores	Flag CY - jister trans anging th ntents of r ion is perf he value j the result	(Y) = 15 Ifer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X.						
Instruction code	D9 D0 1 0 1 1 1 1 j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) $_j = 0 \text{ to } 15$	Number of words 1 Grouping:	RAM to rec After exch with the co OR operat ter X and t and stores Subtracts	Flag CY - pister trans anging the ntents of r ion is perf he value j the result from the	(Y) = 15 Ifer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y.						
Instruction code	D9 D0 1 0 1 1 1 1 j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) $_j = 0 \text{ to } 15$	Number of words 1 Grouping:	RAM to receive the coordinate of the coordinate	gister trans anging th ntents of r ion is perf he value j the result 1 from the t of subtra gister Y is	(Y) = 15 fer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction						
Instruction code	D9 D0 1 0 1 1 1 1 j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) $_j = 0 \text{ to } 15$	Number of words 1 Grouping:	RAM to receive the receive terms of received and stores Subtracts As a resultents of receive terms.	gister trans anging th ntents of r ion is perf he value j the result f from the t of subtra gister Y is When the	(Y) = 15 fer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction contents of register Y						
Instruction code Operation:	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15 (Y) \leftarrow (Y) - 1	Number of words 1 Grouping: Description	RAM to receive the receive ter X and to a result tents of receive ter tents of receive ter tents of receive tents of tents	Flag CY - gister trans anging th ntents of r ion is perf he value j the result f from the t of subtra gister Y is When the	(Y) = 15 fer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction						
Instruction code Operation:	D9 D0 1 0 1 1 1 1 j j j $_2$ 2 F $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) $_j = 0 \text{ to } 15$	Number of words 1 Grouping: Description	RAM to receive the receive ter X and to a result tents of receive ter tents of receive ter tents of receive tents of tents	Flag CY - gister trans anging th ntents of r ion is perf he value j the result f from the t of subtra gister Y is When the	(Y) = 15 fer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction contents of register Y						
Instruction code Operation:	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \longleftrightarrow (X)EXOR(j) j = 0 to 15 (Y) \longleftrightarrow (Y) \longleftrightarrow (Y) - 1 Change Accumulator and Memory data and Incrementary D9 D0	Number of words 1 Grouping: Description	RAM to receive the receive terms of the received terms of the	Flag CY - sister trans anging the ntents of r ion is perf he value j the result from the t of subtra gister Y is When the ne next ins)	(Y) = 15 Ifer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction contents of register Y struction is executed.						
Instruction code Operation: XAMI j (eXInstruction	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15 (Y) \leftarrow (Y) $-$ 1	Number of words 1 Grouping: Description ent register Number of	RAM to receive the coordinate of the coordinate	Flag CY - sister trans anging the ntents of r ion is perf he value j the result from the t of subtra gister Y is When the ne next ins)	(Y) = 15 Ifer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction contents of register Y struction is executed.						
Instruction code Operation: XAMI j (eXInstruction code	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description ent register Number of words 1	RAM to recovered and stores Subtracts: As a resultents of recovered is not 15. transcription. Y and skip Number of cycles	gister trans anging th ntents of r ion is perf he value j the result f from the t of subtra gister Y is When the he next ins)	(Y) = 15 Ifer e contents of M(DP) egister A, an exclusive ormed between regis- in the immediate field, in register X. contents of register Y. action, when the con- 15, the next instruction contents of register Y struction is executed. Skip condition (Y) = 0						
Instruction code Operation: XAMI j (eXInstruction	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Number of words 1 Grouping: Description ent register Number of words	RAM to require the record of the requirement of the	gister trans anging th ntents of r ion is perf he value j the result if from the t of subtra gister Y is When the ne next ins Flag CY	(Y) = 15 Intervention of M(DP) Intervention						
Instruction code Operation: XAMI j (eXInstruction code	D9 D0 1 0 1 1 1 1 1 j j j j 2 k	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require the recovery of	Flag CY - gister trans anging th ntents of r ion is perf he value j the result f from the t of subtra jister Y is When the ne next ins Flag CY - gister trans nanging th ntents of r	(Y) = 15 Intervention of M(DP)						
Nami j (eX	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15 (Y) \leftarrow (Y) - 1 Change Accumulator and Memory data and Incrementary D9 D0 1 0 1 1 1 0 j j j j $_2$ 2 E j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require terms of cycles 1 RAM to require After excholor with the coordinate of the coordinate of the cycles of the cycl	Flag CY pister transfanging the ntents of rion is perfihe value jethe result from the tof subtrative when the next institute of rion is perfihe value jethe value jethe value jethe value jethe resulte from the tents of rion is perfihe value jethe value	(Y) = 15 Interval to the contents of M(DP) egister A, an exclusive ormed between registing the immediate field, in register X. contents of register Y. action, when the contents of register Y extruction is executed. Skip condition (Y) = 0 Interval to the contents of M(DP) egister A, an exclusive ormed between registing the immediate field,						
Nami j (eX	D9 D0 1 0 1 1 1 1 1 j j j j 2 k	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require to recover and stores As a result tents of require skipped, is not 15, till And skip Number of cycles 1 RAM to require tents of require skipped, is not 15, till And skip Number of cycles 1 RAM to require tents of require skipped, is not 15, till After exchange tents of the require skipped is not 15, till And skip RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require skipped is not 15, till RAM to require tents of the require tents	Flag CY pister transfanging the ntents of rion is perfihe value jethe result for the formula for the next instance of rion is perfihe value jethe result for ion is perfihe value jethe result for the next instance of rion is perfihe value jethe result for ion is perfine value jethe result for ion	(Y) = 15 Inter In						
Nami j (eX	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15 (Y) \leftarrow (Y) - 1 Change Accumulator and Memory data and Incrementary D9 D0 1 0 1 1 1 0 j j j j $_2$ 2 E j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to require A store Subtracts As a resultents of require skipped. Is not 15. the skipped of t	Flag CY - gister trans anging th ntents of r ion is perf he value j the result f from the t of subtra gister Y is When the ne next ins Flag CY - gister trans nanging th ntents of r ion is perf he value j the result he content Idition, w	(Y) = 15 Ifer The contents of M(DP) The egister A, an exclusive ormed between registing the immediate field, in register X. The contents of register Y. The action, when the contents of register Y. The contents of register Y. The contents of register Y. The contents of M(DP) The conten						
Nami j (eX	D9 D0 1 0 1 1 1 1 1 j j j j $_2$ 2 F j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15 (Y) \leftarrow (Y) - 1 Change Accumulator and Memory data and Incrementary D9 D0 1 0 1 1 1 0 j j j j $_2$ 2 E j $_{16}$ (A) \longleftrightarrow (M(DP)) (X) \leftarrow (X)EXOR(j) j = 0 to 15	Number of words 1 Grouping: Description Pent register Number of words 1 Grouping:	RAM to receive the control of the co	Flag CY - gister trans anging th ntents of r ion is perf he value j the result from the t of subtra gister Y is When the ne next ins) Flag CY - gister trans anging th ntents of r ion is perf he value j the result he content Idition, w ' is 0, the	(Y) = 15 Ifer The contents of M(DP) The egister A, an exclusive ormed between registing the immediate field, in register X. The egister X. The egister Y. The egister Y. The extinstruction of register Y. The extinstruction of register Y. The extinction is executed. Skip condition (Y) = 0 The egister A, an exclusive ormed between registing the immediate field, in register X. The extinstruction is executed.						

MACHINE INSTRUCTIONS (INDEX BY TYPES)

	INE INS				140							-0)					
Parameter	Mnemonic					In	stru	ction	cod	е					umber of words	umber of cycles	Function
Type of instructions		D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexa	ade otati		Number words	Number of cycles	
	ТАВ	0	0	0	0	0	1	1	1	1	0	0	1	E	1	1	$(A) \leftarrow (B)$
	ТВА	0	0	0	0	0	0	1	1	1	0	0	0	Е	1	1	$(B) \leftarrow (A)$
	TAY	0	0	0	0	0	1	1	1	1	1	0	1	F	1	1	$(A) \leftarrow (Y)$
_	TYA	0	0	0	0	0	0	1	1	0	0	0	0	С	1	1	$(Y) \leftarrow (A)$
transfe	TEAB	0	0	0	0	0	1	1	0	1	0	0	1	Α	1	1	$(E7-E4) \leftarrow (B)$ $(E3-E0) \leftarrow (A)$
Register to register transfer	TABE	0	0	0	0	1	0	1	0	1	0	0	2	Α	1	1	(B) ← (E7–E4) (A) ← (E3–E0)
er to r	TDA	0	0	0	0	1	0	1	0	0	1	0	2	9	1	1	(DR2−DR0) ← (A2−A0)
Registe	TAD	0	0	0	1	0	1	0	0	0	1	0	5	1	1	1	$ \begin{array}{l} (A2-A0) \leftarrow (DR2-DR0) \\ (A3) \leftarrow 0 \end{array} $
	TAZ	0	0	0	1	0	1	0	0	1	1	0	5	3	1	1	$(A_1, A_0) \leftarrow (Z_1, Z_0)$ $(A_3, A_2) \leftarrow 0$
	TAX	0	0	0	1	0	1	0	0	1	0	0	5	2	1	1	$(A) \leftarrow (X)$
	TASP	0	0	0	1	0	1	0	0	0	0	0	5	0	1	1	$ \begin{array}{l} (A2\text{-}A0) \leftarrow (SP2\text{-}SP0) \\ (A3) \leftarrow 0 \end{array} $
	LXY x, y	1	1	х3	X2	X1	X 0	уз	у2	y1	у0	3	Х	у	1	1	$(X) \leftarrow x \ x = 0 \text{ to } 15$ $(Y) \leftarrow y \ y = 0 \text{ to } 15$
resses	LZ z	0	0	0	1	0	0	1	0	Z1	Z0	0	4	8 +z	1	1	$(Z) \leftarrow z z = 0 \text{ to } 3$
RAM addresses	INY	0	0	0	0	0	1	0	0	1	1	0	1	3	1	1	(Y) ← (Y) + 1
~ ~	DEY	0	0	0	0	0	1	0	1	1	1	0	1	7	1	1	$(Y) \leftarrow (Y) - 1$
	ТАМ ј	1	0	1	1	0	0	j	j	j	j	2	С	j	1	1	$ \begin{array}{l} (A) \leftarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
	XAM j	1	0	1	1	0	1	j	j	j	j	2	D	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \end{array} $
ister transfe	XAMD j	1	0	1	1	1	1	j	j	j	j	2	F	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) - 1 \end{array} $
RAM to register transfer	XAMI j	1	0	1	1	1	0	j	j	j	j	2	Е	j	1	1	$ \begin{array}{l} (A) \leftarrow \rightarrow (M(DP)) \\ (X) \leftarrow (X)EXOR(j) \\ j = 0 \text{ to } 15 \\ (Y) \leftarrow (Y) + 1 \end{array} $
	ТМА ј	1	0	1	0	1	1	j	j	j	j	2	В	j	1	1	$(M(DP)) \leftarrow (A)$ $(X) \leftarrow (X)EXOR(j)$ j = 0 to 15
																	,

Skip condition	Carry flag CY	Datailed description
_	-	Transfers the contents of register B to register A.
_	-	Transfers the contents of register A to register B.
_	-	Transfers the contents of register Y to register A.
	-	Transfers the contents of register A to register Y.
-	-	Transfers the contents of register B to the high-order 4 bits (E7–E4) of register E, and the contents of register A to the low-order 4 bits (E3–E0) of register E.
-	-	Transfers the high-order 4 bits (E7–E4) of register E to register B, and low-order 4 bits (E3–E0) of register E to register A.
_	_	Transfers the contents of the low-order 3 bits (A2–A0) of register A to register D.
_	_	Transfers the contents of register D to the low-order 3 bits (A2–A0) of register A.
-	-	Transfers the contents of register Z to the low-order 2 bits (A ₁ , A ₀) of register A.
-	-	Transfers the contents of register X to register A.
-	-	Transfers the contents of stack pointer (SP) to the low-order 3 bits (A2–A0) of register A.
Continuous description	-	Loads the value x in the immediate field to register X, and the value y in the immediate field to register Y. When the LXY instructions are continuously coded and executed, only the first LXY instruction is executed and other LXY instructions coded continuously are skipped.
-	_	Loads the value z in the immediate field to register Z.
(Y) = 0	_	Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
(Y) = 15	-	Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
-	-	After transferring the contents of M(DP) to register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
_	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.
(Y) = 15	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Subtracts 1 from the contents of register Y. As a result of subtraction, when the contents of register Y is 15, the next instruction is skipped. When the contents of register Y is not 15, the next instruction is executed.
(Y) = 0	_	After exchanging the contents of M(DP) with the contents of register A, an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X. Adds 1 to the contents of register Y. As a result of addition, when the contents of register Y is 0, the next instruction is skipped. When the contents of register Y is not 0, the next instruction is executed.
-	-	After transferring the contents of register A to M(DP), an exclusive OR operation is performed between register X and the value j in the immediate field, and stores the result in register X.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter	Mnemonic					In	stru	ction	cod	e					er of ds	er of	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀		ade otat	cimal ion	Number o	Number of cycles	Function
	LA n	0	0	0	1	1	1	n	n	n	n	0	7	n	1	1	(A) ← n n = 0 to 15
	ТАВР р	0	0	1	0	p 5	p4	рз	p2	p1	p0	0	8 +p		1	3	$(SP) \leftarrow (SP) + 1$ $(SK(SP)) \leftarrow (PC)$ $(PCH) \leftarrow p (Note)$ $(PCL) \leftarrow (DR2-DR0, A3-A0)$ $(B) \leftarrow (ROM(PC))7-4$ $(A) \leftarrow (ROM(PC))3-0$ $(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
	AM	0	0	0	0	0	0	1	0	1	0	0	0	Α	1	1	$(A) \leftarrow (A) + (M(DP))$
ration	AMC	0	0	0	0	0	0	1	0	1	1	0	0	В	1	1	$(A) \leftarrow (A) + (M(DP)) + (CY)$ $(CY) \leftarrow Carry$
Arithmetic operation	A n	0	0	0	1	1	0	n	n	n	n	0	6	n	1	1	(A) ← (A) + n n = 0 to 15
Arith	AND	0	0	0	0	0	1	1	0	0	0	0	1	8	1	1	$(A) \leftarrow (A) \text{ AND } (M(DP))$
	OR	0	0	0	0	0	1	1	0	0	1	0	1	9	1	1	$(A) \leftarrow (A) \ OR \ (M(DP))$
	sc	0	0	0	0	0	0	0	1	1	1	0	0	7	1	1	(CY) ← 1
	RC	0	0	0	0	0	0	0	1	1	0	0	0	6	1	1	(CY) ← 0
	szc	0	0	0	0	1	0	1	1	1	1	0	2	F	1	1	(CY) = 0 ?
	СМА	0	0	0	0	0	1	1	1	0	0	0	1	С	1	1	$(A) \leftarrow (\overline{A})$
	RAR	0	0	0	0	0	1	1	1	0	1	0	1	D	1	1	CY A3A2A1A0
	SB j	0	0	0	1	0	1	1	1	j	j	0	5	C +j	1	1	(Mj(DP)) ← 1 j = 0 to 3
Bit operation	RB j	0	0	0	1	0	0	1	1	j	j	0	4	C +j	1	1	$(Mj(DP)) \leftarrow 0$ j = 0 to 3
Bit o	SZB j	0	0	0	0	1	0	0	0	j	j	0	2	j	1	1	(Mj(DP)) = 0 ? j = 0 to 3
ison	SEAM	0	0	0	0	1	0	0	1	1	0	0	2	6	1	1	(A) = (M(DP))?
Comparison operation	SEA n	0	0	0	0	1	0	0	1	0	1	0	2	5	2	2	(A) = n ?
Col		0	0	0	1	1	1	n	n	n	n	0	7	n			n = 0 to 15
lotor n in (0 to 63 for M34																

Note: p is 0 to 63 for M34554M8, p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED.

Skip condition	Carry flag CY	Datailed description
Continuous description	-	Loads the value n in the immediate field to register A. When the LA instructions are continuously coded and executed, only the first LA instruction is executed and other LA instructions coded continuously are skipped.
-	_	Transfers bits 7 to 4 to register B and bits 3 to 0 to register A. These bits 7 to 0 are the ROM pattern in address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers A and D in page p. When this instruction is executed, be careful not to over the stack because 1 stage of stack register is used. The pages which can be referred as follows; after the SBK instruction: 64 to 127 after the RBK instruction: 0 to 63 after system is released from reset or returned from power down: 0 to 63.
-	-	Adds the contents of M(DP) to register A. Stores the result in register A. The contents of carry flag CY remains unchanged.
-	0/1	Adds the contents of M(DP) and carry flag CY to register A. Stores the result in register A and carry flag CY.
Overflow = 0	_	Adds the value n in the immediate field to register A, and stores a result in register A. The contents of carry flag CY remains unchanged. Skips the next instruction when there is no overflow as the result of operation. Executes the next instruction when there is overflow as the result of operation.
-	-	Takes the AND operation between the contents of register A and the contents of M(DP), and stores the result in register A.
-	-	Takes the OR operation between the contents of register A and the contents of M(DP), and stores the result in register A.
_	1	Sets (1) to carry flag CY.
_	0	Clears (0) to carry flag CY.
(CY) = 0	_	Skips the next instruction when the contents of carry flag CY is "0."
_	-	Stores the one's complement for register A's contents in register A.
-	0/1	Rotates 1 bit of the contents of register A including the contents of carry flag CY to the right.
_	-	Sets (1) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
-	_	Clears (0) the contents of bit j (bit specified by the value j in the immediate field) of M(DP).
(Mj(DP)) = 0 j = 0 to 3	-	Skips the next instruction when the contents of bit j (bit specified by the value j in the immediate field) of M(DP) is "0." Executes the next instruction when the contents of bit j of M(DP) is "1."
(A) = (M(DP))	-	Skips the next instruction when the contents of register A is equal to the contents of M(DP). Executes the next instruction when the contents of register A is not equal to the contents of M(DP).
(A) = n	_	Skips the next instruction when the contents of register A is equal to the value n in the immediate field. Executes the next instruction when the contents of register A is not equal to the value n in the immediate field.

MACHINE INSTRUCTIONS (continued)

	INC INS							ction					of	of	
Parameter	Mnemonic						1011 0	Otion					umber o	umber c cycles	Function
Type of instructions	Willemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hexadecimal notation	Number words	Number cycles	
	Ва	0	1	1	a 6	a 5	a 4	аз	a 2	a1	a 0	1 8 a +a	1	1	(PCL) ← a6–a0
ation	BL p, a	0	0	1	1	1	p4	рз	p2	p1	po	0 E p +p	2		(PCH) ← p (Note) (PCL) ← a6–a0
Branch operation		1	p6	p5	a 6	a 5	a4	аз	a 2	а1	a 0	2 p a +p+a			
Bran	BLA p	0	0	0	0	0	1	0	0	0	0	0 1 0	2		(PCH) ← p (Note) (PCL) ← (DR2–DR0, A3–A0)
		1	p6	p5	p4	0	0	рз	p2	p1	po	2 p p +p			(1.02) (2.12.2.16),76.7.6)
	ВМ а	0	1	0	a 6	a 5	a4	аз	a 2	a 1	a 0	1 a a	1		(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← 2 (PCL) ← a6-a0
Subroutine operation	BML p, a	0	0	1	1	0	p4	рз	p2	р1	p 0	0 C p +p	2		(SP) ← (SP) + 1 (SK(SP)) ← (PC) (PCH) ← p (Note)
outine		1	p6	p5	a 6	a5	a 4	аз	a2	a1	a ₀	2 p a +p+a			(PCL) ← a6–a0
Subr	BMLA p	0	0	0	0	1	1	0	0	0	0	0 3 0	2	2	(SP) ← (SP) + 1 (SK(SP)) ← (PC)
		1	p6	p5	p4	0	0	рз	p2	p1	po	2 p p +p			(PCh) ← p (Noté) (PCL) ← (DR2–DR0,A3–A0)
_	RTI	0	0	0	1	0	0	0	1	1	0	0 4 6	1	1	$(PC) \leftarrow (SK(SP))$ $(SP) \leftarrow (SP) - 1$
Return operation	RT	0	0	0	1	0	0	0	1	0	0	0 4 4	1	2	(PC) ← (SK(SP)) (SP) ← (SP) – 1
Retur	RTS	0	0	0	1	0	0	0	1	0	1	0 4 5	1	2	(PC) ← (SK(SP)) (SP) ← (SP) − 1
) to 62 for M2/											1			

Note: p is 0 to 63 for M34554M8, p is 0 to 95 for M34554MC and p is 0 to 127 for M34554ED.

	_	
Skip condition	Carry flag CY	Datailed description
-	-	Branch within a page : Branches to address a in the identical page.
_	_	Branch out of a page : Branches to address a in page p.
_	_	Branch out of a page: Branches to address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Call the subroutine in page 2 : Calls the subroutine at address a in page 2.
-	_	Call the subroutine : Calls the subroutine at address a in page p.
-		Call the subroutine: Calls the subroutine at address (DR2 DR1 DR0 A3 A2 A1 A0)2 specified by registers D and A in page p.
-	-	Returns from interrupt service routine to main routine. Returns each value of data pointer (X, Y, Z), carry flag, skip status, NOP mode status by the continuous description of the LA/LXY instruction, register A and register B to the states just before interrupt.
_	_	Returns from subroutine to the routine called the subroutine.
Skip at uncondition	-	Returns from subroutine to the routine called the subroutine, and skips the next instruction at uncondition.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter								ction							s of	_	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex	ade otat	cimal	Number words	Number o	Function
	DI	0	0	0	0	0	0	0	1	0	0	0	0	4	1	1	(INTE) ← 0
	EI	0	0	0	0	0	0	0	1	0	1	0	0	5	1	1	(INTE) ← 1
	SNZ0	0	0	0	0	1	1	1	0	0	0	0	3	8	1	1	V10 = 0: (EXF0) = 1 ? After skipping, (EXF0) ← 0 V10 = 1: SNZ0 = NOP
	SNZ1	0	0	0	0	1	1	1	0	0	1	0	3	9	1	1	V11 = 0: (EXF1) = 1 ? After skipping, (EXF1) ← 0 V11 = 1: SNZ1 = NOP
	SNZI0	0	0	0	0	1	1	1	0	1	0	0	3	Α	1	1	l12 = 1 : (INT0) = "H" ?
ion																	l12 = 0 : (INT0) = "L" ?
Interrupt operation	SNZI1	0	0	0	0	1	1	1	0	1	1	0	3	В	1	1	I22 = 1 : (INT1) = "H" ?
Interru																	I22 = 0 : (INT1) = "L" ?
	TAV1	0	0	0	1	0	1	0	1	0	0	0	5	4	1	1	$(A) \leftarrow (V1)$
	TV1A	0	0	0	0	1	1	1	1	1	1	0	3	F	1	1	(V1) ← (A)
	TAV2	0	0	0	1	0	1	0	1	0	1	0	5	5	1	1	(A) ← (V2)
	TV2A	0	0	0	0	1	1	1	1	1	0	0	3	E	1	1	(V2) ← (A)
	TAI1	1	0	0	1	0	1	0	0	1	1	2	5	3	1	1	$(A) \leftarrow (I1)$
	TI1A	1	0	0	0	0	1	0	1	1	1	2	1	7	1	1	(I1) ← (A)
	TAI2	1	0	0	1	0	1	0	1	0	0	2	5	4	1	1	$(A) \leftarrow (I2)$
	TI2A	1	0	0	0	0	1	1	0	0	0	2	1	8	1	1	(I2) ← (A)
	TPAA	1	0	1	0	1	0	1	0	1	0	2	Α	Α	1	1	(PAo) ← (Ao)
	TAW1	1	0	0	1	0	0	1	0	1	1	2	4	В	1	1	(A) ← (W1)
	TW1A	1	0	0	0	0	0	1	1	1	0	2	0	Е	1	1	(W1) ← (A)
	TAW2	1	0	0	1	0	0	1	1	0	0	2	4	С	1	1	(A) ← (W2)
ے	TW2A	1	0	0	0	0	0	1	1	1	1	2	0	F	1	1	(W2) ← (A)
ratio	TAW3	1	0	0	1	0	0	1	1	0	1	2	4	D	1	1	(A) ← (W3)
Timer operation	TW3A	1	0	0	0	0	1	0	0	0	0	2	1	0	1	1	(W3) ← (A)
Time	TAW4	1	0	0	1	0	0	1	1	1	0	2	4	Е	1	1	(A) ← (W4)
	TW4A	1	0	0	0	0	1	0	0	0	1	2	1	1	1	1	(W4) ← (A)
	TAW5	1	0	0	1	0	0	1	1	1	1	2	4	F	1	1	(A) ← (W5)
	TW5A	1	0	0	0	0	1	0	0	1	0	2	1	2	1	1	(W5) ← (A)
												<u> </u>			<u> </u>		

Skip condition	Carry flag CY	Datailed description
-	_	Clears (0) to interrupt enable flag INTE, and disables the interrupt.
_	_	Sets (1) to interrupt enable flag INTE, and enables the interrupt.
V10 = 0: (EXF0) = 1	_	When V10 = 0 : Skips the next instruction when external 0 interrupt request flag EXF0 is "1." After skipping, clears (0) to the EXF0 flag. When the EXF0 flag is "0," executes the next instruction. When V10 = 1 : This instruction is equivalent to the NOP instruction. (V10: bit 0 of interrupt control register V1)
V11 = 0: (EXF1) = 1	_	When V11 = 0 : Skips the next instruction when external 1 interrupt request flag EXF1 is "1." After skipping, clears (0) to the EXF1 flag. When the EXF1 flag is "0," executes the next instruction. When V11 = 1 : This instruction is equivalent to the NOP instruction. (V11: bit 1 of interrupt control register V1)
(INT0) = "H" However, I12 = 1	_	When I12 = 1 : Skips the next instruction when the level of INT0 pin is "H." (I12: bit 2 of interrupt control register I1)
(INT0) = "L" However, I12 = 0	_	When I12 = 0 : Skips the next instruction when the level of INT0 pin is "L."
(INT1) = "H" However, I22 = 1	_	When I22 = 1 : Skips the next instruction when the level of INT1 pin is "H." (I22: bit 2 of interrupt control register I2)
(INT1) = "L" However, I22 = 0	_	When I22 = 0 : Skips the next instruction when the level of INT1 pin is "L."
_	_	Transfers the contents of interrupt control register V1 to register A.
-	_	Transfers the contents of register A to interrupt control register V1.
-	_	Transfers the contents of interrupt control register V2 to register A.
_	_	Transfers the contents of register A to interrupt control register V2.
_	_	Transfers the contents of interrupt control register I1 to register A.
_	_	Transfers the contents of register A to interrupt control register I1.
_	_	Transfers the contents of interrupt control register I2 to register A.
_	_	Transfers the contents of register A to interrupt control register I2.
_	_	Transfers the contents of register A to timer control register PA.
-	_	Transfers the contents of timer control register W1 to register A.
-	_	Transfers the contents of register A to timer control register W1.
_	_	Transfers the contents of timer control register W2 to register A.
-	_	Transfers the contents of register A to timer control register W2.
-	_	Transfers the contents of timer control register W3 to register A.
-	_	Transfers the contents of register A to timer control register W3.
_	_	Transfers the contents of timer control register W4 to register A.
_	_	Transfers the contents of register A to timer control register W4.
_	_	Transfers the contents of timer control register W5 to register A.
_	-	Transfers the contents of register A to timer control register W5.
L	l	I

Parameter						In	stru	ction	cod	e					Jo . of	o . o	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	D3	D2	D1	D ₀		ade otat	cimal ion	Number o	Number of cycles	Function
	TAW6	1	0	0	1	0	1	0	0	0	0	2	5	0	1	1	(A) ← (W6)
	TW6A	1	0	0	0	0	1	0	0	1	1	2	1	3	1	1	(W6) ← (A)
	TABPS	1	0	0	1	1	1	0	1	0	1	2	7	5	1	1	$ \begin{array}{l} (B) \leftarrow (TPS7\text{-}TPS4) \\ (A) \leftarrow (TPS3\text{-}TPS0) \end{array} $
	TPSAB	1	0	0	0	1	1	0	1	0	1	2	3	5	1	1	$ \begin{array}{l} (RPS7\text{-}RPS4) \leftarrow (B) \\ (TPS7\text{-}TPS4) \leftarrow (B) \\ (RPS3\text{-}RPS0) \leftarrow (A) \\ (TPS3\text{-}TPS0) \leftarrow (A) \end{array} $
	TAB1	1	0	0	1	1	1	0	0	0	0	2	7	0	1	1	(B) ← (T17–T14) (A) ← (T13–T10)
	T1AB	1	0	0	0	1	1	0	0	0	0	2	3	0	1	1	$(R17-R14) \leftarrow (B)$ $(T17-T14) \leftarrow (B)$ $(R13-R10) \leftarrow (A)$ $(T13-T10) \leftarrow (A)$
	TAB2	1	0	0	1	1	1	0	0	0	1	2	7	1	1	1	(B) ← (T27–T24) (A) ← (T23–T20)
	T2AB	1	0	0	0	1	1	0	0	0	1	2	3	1	1	1	$(R27-R24) \leftarrow (B)$ $(T27-T24) \leftarrow (B)$ $(R23-R20) \leftarrow (A)$ $(T23-T20) \leftarrow (A)$
ation	TAB3	1	0	0	1	1	1	0	0	1	0	2	7	2	1	1	(B) ← (T37–T34) (A) ← (T33–T30)
Timer operation	ТЗАВ	1	0	0	0	1	1	0	0	1	0	2	3	2	1	1	(R37-R34) ← (B) (T37-T34) ← (B) (R33-R30) ← (A) (T33-T30) ← (A)
	TAB4	1	0	0	1	1	1	0	0	1	1	2	7	3	1	1	(B) ← (T47–T44) (A) ← (T43–T40)
	Т4АВ	1	0	0	0	1	1	0	0	1	1	2	3	3	1	1	$(R4L7-R4L4) \leftarrow (B)$ $(T47-T44) \leftarrow (B)$ $(R4L3-R4L0) \leftarrow (A)$ $(T43-T40) \leftarrow (A)$
	Т4НАВ	1	0	0	0	1	1	0	1	1	1	2	3	7	1	1	(R4H7–R4H4) ← (B) (R4H3–R4H0) ← (A)
	TR1AB	1	0	0	0	1	1	1	1	1	1	2	3	F	1	1	(R17–R14) ← (B) (R13–R10) ← (A)
	TR3AB	1	0	0	0	1	1	1	0	1	1	2	3	В	1	1	(R37–R34) ← (B) (R33–R30) ← (A)
	T4R4L	1	0	1	0	0	1	0	1	1	1	2	9	7	1	1	(T47–T40) ← (R4L7–R4L0)
	TLCA	1	0	0	0	0	0	1	1	0	1	2	0	D	1	1	$(LC) \leftarrow (A)$ $(RLC) \leftarrow (A)$

Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of timer control register W6 to register A.
_	_	Transfers the contents of register A to timer control register W6.
-	-	Transfers the high-order 4 bits of prescaler to register B, and transfers the low-order 4 bits of prescaler to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of prescaler and prescaler reload register RPS, and transfers the contents of register A to the low-order 4 bits of prescaler and prescaler reload register RPS.
-	-	Transfers the high-order 4 bits of timer 1 to register B, and transfers the low-order 4 bits of timer 1 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 and timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 and timer 1 reload register R1.
_	_	Transfers the high-order 4 bits of timer 2 to register B, and transfers the low-order 4 bits of timer 2 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 2 and timer 2 reload register R2, and transfers the contents of register A to the low-order 4 bits of timer 2 and timer 2 reload register R2.
-	_	Transfers the high-order 4 bits of timer 3 to register B, and transfers the low-order 4 bits of timer 3 to register A.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 3 and timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 and timer 3 reload register R3.
_	-	Transfers the high-order 4 bits of timer 4 to register B, and transfers the low-order 4 bits of timer 4 to register A.
_	_	Transfers the contents of register B to the high-order 4 bits of timer 4 and timer 4 reload register R4L, and transfers the contents of register A to the low-order 4 bits of timer 4 and timer 4 reload register R4L.
_	-	Transfers the contents of register B to the high-order 4 bits of timer 4 reload register R4H, and transfers the contents of register A to the low-order 4 bits of timer 4 reload register R4H.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 1 reload register R1, and transfers the contents of register A to the low-order 4 bits of timer 1 reload register R1.
-	_	Transfers the contents of register B to the high-order 4 bits of timer 3 reload register R3, and transfers the contents of register A to the low-order 4 bits of timer 3 reload register R3.
_	-	Transfers the contents of timer 4 reload register R4L to timer 4.
-	_	Transfers the contents of register A to timer LC and timer LC reload register RLC.

Parameter						In	stru	ction	cod	e					r of	r of s	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Dз	D2	D1	D ₀	Hex	ade	ecimal	Number of words	Number cycles	Function
	SNZT1	1	0	1	0	0	0	0	0	0	0	2	8	0	1		V12 = 0: (T1F) = 1 ? After skipping, (T1F) ← 0 V12 = 1: NOP
tion	SNZT2	1	0	1	0	0	0	0	0	0	1	2	8	1	1		V13 = 0: (T2F) = 1 ? After skipping, (T2F) ← 0 V13 = 1: NOP
Timer operation	SNZT3	1	0	1	0	0	0	0	0	1	0	2	8	2	1	1	V20 = 0: (T3F) = 1 ? After skipping, (T3F) ← 0 $V20 = 1$: NOP
Time	SNZT4	1	0	1	0	0	0	0	0	1	1	2	8	3	1		V23 = 0: (T4F) = 1 ? After skipping, (T4F) \leftarrow 0 V23 = 1: NOP
	SNZT5	1	0	1	0	0	0	0	1	0	0	2	8	4	1	1	V21 = 0: (T5F) = 1 ? After skipping, (T5F) ← 0 V21 = 1: NOP
	IAP0	1	0	0	1	1	0	0	0	0	0	2	6	0	1	1	(A) ← (P0)
	ОР0А	1	0	0	0	1	0	0	0	0	0	2	2	0	1	1	(P0) ← (A)
	IAP1	1	0	0	1	1	0	0	0	0	1	2	6	1	1	1	(A) ← (P1)
	OP1A	1	0	0	0	1	0	0	0	0	1	2	2	1	1	1	(P1) ← (A)
	IAP2	1	0	0	1	1	0	0	0	1	0	2	6	2	1	1	(A) ← (P2)
	IAP3	1	0	0	1	1	0	0	0	1	1	2	6	3	1	1	(A) ← (P3)
	CLD	0	0	0	0	0	1	0	0	0	1	0	1	1	1	1	(D) ← 1
	RD	0	0	0	0	0	1	0	1	0	0	0	1	4	1	1	$(D(Y)) \leftarrow 0$ $(Y) = 0 \text{ to } 9$
	SD	0	0	0	0	0	1	0	1	0	1	0	1	5	1		$(D(Y)) \leftarrow 1$ (Y) = 0 to 9
tion	SZD	0	0	0	0	1	0	0	1	0	0	0	2	4	1		(D(Y)) = 0 ?
pera		0	0	0	0	1	0	1	0	1	1	0	2	В	1	1	(Y) = 0 to 7
Input/Output operation	RCP	1	0	1	0	0	0	1	1	0	0	2	8	С	1	1	(C) ← 0
It/Ou	SCP	1	0	1	0	0	0	1	1	0	1	2	8	D	1	1	(C) ← 1
lnpu	TAPU0	1	0	0	1	0	1	0	1	1	1	2	5	7	1	1	(A) ← (PU0)
	TPU0A	1	0	0	0	1	0	1	1	0	1	2	2	D	1	1	(PU0) ← (A)
	TAPU1	1	0	0	1	0	1	1	1	1	0	2	5	Е	1	1	(A) ← (PU1)
	TPU1A	1	0	0	0	1	0	1	1	1	0	2	2	Е	1	1	(PU1) ← (A)

		,
Skip condition	Carry flag CY	Datailed description
V12 = 0: (T1F) = 1	_	Skips the next instruction when the contents of bit 2 (V12) of interrupt control register V1 is "0" and the contents of T1F flag is "1." After skipping, clears (0) to T1F flag.
V13 = 0: (T2F) =1	_	Skips the next instruction when the contents of bit 3 (V13) of interrupt control register V1 is "0" and the contents of T2F flag is "1." After skipping, clears (0) to T2F flag.
V20 = 0: (T3F) = 1	_	Skips the next instruction when the contents of bit 0 (V20) of interrupt control register V2 is "0" and the contents of T3F flag is "1." After skipping, clears (0) to T3F flag.
V23 = 0: (T4F) =1	_	Skips the next instruction when the contents of bit 3 (V23) of interrupt control register V2 is "0" and the contents of T4F flag is "1." After skipping, clears (0) to T4F flag.
V21 = 0: (T5F) =1	_	Skips the next instruction when the contents of bit 1 (V21) of interrupt control register V2 is "0" and the contents of T5F flag is "1." After skipping, clears (0) to T5F flag.
-	_	Transfers the input of port P0 to register A.
_	_	Outputs the contents of register A to port P0.
_	_	Transfers the input of port P1 to register A.
_	_	Outputs the contents of register A to port P1.
_	_	Transfers the input of port P2 to register A.
_	_	Transfers the input of port P3 to register A.
_	_	Sets (1) to all port D.
_	_	Clears (0) to a bit of port D specified by register Y.
-	_	Sets (1) to a bit of port D specified by register Y.
(D(Y)) = 0 However, (Y)=0 to 7	_	Skips the next instruction when a bit of port D specified by register Y is "0." Executes the next instruction when a bit of port D specified by register Y is "1."
_	_	Clears (0) to port C.
_	_	Sets (1) to port C.
_	_	Transfers the contents of pull-up control register PU0 to register A.
_	_	Transfers the contents of register A to pull-up control register PU0.
_	_	Transfers the contents of pull-up control register PU1 to register A.
_	_	Transfers the contents of register A to pull-up control register PU1.

MACHINE INSTRUCTIONS (INDEX BY TYPES) (continued)

Parameter						In	stru	ction	coc	le		.0) (00	of	rof	
Type of instructions	Mnemonic	D9	D8	D7	D6	D5	D4	Дз	D2	D1	D ₀	Hexadecim notation	Number	Number of	Function
	TAK0	1	0	0	1	0	1	0	1	1	0	2 5 6	1	1	(A) ← (K0)
	TK0A	1	0	0	0	0	1	1	0	1	1	2 1 B	1	1	(K0) ← (A)
l e	TAK1	1	0	0	1	0	1	1	0	0	1	2 5 9	1	1	(A) ← (K1)
Input/Output operation	TK1A	1	0	0	0	0	1	0	1	0	0	2 1 4	1	1	(K1) ← (A)
ont og	TAK2	1	0	0	1	0	1	1	0	1	0	2 5 A	1	1	(A) ← (K2)
VOut	TK2A	1	0	0	0	0	1	0	1	0	1	2 1 5	1	1	(K2) ← (A)
Indul	TFR0A	1	0	0	0	1	0	1	0	0	0	2 2 8	1	1	(FR0) ← (A)
	TFR1A	1	0	0	0	1	0	1	0	0	1	2 2 9	1	1	(FR1) ← (A)
	TFR2A	1	0	0	0	1	0	1	0	1	0	2 2 A	1	1	(FR2) ← (A)
5	TAL1	1	0	0	1	0	0	1	0	1	0	2 4 A	1	1	(A) ← (L1)
eratic	TL1A	1	0	0	0	0	0	1	0	1	0	2 0 A	1	1	(L1) ← (A)
LCD operation	TL2A	1	0	0	0	0	0	1	0	1	1	2 0 B	1	1	(L2) ← (A)
2	TL3A	1	0	0	0	0	0	1	1	0	0	2 0 C	1	1	(L3) ← (A)
ion	CMCK	1	0	1	0	0	1	1	0	1	0	2 9 A	1	1	Ceramic resonator selected
oerat	CRCK	1	0	1	0	0	1	1	0	1	1	2 9 B	1	1	RC oscillator selected
Clock operation	TAMR	1	0	0	1	0	1	0	0	1	0	2 5 2	1	1	$(A) \leftarrow (MR)$
ဗိ	TMRA	1	0	0	0	0	1	0	1	1	0	2 1 6	1	1	(MR) ← (A)
	NOP	0	0	0	0	0	0	0	0	0	0	0 0 0	1	1	(PC) ← (PC) + 1
	POF	0	0	0	0	0	0	0	0	1	0	0 0 2	1	1	Transition to clock operating mode
	POF2	0	0	0	0	0	0	1	0	0	0	0 0 8	1	1	Transition to RAM back-up mode
	EPOF	0	0	0	1	0	1	1	0	1	1	0 5 B	1	1	POF, POF2 instructions valid
	SNZP	0	0	0	0	0	0	0	0	1	1	0 0 3	1	1	(P) = 1 ?
Other operation	WRST	1	0	1	0	1	0	0	0	0	0	2 A 0	1	1	(WDF1) = 1 ? After skipping, (WDF1) ← 0
her og	DWDT	1	0	1	0	0	1	1	1	0	0	2 9 C	1	1	Stop of watchdog timer function enabled
Ď	RBK*	0	0	0	1	0	0	0	0	0	0	0 4 0	1	1	When TABP p instruction is executed, P6 \leftarrow 0
	SBK*	0	0	0	1	0	0	0	0	0	1	0 4 1	1	1	When TABP p instruction is executed, P6 \leftarrow 1
	SVDE	1	0	1	0	0	1	0	0	1	1	2 9 3	1	1	At power down mode, voltage drop detection circuit valid

Note: * (SBK, RBK) cannot be used in the M34554M8.

The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC.

Skip condition	Carry flag CY	Datailed description
_	_	Transfers the contents of key-on wakeup control register K0 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K0.
_	_	Transfers the contents of key-on wakeup control register K1 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K1.
_	-	Transfers the contents of key-on wakeup control register K2 to register A.
_	_	Transfers the contents of register A to key-on wakeup control register K2.
_	_	Transferts the contents of register A to port output format control register FR0.
_	-	Transferts the contents of register A to port output format control register FR1.
_	_	Transferts the contents of register A to port output format control register FR2.
-	-	Transfers the contents of LCD control register L1 to register A.
_	_	Transfers the contents of register A to LCD control register L1.
_	_	Transfers the contents of register A to LCD control register L2.
_	-	Transfers the contents of register A to LCD control register L3.
_	-	Selects the ceramic resonator for main clock, stops the on-chip oscillator (internal oscillator).
_	-	Selects the RC oscillation circuit for main clock, stops the on-chip oscillator (internal oscillator).
_	-	Transfers the contents of clock control regiser MR to register A.
-	-	Transfers the contents of register A to clock control register MR.
_	-	No operation; Adds 1 to program counter value, and others remain unchanged.
-	-	Puts the system in clock operating mode by executing the POF instruction after executing the EPOF instruction.
_	-	Puts the system in RAM back-up state by executing the POF2 instruction after executing the EPOF instruction.
-	_	Makes the immediate after POF or POF2 instruction valid by executing the EPOF instruction.
(P) = 1	-	Skips the next instruction when the P flag is "1". After skipping, the P flag remains unchanged.
(WDF1) = 1	_	Skips the next instruction when watchdog timer flag WDF1 is "1." After skipping, clears (0) to the WDF1 flag. Also, stops the watchdog timer function when executing the WRST instruction immediately after the DWDT instruction.
_	-	Stops the watchdog timer function by the WRST instruction after executing the DWDT instruction.
_	-	Sets referring data area to pages 0 to 63 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
_	-	Sets referring data area to pages 64 to 127 when the TABP p instruction is executed. This instruction is valid only for the TABP p instruction.
-	_	Validates the voltage drop detection circuit at power down (clock operating mode and RAM back-up mode) when VDCE pin is "H".

INSTRUCTION CODE TABLE

IIOII	RUC	HOIN	COL	JE 1 <i>P</i>	ADLE														
	D9-D4	000000	000001	000010	000011	000100	000101	000110	000111	001000	001001	001010	001011	001100	001101	001110	001111		011000 011111
D3-D0	Hex.	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F		18–1F
0000	0	NOP	BLA	SZB 0	BMLA	RBK**	TASP	A 0	LA 0	TABP 0	TABP 16	TABP 32*	TABP 48*	BML	BML	BL	BL	вм	В
0001	1	_	CLD	SZB 1	-	SBK**	TAD	A 1	LA 1	TABP 1	TABP 17	TABP 33*	TABP 49*	BML	BML	BL	BL	ВМ	В
0010	2	POF	-	SZB 2	_	_	TAX	A 2	LA 2	TABP 2	TABP 18	TABP 34*	TABP 50*	BML	BML	BL	BL	вм	В
0011	3	SNZP	INY	SZB 3	-		TAZ	A 3	LA 3	TABP 3	TABP 19	TABP 35*	TABP 51*	BML	BML	BL	BL	ВМ	В
0100	4	DI	RD	SZD	-	RT	TAV1	A 4	LA 4	TABP 4	TABP 20	TABP 36*	TABP 52*	BML	BML	BL	BL	ВМ	В
0101	5	ΕI	SD	SEAn	-	RTS	TAV2	A 5	LA 5	TABP 5	TABP 21	TABP 37*	TABP 53*	BML	BML	BL	BL	ВМ	В
0110	6	RC	_	SEAM	-	RTI	_	A 6	LA 6	TABP 6	TABP 22	TABP 38*	TABP 54*	BML	BML	BL	BL	ВМ	В
0111	7	SC	DEY	_	_	-	_	A 7	LA 7	TABP 7	TABP 23	TABP 39*	TABP 55*	BML	BML	BL	BL	ВМ	В
1000	8	POF2	AND	_	SNZ0	LZ 0	_	A 8	LA 8	TABP 8	TABP 24	TABP 40*	TABP 56*	BML	BML	BL	BL	вм	В
1001	9	1	OR	TDA	SNZ1	LZ 1	_	A 9	LA 9	TABP 9	TABP 25	TABP 41*	TABP 57*	BML	BML	BL	BL	ВМ	В
1010	Α	AM	TEAB	TABE	SNZI0	LZ 2	_	A 10	LA 10	TABP 10	TABP 26	TABP 42*	TABP 58*	BML	BML	BL	BL	вм	В
1011	В	AMC	_	_	SNZI1	LZ 3	EPOF	A 11	LA 11	TABP 11	TABP 27	TABP 43*	TABP 59*	BML	BML	BL	BL	вм	В
1100	С	TYA	СМА	_	_	RB 0	SB 0	A 12	LA 12	TABP 12	TABP 28	TABP 44*	TABP 60*	BML	BML	BL	BL	вм	В
1101	D	-	RAR	_	_	RB 1	SB 1	A 13	LA 13	TABP 13	TABP 29	TABP 45*	TABP 61*	BML	BML	BL	BL	вм	В
1110	Е	ТВА	TAB	-	TV2A	RB 2	SB 2	A 14	LA 14	TABP 14	TABP 30	TABP 46*	TABP 62*	BML	BML	BL	BL	вм	В
1111	F	-	TAY	szc	TV1A	RB 3	SB 3	A 15	LA 15	TABP 15	TABP 31	TABP 47*	TABP 63*	BML	BML	BL	BL	вм	В

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The second word 1p paaa aaaa 1p paaa aaaa 1p pp00 pppp 1p pp00 pppp 00 0111 nnnn								
BL	1p	paaa	aaaa						
BML	1p	paaa	aaaa						
BLA	1p	pp00	pppp						
BMLA	1p	pp00	pppp						
SEA	00	0111	nnnn						
SZD	00	0010	1011						

- ** (SBK and RBK instructions) cannot be used in the M34554M8.
- * cannot be used after the SBK instruction is executed in the M34554MC.
- A page referred by the TABP instruction can be switched by the SBK and RBK instructions in the M34554MC/ED.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 95 in the M34554MC.
- The pages which can be referred by the TABP instruction after the SBK instruction is executed are 64 to 127 in the M34554ED.
 - (Ex. TABP $0 \rightarrow TABP 64$)
- The pages which can be referred by the TABP instruction after the RBK instruction is executed are 0 to 63.
- When the SBK instruction is not used, the pages which can be referred by the TABP instruction are 0 to 63.

INSTRUCTION CODE TABLE (continued)

1121	RUC	HON	COL	JE 1 <i>F</i>	ADLE	(con	tinue	ea)										
1	D9-D4	100000	100001	100010	100011	100100	100101	100110	100111	101000	101001	101010	101011	101100	101101	101110	101111	110000 111111
D3-D0	Hex. notation	20	21	22	23	24	25	26	27	28	29	2A	2B	2C	2D	2E	2F	30–3F
0000	0	_	ТWЗА	OP0A	T1AB		TAW6	IAP0	TAB1	SNZT1		WRST	TMA 0	TAM 0	XAM 0	XAMI 0	XAMD 0	LXY
0001	1	_	TW4A	OP1A	T2AB	-	_	IAP1	TAB2	SNZT2	-	-	TMA 1	TAM 1	XAM 1	XAMI 1	XAMD 1	LXY
0010	2	_	TW5A	-	ТЗАВ	-	TAMR	IAP2	TAB3	SNZT3	_	-	TMA 2	TAM 2	XAM 2	XAMI 2	XAMD 2	LXY
0011	3	ı	TW6A	_	T4AB	-	TAI1	IAP3	TAB4	SNZT4	SVDE	_	TMA 3	TAM 3	XAM 3	XAMI 3	XAMD 3	LXY
0100	4	ı	TK1A	_	-	-	TAI2	_	-	SNZT5	_	_	TMA 4	TAM 4	XAM 4	XAMI 4	XAMD 4	LXY
0101	5	ı	TK2A	_	TPSAB	_	_	_	TABPS	_	_	_	TMA 5	TAM 5	XAM 5	XAMI 5	XAMD 5	LXY
0110	6	I	TMRA	_	_	_	TAK0	_	_	_	_	_	TMA 6	TAM 6	XAM 6	XAMI 6	XAMD 6	LXY
0111	7	ı	TI1A	_	T4HAB	-	TAPU0	-	-	_	T4R4L	_	TMA 7	TAM 7	XAM 7	XAMI 7	XAMD 7	LXY
1000	8	ı	TI2A	TFR0A	-		-		-	_		_	TMA 8	TAM 8	XAM 8	XAMI 8	XAMD 8	LXY
1001	9	ı	_	TFR1A	_	_	TAK1	_	_	_	_	_	TMA 9	TAM 9	XAM 9	XAMI 9	XAMD 9	LXY
1010	Α	TL1A	_	TFR2A	_	TAL1	TAK2	_	_	_	СМСК	TPAA	TMA 10	TAM 10	XAM 10	XAMI 10	XAMD 10	LXY
1011	В	TL2A	TK0A	_	TR3AB	TAW1	-	_	-	_	CRCK	_	TMA 11	TAM 11	XAM 11	XAMI 11	XAMD 11	LXY
1100	С	TL3A	_	_	_	TAW2	_	_	_	RCP	DWDT	_	TMA 12	TAM 12	XAM 12	XAMI 12	XAMD 12	LXY
1101	D	TLCA	_	TPU0A	_	TAW3	_	_	-	SCP	_	-	TMA 13	TAM 13	XAM 13	XAMI 13	XAMD 13	LXY
1110	Е	TW1A	_	TPU1A	_	TAW4	TAPU1	_	_	_	_	-	TMA 14	TAM 14	XAM 14	XAMI 14	XAMD 14	LXY
1111	F	TW2A	-	_	TR1AB	TAW5	_	_	_	_	_	_	TMA 15	TAM 15	XAM 15	XAMI 15	XAMD 15	LXY

The above table shows the relationship between machine language codes and machine language instructions. D3–D0 show the low-order 4 bits of the machine language code, and D9–D4 show the high-order 6 bits of the machine language code. The hexadecimal representation of the code is also provided. There are one-word instructions and two-word instructions, but only the first word of each instruction is shown. Do not use code marked "–."

The codes for the second word of a two-word instruction are described below.

	The	secon	d word
BL	1p	paaa	aaaa
BML	1p	paaa	aaaa
BLA	1р	pp00	pppp
BMLA	1p	pp00	pppp
SEA	00	0111	nnnn
SZD	00	0010	1011

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Conditions	Ratings	Unit
VDD	Supply voltage		-0.3 to 6.5	V
Vı	Input voltage P0, P1, P2, P3, D0–D7, RESET, XIN, XCIN, VDCE		-0.3 to VDD+0.3	V
Vı	Input voltage CNTR0, CNTR1, INT0, INT1		-0.3 to VDD+0.3	V
Vo	Output voltage P0, P1, D0-D9, RESET, CNTR0, CNTR1	Output transistors in cut-off state	-0.3 to VDD+0.3	V
Vo	Output voltage C, Xout, Xcout		-0.3 to VDD+0.3	V
Vo	Output voltage SEG0-SEG31, COM0-COM3		-0.3 to VDD+0.3	V
Pd	Power dissipation	Ta = 25 °C	300	mW
Topr	Operating temperature range		-20 to 85	°C
Tstg	Storage temperature range		-40 to 125	°C

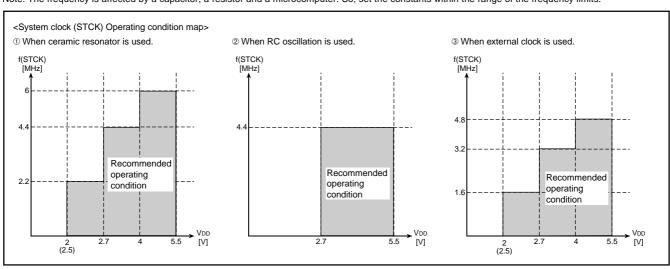
RECOMMENDED OPERATING CONDITIONS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Condition	ons	N di-a	Limits	N4	Unit
			(OTOIC) COMIL	Min.	Тур.	Max.	- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
VDD	Supply voltage	Mask ROM version	f(STCK) ≤ 6 MHz	4		5.5	V
	(when ceramic resonator is used)		f(STCK) ≤ 4.4 MHz	2.7		5.5	-
		O Time DDOM	f(STCK) ≤ 2.2 MHz	2		5.5	-
		One Time PROM version		4		5.5	1
			f(STCK) ≤ 4.4 MHz	2.7		5.5	-
\/nn	Complexitation	f(CTCIC) < A A MUL-	f(STCK) ≤ 2.2 MHz	2.5		5.5 5.5	V
VDD	Supply voltage (when RC oscillation is used)	f(STCK) ≤ 4.4 MHz		2.7		5.5	\ \
VRAM	RAM back-up voltage	at RAM back-up mode		1.8			V
Vss	Supply voltage	at Italia back up mode	1.0	0		V	
VLC3	LCD power supply (Note 1)	Mask ROM version	2	•	VDD	V	
V LOS	LOD power supply (Note 1)	One Time PROM version		2.5		VDD	1
ViH	"H" level input voltage	P0, P1, P2, P3, D0–D7, VI	0.8VDD		VDD	V	
VIH	"H" level input voltage	XIN, XCIN	0.7VDD		VDD	V	
VIH	"H" level input voltage	RESET	0.85VDD		VDD	V	
VIH	"H" level input voltage	CNTR0, CNTR1, INT0, IN	0.8VDD		VDD	V	
VIL	"L" level input voltage	P0, P1, P2, P3, D0–D7, VI	0		0.2VDD	V	
VIL	"L" level input voltage	XIN, XCIN	0		0.3Vpp	V	
VIL	"L" level input voltage	RESET	0		0.3Vpp	V	
VIL	"L" level input voltage	CNTR0, CNTR1, INT0, IN	0		0.15VDD	V	
Iон(peak)	"H" level peak output current	P0, P1, D0–D6	VDD = 5 V	-		-20	mA
.o(poult)		. 0,, 20 20	VDD = 3 V			-10	1
Iон(peak)	"H" level peak output current	D7, C	VDD = 5 V			-30	mA
.o(poult)		CNTR0, CNTR1	VDD = 3 V			-15	1
Iон(avg)	"H" level average output current	P0, P1, D0–D6	VDD = 5 V			-10	mA
(3)	(Note 2)	, , , , , , , , , , , , , , , , , , , ,	VDD = 3 V			-5	1
Iон(avg)	"H" level average output current	D7, C	VDD = 5 V			-20	mA
(3)	(Note 2)	CNTR0, CNTR1	VDD = 3 V			-10	1
loL(peak)	"L" level peak output current	P0, P1	VDD = 5 V			24	mA
- (1)			VDD = 3 V			12	1
loL(peak)	"L" level peak output current	D0-D6, C	VDD = 5 V			24	mA
(1)		CNTR0, CNTR1	VDD = 3 V			12	1
loL(peak)	"L" level peak output current	RESET	VDD = 5 V			10	mA
" /			VDD = 3 V			4	1
loL(avg)	"L" level average output current	P0, P1	VDD = 5 V			12	mA
(0,	(Note 2)		VDD = 3 V			6	1
loL(avg)	"L" level average output current	D0-D6, C	VDD = 5 V			15	mA
	(Note 2)	CNTR0, CNTR1	VDD = 3 V			7	1
IoL(avg)	"L" level average output current	RESET	VDD = 5 V			5	mA
. 3,	(Note 2)				2	1	
ΣIOH(avg)	"H" level total average current	P0, P1, D0–D6			-60	mA	
. 3,	, and the second	D7, C, CNTR0, CNTR1			-60	1	
ΣloL(avg)	"L" level total average current	P0, P1, D0–D6				80	mA
,	-	D7-D9, C, RESET, CNTRO	. CNTR1			80	1

Notes 1: At 1/2 bias: VLC1 = VLC2 = (1/2)•VLC3

At 1/3 bias: VLC1 = (1/3)•VLC3, VLC2 = (2/3)•VLC3


^{2:} The average output current is the average value during 100 ms.

RECOMMENDED OPERATING CONDITIONS 2

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter				Unit			
-,	r dramotor		Conditions		Min.	Тур.	Max.	
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4 to 5.5 V			6	MHz
	(with a ceramic resonator)	version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2 to 5.5 V			2.2	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6	
				VDD = 2 to 5.5 V			4.4	
			Frequency/4, 8 mode	VDD = 2 to 5.5 V			6	
		One Time PROM	Through mode	VDD = 4 to 5.5 V			6	
		version		VDD = 2.7 to 5.5 V			4.4	
				VDD = 2.5 to 5.5 V			2.2	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			6	
				VDD = 2.5 to 5.5 V			4.4	
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			6	
f(XIN)	Oscillation frequency	VDD = 2.7 to 5.5 \	I				4.4	MHz
	(at RC oscillation) (Note)							
f(XIN)	Oscillation frequency	Mask ROM	Through mode	VDD = 4 to 5.5 V			4.8	MHz
	(with a ceramic resonator selected,	version		VDD = 2.7 to 5.5 V			3.2	
	external clock input)			VDD = 2 to 5.5 V			1.6	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	
				VDD = 2 to 5.5 V			3.2	
			Frequency/4, 8 mode	VDD = 2 to 5.5 V			4.8	
		One Time PROM	Through mode	VDD = 4 to 5.5 V			4.8	
		version		VDD = 2.7 to 5.5 V			3.2	
				VDD = 2.5 to 5.5 V			1.6	
			Frequency/2 mode	VDD = 2.7 to 5.5 V			4.8	
				VDD = 2.5 to 5.5 V			3.2	
			Frequency/4, 8 mode	VDD = 2.5 to 5.5 V			4.8	
f(XCIN)	Oscillation frequency (sub-clock)	Quartz-crystal os	cillator				50	kHz
f(CNTR)	Timer external input frequency	CNTR0, CNTR1			f(STCK)/6	Hz		
tw(CNTR)	Timer external input period	CNTR0, CNTR1			3/f(STCK)			s
	("H" and "L" pulse width)				`	l		
TPON	Power-on reset circuit	Mask ROM version	on	$VDD = 0 \rightarrow 2 V$			100	μs
	valid supply voltage rising time	One Time PROM			100	1		

Note: The frequency is affected by a capacitor, a resistor and a microcomputer. So, set the constants within the range of the frequency limits.

ELECTRICAL CHARACTERISTICS 1

(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted)

(One Time PROM version: $Ta = -20 \, ^{\circ}\text{C}$ to 85 $^{\circ}\text{C}$, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol	Parameter	Te		Limits			
Symbol	Farameter	IE	Min.	Тур.	Max.	Unit	
Vон	"H" level output voltage	VDD = 5 V	IOH = -10 mA	3			V
	P0, P1, D0–D6		IOH = -3 mA	4.1			
		VDD = 3 V	IOH = -5 mA	2.1			
			IOH = -1 mA	2.4			
Vон	"H" level output voltage	VDD = 5 V	IOH = -20 mA	3			V
	D7, C, CNTR0, CNTR1		Iон = -6 mA	4.1			
		VDD = 3 V	IOH = -10 mA	2.1			
			IOH = -3 mA	2.4			
VoL	"L" level output voltage	VDD = 5 V	IOL = 12 mA			2	V
	P0, P1		IOL = 4 mA			0.9	
		VDD = 3 V	IOL = 6 mA			0.9	
			IOL = 2 mA			0.6	
VoL	"L" level output voltage	VDD = 5 V	IOL = 15 mA			2	V
	Do-D9, C, CNTR0, CNTR1		IOL = 5 mA			0.9	
		VDD = 3 V	IOL = 9 mA			1.4	
			IOL = 3 mA			0.9	
Vol	"L" level output voltage	VDD = 5 V	IOL = 5 mA			2	V
	RESET		IOL = 1 mA			0.6	
		VDD = 3 V	IOL = 2 mA			0.9	
IIН	"H" level input current	VI = VDD	•			1	μΑ
	P0, P1, P2, P3, D0-D7, VDCE, RESET						
	CNTR0, CNTR1, INT0, INT1						
lıL	"L" level input current	VI = 0 V P0, P1 No	pull-up			-1	μΑ
	P0, P1, P2, P3, D0-D7, VDCE,						
	CNTR0, CNTR1, INT0, INT1						

ELECTRICAL CHARACTERISTICS 2

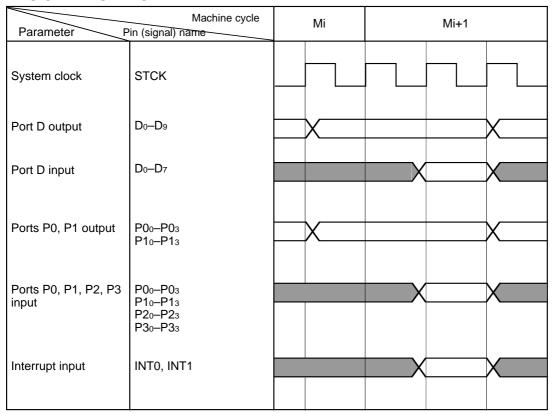
(Mask ROM version: Ta = -20 °C to 85 °C, VDD = 2 to 5.5 V, unless otherwise noted) (One Time PROM version: Ta = -20 °C to 85 °C, VDD = 2.5 to 5.5 V, unless otherwise noted)

Symbol		Parameter	Test conditions			Limits Min. Typ. Max.		
		1				Тур.	Max.	Unit
IDD	Supply current	at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		1.4	2.8	_ mA
		(with a ceramic resonator)	f(XIN) = 6 MHz	f(STCK) = f(XIN)/4		1.6	3.2	_
			f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		2	4	
				f(STCK) = f(XIN)		2.8	5.6	
			VDD = 5 V	f(STCK) = f(XIN)/8		1.1	2.2	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		1.2	2.4	
			f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		1.5	3	
				f(STCK) = f(XIN)		2	4	
			VDD = 3 V	f(STCK) = f(XIN)/8		0.4	0.8	mA
			f(XIN) = 4 MHz	f(STCK) = f(XIN)/4		0.5	1	
			f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		0.6	1.2	1
				f(STCK) = f(XIN)		0.8	1.6	
		at active mode	VDD = 5 V	f(STCK) = f(XIN)/8		55	110	μΑ
		(with a quartz-crystal	f(XIN) = stop	f(STCK) = f(XIN)/4		60	120	1
		oscillator)	f(XCIN) = 32 kHz	f(STCK) = f(XIN)/2		65	130	1
		,	, ,	f(STCK) = f(XIN)		70	140	
			VDD = 3 V	f(STCK) = f(XIN)/8		12	24	μΑ
			f(XIN) = stop	f(STCK) = f(XIN)/4		13	26	-
			f(Xcin) = 32 kHz	f(STCK) = f(XIN)/2		14	28	
			.(/10) 022	f(STCK) = f(XIN)		15	30	1
		at clock operation mode	f(Xcin) = 32 kHz	VDD = 5 V		20	60	μΑ
		(POF instruction execution)	1(XCIN) = 32 KHZ	VDD = 3 V		5	15	μ.
		,	Ta = 25 °C	VDD = 3 V		0.1	1	μΑ
		at RAM back-up mode	VDD = 5 V			0.1	10	μ
	(POF2 instruction execution)		VDD = 3 V				6	-
Davi	Dull on marintan		VDD = 3 V VI = 0 V	\/pp	20	60		kO
Rpu	Pull-up resistor value		VI = 0 V	VDD = 5 V	30	60	125	kΩ
	P0, P1, RESET		VDD = 3 V		50	120	250	.,
VT+ – VT–	, , , , ,		VDD = 5 V			0.2		V
			VDD = 3 V			0.2		ļ ,,
VT+ – VT–	Hysteresis RESET		VDD = 5 V			1		V
			VDD = 3 V			0.4		
f(RING)	On-chip oscillator clock frequency		VDD = 5 V		1	2	3	MHz
			VDD = 3 V			1	1.8	
∆f(XIN)	Frequency error		VDD = 5 V ± 10 %, Ta = 25 °C				±17	%
	(with RC oscilla	ation,						
	error of external R, C not included) (Note)		VDD = 5 V ± 10 %, Ta = 25 °C				±17	
RCOM	COM output impedance		VDD = 5 V			1.5	7.5	kΩ
			VDD = 3 V			2	10	
RSEG	SEG output impedance		VDD = 5 V			1.5	7.5	kΩ
			VDD = 3 V			2	10	
RVLC	Internal resistor	r for LCD power supply	When dividing resistor 2r X 3 selected			480	960	kΩ
	pomor supply		When dividing resistor 2r X 2 selected			320	640	1
			When dividing resistor r X 3 selected			240	480	1
			When dividing resistor r X 2 selected			160	320	1

Note: When RC oscillation is used, use the external 33 pF capacitor (C).

VOLTAGE DROP DETECTION CIRCUIT CHARACTERISTICS

(Ta = -20 °C to 85 °C, unless otherwise noted)


Symbol	Parameter	Test conditions		Unit			
Symbol	Farameter	Test conditions	Min.	Тур.	Max.	Oill	
VRST	Detection voltage (Note 1)				1.5	1.6	V
		Ta = 25 °C		1.1		1.9	
IRST	Operation current	at power down	VDD = 5 V		50	100	μΑ
		(Note 2)	VDD = 3 V		30	60	
TRST	Detection time	$VDD \rightarrow (VRST-0.1 \text{ V}) \text{ (Note 3)}$			0.2	1.2	ms

Notes 1: The detected voltage (VRST) is defined as the voltage when reset occurs when the supply voltage (VDD) is falling.

2: After the SVDE instruction is executed, the voltage drop detectin circuit is valid at power down mode.

3: The detection time (TRST) is defined as the time until reset occurs when the supply voltage (VDD) is falling to [VRST-0.1 V].

BASIC TIMING DIAGRAM

BUILT-IN PROM VERSION

In addition to the mask ROM versions, the 4554 Group has the One Time PROM versions whose PROMs can only be written to and not be erased.

The built-in PROM version has functions similar to those of the mask ROM versions, but it has PROM mode that enables writing to built-in PROM

Table 25 shows the product of built-in PROM version. Figure 61 shows the pin configurations of built-in PROM versions.

The One Time PROM version has pin-compatibility with the mask ROM version.

Table 25 Product of built-in PROM version

Part number	PROM size (X 10 bits)	RAM size (X 4 bits)	Package	ROM type
M34554EDFP	16384 words	512 words	64P6N-A	One Time PROM [shipped in blank]

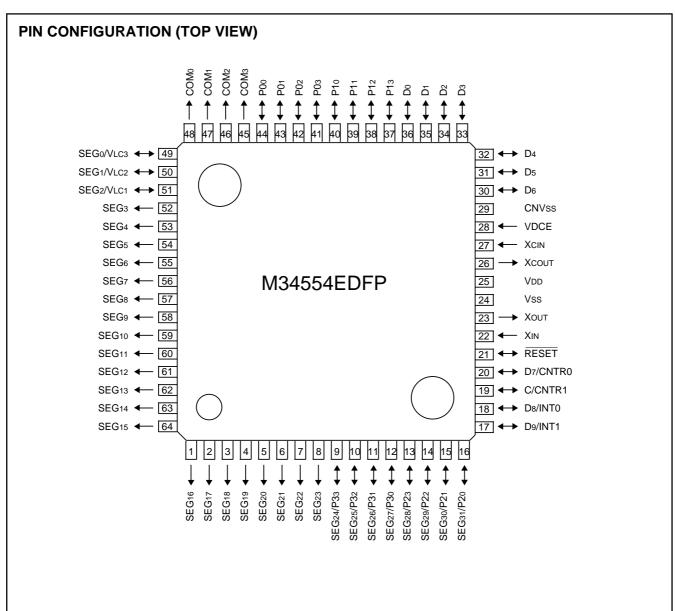


Fig. 61 Pin configuration of built-in PROM version

(1) PROM mode

The built-in PROM version has a PROM mode in addition to a normal operation mode. The PROM mode is used to write to and read from the built-in PROM.

In the PROM mode, the programming adapter can be used with a general-purpose PROM programmer to write to or read from the built-in PROM as if it were M5M27C256K.

Programming adapter is listed in Table 26. Contact addresses at the end of this data sheet for the appropriate PROM programmer.

· Writing and reading of built-in PROM

Programming voltage is 12.5 V. Write the program in the PROM of the built-in PROM version as shown in Figure 62.

(2) Notes on handling

- ①A high-voltage is used for writing. Take care that overvoltage is not applied. Take care especially at turning on the power.
- ②For the One Time PROM version shipped in blank, Renesas Technology corp. does not perform PROM writing test and screening in the assembly process and following processes. In order to improve reliability after writing, performing writing and test according to the flow shown in Figure 63 before using is recommended (Products shipped in blank: PROM contents is not written in factory when shipped).

(3) Difference between Mask ROM version and One Time PROM version

Mask ROM version and One Time PROM version have some difference of the following characteristics within the limits of an electrical property by difference of a manufacture process, built-in ROM, and a layout pattern.

- a characteristic value
- a margin of operation
- the amount of noise-proof
- noise radiation, etc.,

Accordingly, be careful of them when swithcing.

Table 26 Programming adapter

Part number	Name of Programming Adapter			
M34554EDFP	PCA7448			

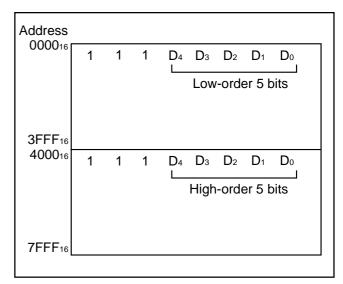


Fig. 62 PROM memory map

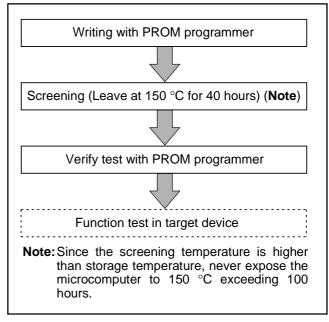
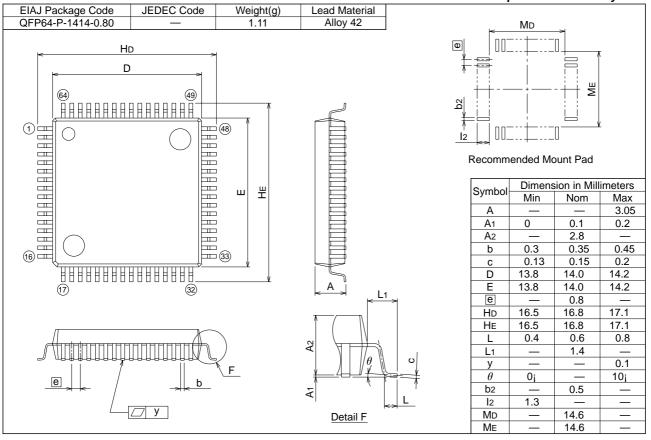



Fig. 63 Flow of writing and test of the product shipped in blank

PACKAGE OUTLINE

64P6N-A

Plastic 64pin 14×14mm body QFP

REVISION HISTORY

4554 Group Data Sheet

Rev.	Date		Description				
Page			Summary				
1.00	Nov. 27, 2001	_	First edition issued				
2.00	Jul. 01, 2003	All pages	"Preliminary Notice: This is not a final specification. Some parametric limits are				
			subject to change." eliminated.				
2.01	Sep.18, 2003	54	Note on voltage drop detection circuit added.				
		55	Table 15 Port level revised.				
		66	Note on voltage drop detection circuit added.				
3.00	Aug. 06, 2004	All pages	Words standardized: On-chip oscillator				
		4	Power dissipation: "Ta=25°C" added.				
		5	Description of RESET pin revised.				
		29 30	Fig.20: Some description added. Fig.23: Some description added.				
		34	Fig.26 : Note 9 added.				
		44	Some description revised.				
		45	Fig.31: "DI" instruction added.				
		50	(5) LCD power supply circuit revised.				
		53	Fig.40 : State of quartz-crystal oscillator added.				
		57	Fig.44: Note 5 added.				
		64	Fig.56: Some description added.				
		65	Fig.57: Some description added.				
		66	Note on Power Source Voltage added.				

Renesas Technology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

Keep safety first in your circuit designs!

1. Renesas Technology Corp. puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with semiconductors may lead to personal injury, fire or property damage.

Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of substitutive, auxiliary circuits, (ii) use of nonflammable material or (iii) prevention against any malfunction or mishap.

Notes regarding these materials

1. These materials are intended as a reference to assist our customers in the selection of the Renesas Technology Corp. product best suited to the customer's application; they do not convey any license under any intellectual property rights, or any other rights, belonging to Renesas Technology Corp. or a third party.

2. Renesas Technology Corp. assumes no responsibility for any damage, or infringement of any third-party's rights, originating in the use of any product data, diagrams, charts, programs, algorithms, or circuit application examples contained in these materials.

3. All information contained in these materials, including product data, diagrams, charts, programs and algorithms represents information on products at the time of publication of these materials, and are subject to change by Renesas Technology Corp. without notice due to product improvements or other reasons. It is therefore recommended that customers contact Renesas Technology Corp. or an authorized Renesas Technology Corp. product distributor for the latest product information described here may contain technical inaccuracies or typographical errors.

Renesas Technology Corp. assumes no responsibility for any damage, liability, or other loss rising from these inaccuracies or errors.

Please also pay attention to information published by Renesas Technology Corp. by various means, including the Renesas Technology Corp. Semiconductor home page (http://www.renesas.com).

4. When using any or all of the information contained in these materials, including product data, diagrams, charts, programs, and algorithms, please be sure to evaluate all information as a total system before making a final decision on the applicability of the information and products. Renesas Technology Corp. assumes no responsibility for any damage, liability or other loss resulting from the information contained herein.

5. Renesas Technology Corp. semiconductors are not designed or manufactured for use in a device or system that is used

- use.
 6. The prior written approval of Renesas Technology Corp. is necessary to reprint or reproduce in whole or in part these materials.
 7. If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the approved destination.

 Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.

 8. Please contact Renesas Technology Corp. for further details on these materials or the products contained therein.

RENESAS SALES OFFICES

http://www.renesas.com

Renesas Technology America, Inc.

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500 Fax: <1> (408) 382-7501

Renesas Technology Europe Limited.

Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, United Kingdom Tel: <44> (1628) 585 100, Fax: <44> (1628) 585 900

Renesas Technology Europe GmbHDornacher Str. 3, D-85622 Feldkirchen, Germany
Tel: <49> (89) 380 70 0, Fax: <49> (89) 929 30 11

Renesas Technology Hong Kong Ltd. 7/F., North Tower, World Finance Centre, Harbour City, Canton Road, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2375-6836

Renesas Technology Taiwan Co., Ltd. FL 10, #99, Fu-Hsing N. Rd., Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology (Shanghai) Co., Ltd. 26/F., Ruijin Building, No.205 Maoming Road (S), Shanghai 200020, China Tel: <86> (21) 6472-1001, Fax: <86> (21) 6415-2952

Renesas Technology Singapore Pte. Ltd.
1, Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001