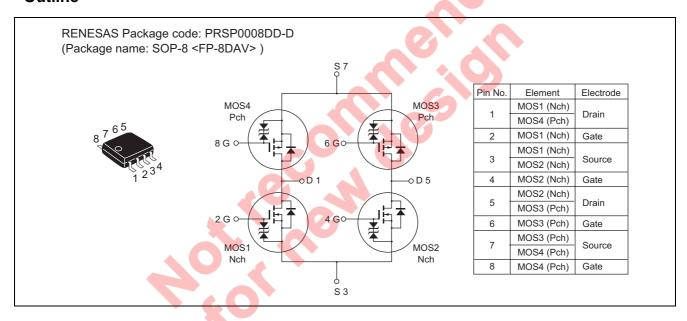


RJM0306JSP


Silicon N / P Channel Power MOS FET High Speed Power Switching

REJ03G1571-0100 Rev.1.00 Nov 16, 2007

Features

- Two elements each of N and P channels are incorporated (suitable for H-bridge circuit)
- High density mounting
- Low on-resistance
- Capable of 4 V gate drive
- High temperature D-S leakage guarantee Avalanche rating

Outline

Absolute Maximum Ratings

 $(Ta = 25^{\circ}C)$

Item	Symbol	Va	Unit	
item	Symbol	MOS1, 2 (Nch)	MOS3, 4 (Pch)	
Drain to source voltage	V _{DSS}	30	-30	V
Gate to source voltage	V _{GSS}	±20	±20	V
Drain current	I _D	3.5	-3.5	Α
Drain peak current	I _D (pulse) ^{Note 1}	28	-28	А
Avalanche current	I _{AP} Note 4	3.5	-3.5	А
Avalanche energy	E _{AR} Note 4	1.22	1.22	mJ
Channel dissipation	Pch ^{Note 2}	1	.5	W
Channel dissipation	Pch ^{Note 3}	2.2		W
Channel temperature	Tch	150		°C
Storage temperature	Tstg	-55 to +150		°C

Notes: 1. PW \leq 10 μ s, duty cycle \leq 1%

- 2. 1 Drive operation: When using the glass epoxy board (FR4 $40 \times 40 \times 1.6$ mm), PW ≤ 10 s
- 3. 2 Drive operation: When using the glass epoxy board (FR4 $40 \times 40 \times 1.6$ mm), PW ≤ 10 s
- 4. Value at Tch = 25°C, Rg \geq 50 Ω

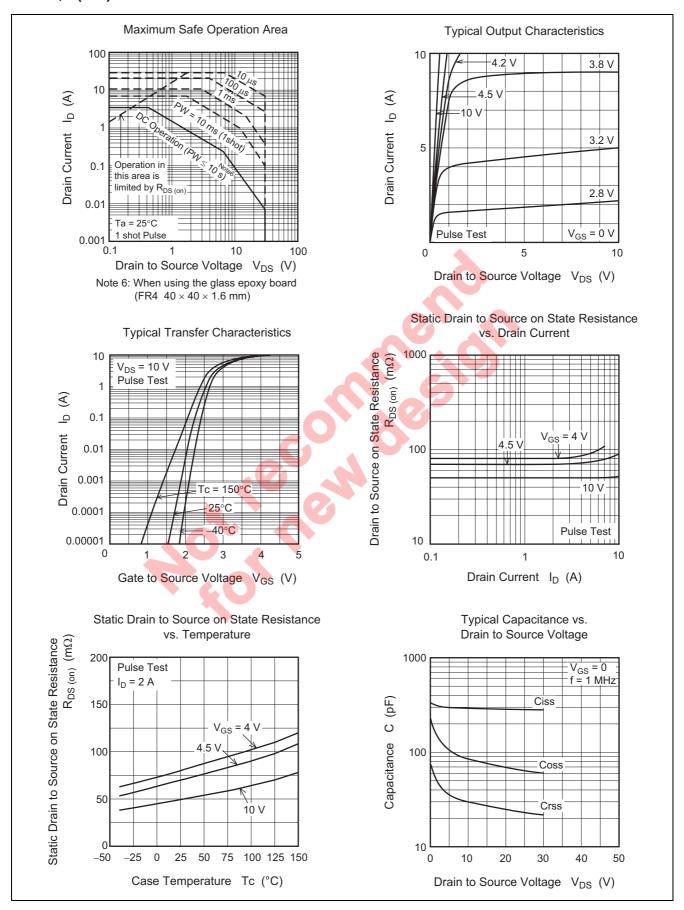
Electrical Characteristics

MOS1, 2 (Nch)

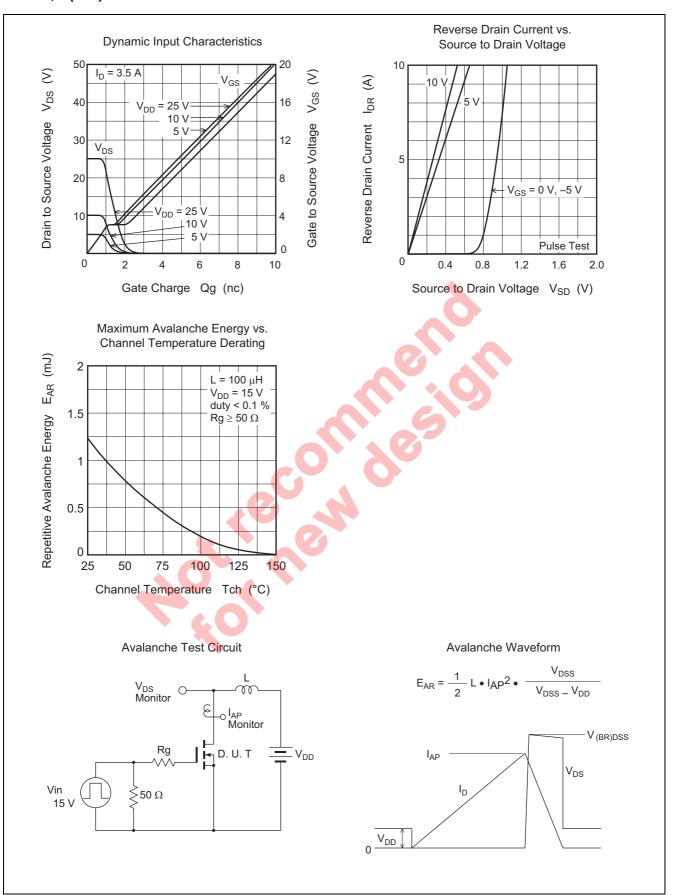
 $(Ta = 25^{\circ}C)$

Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	V _{(BR)DSS}	30	_	ı	V	$I_D = 10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	V _{(BR)GSS}	±20	_	1	V	$I_G = \pm 100 \ \mu A, \ V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_		1	μΑ	$V_{DS} = 30 \text{ V}, V_{GS} = 0$
Zero gate voltage drain current	I _{DSS}	1	_	10	μΑ	$V_{DS} = 24 \text{ V}, V_{GS} = 0,$ $Ta = 125^{\circ}C$
Gate to source leak current	I _{GSS}		_	±10	μΑ	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	1.0		2.5	V	$V_{DS} = 10 \text{ V}, I_{D} = 1 \text{ mA}$
Static drain to source on state resistance	R _{DS(on)}		50	65	mΩ	$I_D = 2.0 \text{ A}^{\text{Note5}}, V_{GS} = 10 \text{ V}$
Static drain to source on state resistance	R _{DS(on)}	_	70	105	mΩ	$I_D = 2.0 \text{ A}^{\text{Note5}}, V_{GS} = 4.5 \text{ V}$
Static drain to source on state resistance	R _{DS(on)}	_	80	130	mΩ	$I_D = 2.0 \text{ A}^{\text{Note5}}, V_{GS} = 4.0 \text{ V}$
Input capacitance	Ciss	_	290		pF	$V_{DS} = 10 \text{ V}, V_{GS} = 0$
Output capacitance	Coss	-	85		pF	f = 1 MHz
Reverse transfer capacitance	Crss		30	\ -	pF	
Total gate charge	Qg	1	5.0		nC	$V_{DD} = 10 \text{ V}, V_{GS} = 10 \text{ V},$
Gate to source charge	Qgs	ı	1.2	}	nC	$I_D = 3.5 \text{ A}$
Gate to drain charge	Qgd		0.6	7	nC	
Turn-on delay time	t _{d(on)}		12		ns	$V_{GS} = 10 \text{ V}, I_D = 2.0 \text{ A},$
Rise time	t _r	J	12	-	ns	$V_{DD} \cong 10 \text{ V}, R_L = 5 \Omega,$
Turn-off delay time	t _{d(off)}		35	_	ns	$R_G = 4.7 \Omega$
Fall time	t _f	9- 4	8	_	ns	
Body-drain diode forward voltage	V_{DF}	-0	0.88	1.15	V	$I_F = 3.5 \text{ A}, V_{GS} = 0^{\text{Note5}}$
Body-drain diode reverse recovery time	t _{rr}	7	25	_	ns	$I_F = 3.5A, V_{GS} = 0$ $di_F/dt = 100 A/\mu s$

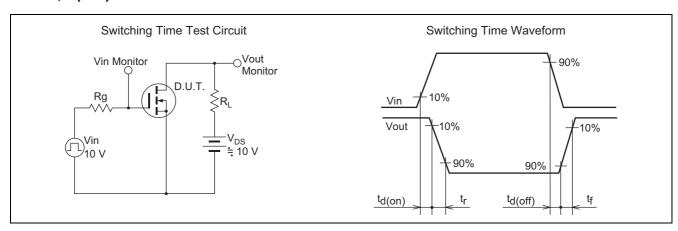
Note: 5. Pulse test

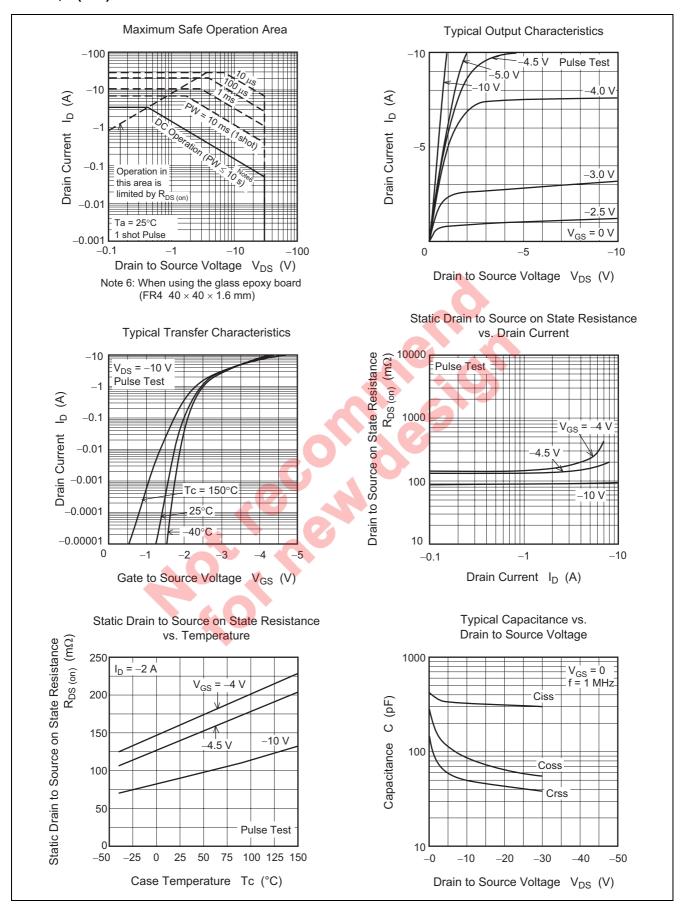

 $(Ta = 25^{\circ}C)$

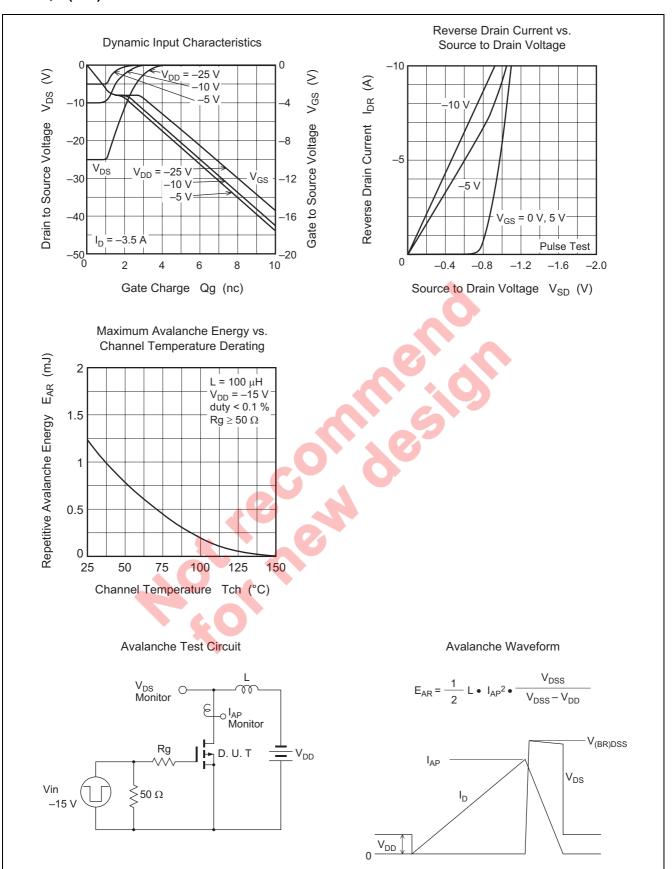
Item	Symbol	Min	Тур	Max	Unit	Test Conditions
Drain to source breakdown voltage	V _{(BR)DSS}	-30		_	V	$I_D = -10 \text{ mA}, V_{GS} = 0$
Gate to source breakdown voltage	$V_{(BR)GSS}$	±20	1	_	V	$I_G = \pm 100 \ \mu A, \ V_{DS} = 0$
Zero gate voltage drain current	I _{DSS}	_	_	– 1	μΑ	$V_{DS} = -30 \text{ V}, V_{GS} = 0$
Zero gate voltage drain current	I _{DSS}	1	1	-10	μΑ	$V_{DS} = -24 \text{ V}, V_{GS} = 0,$ Ta = 125°C
Gate to source leak current	I_{GSS}	_	_	±10	μΑ	$V_{GS} = \pm 16 \text{ V}, V_{DS} = 0$
Gate to source cutoff voltage	$V_{GS(off)}$	-1.0	_	-2.5	V	$V_{DS} = -10 \text{ V}, I_{D} = -1 \text{ mA}$
Static drain to source on state resistance	R _{DS(on)}	_	90	120	mΩ	$I_D = -2.0 \text{ A}^{\text{Note5}}, V_{GS} = -10 \text{ V}$
Static drain to source on state resistance	R _{DS(on)}		140	210	mΩ	$I_D = -2.0 \text{ A}^{\text{Note5}}, V_{GS} = -4.5 \text{ V}$
Static drain to source on state resistance	R _{DS(on)}		160	260	$m\Omega$	$I_D = -2.0 \text{ A}^{\text{Note5}}, V_{GS} = -4.0 \text{ V}$
Input capacitance	Ciss		320		pF	$V_{DS} = -10 \text{ V}, V_{GS} = 0,$
Output capacitance	Coss		85	_	pF	f = 1 MHz
Reverse transfer capacitance	Crss		50	-	pF	
Total gate charge	Qg		6.0		nC	$V_{DD} = -10 \text{ V}, V_{GS} = -10 \text{ V},$
Gate to source charge	Qgs		1.4	_	nC	$I_D = -3.5 \text{ A}$
Gate to drain charge	Qgd		1.0		nC	
Turn-on delay time	$t_{d(on)}$		30		ns	$V_{GS} = -10 \text{ V}, I_{D} = -2.0 \text{ A},$
Rise time	t _r	_	17	4	ns	$V_{DD} \cong -10 \text{ V}, R_L = 5.0 \Omega,$
Turn-off delay time	$t_{\text{d(off)}}$		30		ns	$R_G = 4.7 \Omega$
Fall time	t _f		7		ns	
Body-drain diode forward voltage	V_{DF}		-0.92	-1.2	V	$I_F = -3.5 \text{ A}, V_{GS} = 0^{\text{Note5}}$
Body-drain diode reverse recovery time	t _{rr}		30	_	ns	$I_F = -3.5 \text{ A}, V_{GS} = 0$ $di_F/dt = 100 \text{ A}/\mu\text{s}$

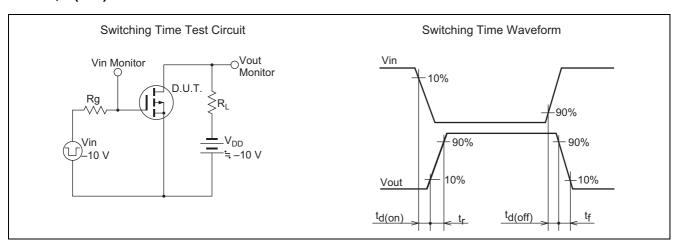

Note: 5. Pulse test

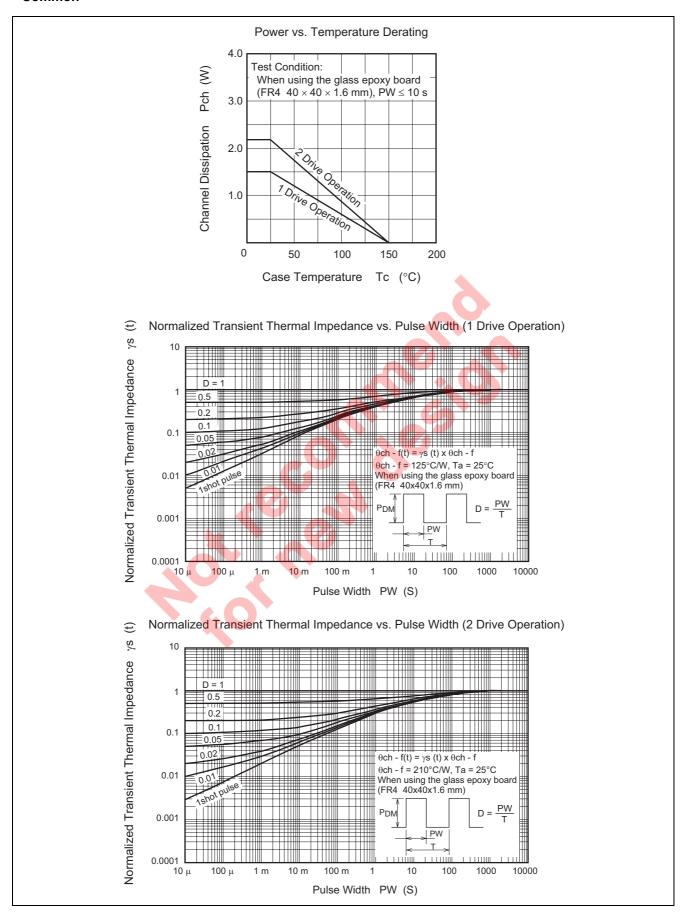
Main Characteristics

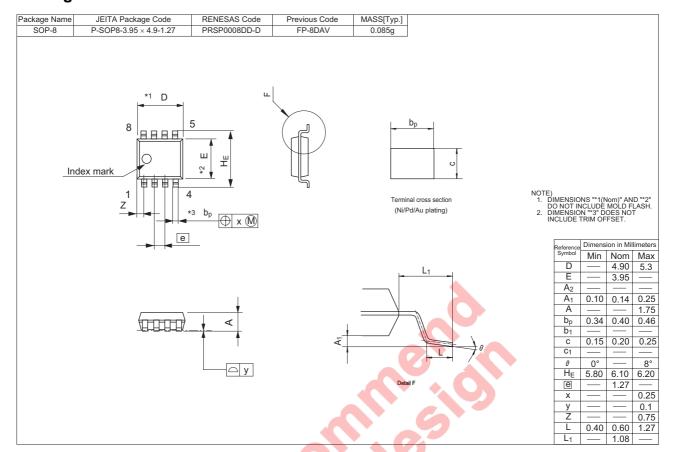

MOS1, 2 (Nch)


MOS1, 2 (Nch)




MOS1, 2 (Nch)





Common

Package Dimensions

Ordering Information

Part No.	Quantity	Shipping Container
RJM0306JSP-00-J0	2500 pcs	Taping

Renesas Technology Corp. sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan

- Renesas lechnology Corp. Sales Strategic Planning Div. Nippon Bldg., 2-6-2, Ohte-machi, Chiyoda-ku, Tokyo 100-0004, Japan Notes:

 1. This document is provided for reference purposes only so that Renesas customers may select the appropriate Renesas products for their use. Renesas neither makes warrantes or representations with respect to the accuracy or completeness of the information in this document nor grants any license to any intellectual property girbs to any other rights of representations with respect to the information in this document in this document of the purpose of the respect of the information in this document in the document, including, but not limited to, product data, diagrams, charts, programs, algorithms, and application critical examples.

 3. You should not use the products of the technology described in this document for the purpose of military use. When exporting the products or technology described herein, you should follow the applicable export control laws and regulations, and procedures required by such laws and regulations, and received in the development of such information in the development of such and the procedure of the development of such and the procedure of the development of such and the procedure of the development of such and the

RENESAS SALES OFFICES

http://www.renesas.com

Refer to "http://www.renesas.com/en/network" for the latest and detailed information.

Renesas Technology America, Inc

450 Holger Way, San Jose, CA 95134-1368, U.S.A Tel: <1> (408) 382-7500, Fax: <1> (408) 382-7501

Renesas Technology Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K.
Tel: <44> (1628) 585-100, Fax: <44> (1628) 585-900

Renesas Technology (Shanghai) Co., Ltd.
Unit 204, 205, AZIACenter, No.1233 Lujiazui Ring Rd, Pudong District, Shanghai, China 200120 Tel: <86> (21) 5877-1818, Fax: <86> (21) 6887-7898

Renesas Technology Hong Kong Ltd.
7th Floor, North Tower, World Finance Centre, Harbour City, 1 Canton Road, Tsimshatsui, Kowloon, Hong Kong Tel: <852> 2265-6688, Fax: <852> 2730-6071

Renesas Technology Taiwan Co., Ltd. 10th Floor, No.99, Fushing North Road, Taipei, Taiwan Tel: <886> (2) 2715-2888, Fax: <886> (2) 2713-2999

Renesas Technology Singapore Pte. Ltd.

1 Harbour Front Avenue, #06-10, Keppel Bay Tower, Singapore 098632 Tel: <65> 6213-0200, Fax: <65> 6278-8001

Renesas Technology Korea Co., Ltd. Kukje Center Bldg. 18th Fl., 191, 2-ka, Hangang-ro, Yongsan-ku, Seoul 140-702, Korea Tel: <82> (2) 796-3115, Fax: <82> (2) 796-2145

Renesas Technology Malaysia Sdn. Bhd
Unit 906, Block B, Menara Amcorp, Amcorp Trade Centre, No.18, Jalan Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia Tel: <603> 7955-9390, Fax: <603> 7955-9510

L	